Fabrication of Single Electron Charging Devices for Optical Charge Sensing Experiments

Leiden Repository

Fabrication of Single Electron Charging Devices for Optical Charge Sensing Experiments

Type: Master thesis
Title: Fabrication of Single Electron Charging Devices for Optical Charge Sensing Experiments
Author: Smit, Robert
Issue Date: 2015-10-30
Keywords: lithography, SET, nanoparticles, condensed matter physics, optics, single molecules
Abstract: To sense the movement or piling up of single charges, a system interacting strongly with these charges is required. An available system, having these properties, is a single electron transistor (SET). The electric fi eld caused by the charge, strongly changes the resistance of the SET. Yet experiments opt for a less invasive charge sensor. Such a proposed charge sensor is a single fluorescent dye molecule. The distinguishable zero phonon lines (ZPL's) of the fluorescence of the molecules shifts strongly by the Stark e ffect. The lineshift of each molecule can be tracked with an excitation laser, allowing to observe the change in charging. Tracking the ZPL's of multiple molecules allows the observation of slow charge movement. The optical charge sensing method needs to be tested on devices fabricated on a glass substrate. In particular devices, which exhibit single electron charging. These devices have been constructed with electron beam lithography (EBL). Nanoparticles, representing an island to hold the charge, have been trapped between nano-electrodes using dielectrophoresis. The nanogaps have been created by electromigration or by EBL. Eventually, nano-electrodes were also fabricated on glass by coating the glass with a 1,5 nm Cr layer. This coating was removed afterwards with plasma etching. The project focused on the fabrication of the devices. The deposition of fluorescent dye molecules and tracking the lineshifts was left for subsequent experiments. A fluorescence microscope, also necessary for the lineshift measurements, was used to observe quantum dots. Proposed experiments with quantum dots are the tracking of the movement of quantum dots in a strong alternating electric fi eld or the eff ect of a high electric field on the fluorescence of a quantum dot in a nano-electrode junction.
Supervisor: Orrit, M.A.G.J.Faez, S.
Faculty: Faculty of Science
Department: Physics (Master)
Specialisation: Physics and Science Based Business
ECTS Credits: 5
Handle: http://hdl.handle.net/1887/37069
 

Files in this item

Description Size View
application/pdf Complete Thesis 7.410Mb View/Open

This item appears in the following Collection(s)