World Health Organization Classification of Tumours

WHO

OMS

International Agency for Research on Cancer (IARC)

Pathology and Genetics of Tumours of Soft Tissue and Bone

Edited by
Christopher D.M. Fletcher
K. Krishnan Unni
Fredrik Mertens

IARCPress
Lyon, 2002
SOFT TISSUE TUMOURS

WHO Classification of Soft Tissue Tumours 9

1 Adipocytic tumours 19
 Lipoma 20
 Lipomatosi 23
 Lipomatosi of nerve 24
 Lipoblastoma / Lipoblastomatosis 26
 Angiolipoma 28
 Myolipoma of soft tissue 29
 Chondroid lipoma 30
 Spindle cell lipoma / Pleomorphic lipoma 31
 Hibernoma 33
 Atypical lipomatous tumour / Well differentiated liposarcoma 35
 Dedifferentiated liposarcoma 38
 Myxoid liposarcoma 40
 Pleomorphic liposarcoma 44
 Mixed-type liposarcoma 46

2 Fibroblastic / Myofibroblastic tumours 47
 Nodular fascitis 48
 Proliferative fasciitis and proliferative myositis 50
 Myositis ossificans and fibroosseous pseudotumour of digits 52
 Ischaemic fasciitis 55
 Elastofibroma 56
 Fibrous hamartoma of infancy 58
 Myofibroma / Myofibromatosis 59
 Fibromatosis colli 61
 Juvenile hyaline fibromatosis 63
 Inclusion body fibromatosis 64
 Fibroma of tendon sheath 66
 Desmoplastic fibroblastoma 67
 Mammary-type myofibroblastoma 68
 Calcifying aponeurotic fibroma 69
 Angiomyofibroblastoma 71
 Cellular angiofibroma 73
 Nuchal-type fibroma 75
 Gardner fibroma 76
 Calcifying fibrous tumour 77
 Giant cell angiofibroma 79
 Superficial fibromatoses 81
 Desmoid-type fibromatoses 83
 Lipofibromatosis 85
 Extraperiosteal solitary fibrous tumour and haemangiopericytoma 86
 Inflammatory myofibroblastic tumour 91
 Low grade myofibroblastic sarcoma 94
 Myxoinflammatory fibroblastic sarcoma 96
 Infantile fibrosarcoma 98
 Adult fibrosarcoma 100
 Myxofibrosarcoma 102
 Low grade fibromyxoid sarcoma 104
 Sclerosing epithelioid fibrosarcoma 106

3 So-called fibrohistiocytic tumours 109
 Giant cell tumour of tendon sheath 110
 Diffuse-type giant cell tumour 112
 Deep benign fibrous histiocytoma 114
 Plexiform fibrohistiocytic tumour 116
 Giant cell tumour of soft tissue 118
 Pleomorphic malignant fibrous histiocytoma / Undifferentiated high grade pleomorphic sarcoma 120
 Giant cell malignant fibrous histiocytoma / Undifferentiated pleomorphic sarcoma with giant cells 123
 Inflammatory malignant fibrous histiocytoma / Undifferentiated pleomorphic sarcoma with prominent inflammation 125

4 Smooth muscle tumours 127
 Angioleiomyoma 128
 Leiomyoma of deep soft tissue 130
 Leiomyosarcoma 131

5 Pericytic (perivascular) tumours 135
 Glomus tumours 136
 Myopericytoma 138

6 Skeletal muscle tumours 141
 Rhabdomyoma 142
 Embryonal rhabdomyosarcoma 146
 Alveolar rhabdomyosarcoma 150
 Pleomorphic rhabdomyosarcoma 153

7 Vascular tumours 155
 Haemangiomas 156
 Epithelioid haemangioma 159
 Angiomeratosi 161
 Lymphangiomi 162
 Kaposiform haemangioendothelioma 163
 Retiform haemangioendothelioma 165
 Papillary intralymphatic angioendothelioma 167
 Composite haemangioendothelioma 168
 Kaposi sarcoma 170
 Other intermediate vascular neoplasms 173
 Epithelioid haemangioendothelioma 173
 Angiosarcoma of soft tissue 175
8 Chondro-osseous tumours 179
 Soft tissue chondroma 180
 Extraskeletal osteosarcoma 182

9 Tumours of uncertain differentiation 185
 Intramuscular myxoma 186
 Juxta-articular myxoma 188
 Deep ‘aggressive’ angiomyxoma 189
 Pleomorphic hyalinizing angiectatic tumour of soft parts 191
 Ectopic hamartomatous thymoma 192
 Angiomatoid fibrous histiocytoma 194
 Ossifying fibromyxoid tumour 196
 Mixed tumour / Myoepithelioma / Parachordoma 198
 Synovial sarcoma 200
 Epithelioid sarcoma 205
 Alveolar soft part sarcoma 208
 Clear cell sarcoma of soft tissue 211
 Extraskeletal myxoid chondrosarcoma 213
 Malignant mesenchymoma 215
 Desmoplastic small round cell tumour 216
 Extrarenal rhabdoid tumour 219
 Neoplasms with perivascular epithelioid cell differentiation (PEComas) 221

BONE TUMOURS

WHO Classification of Bone Tumours 225

10 Cartilage tumours 233
 Osteochondroma 234
 Chondromas 237
 Chondroblastoma 241
 Chondromyxoid fibroma 243
 Synovial chondromatosis 246
 Chondrosarcoma 247
 Dedifferentiated chondrosarcoma 252
 Mesenchymal chondrosarcoma 255
 Clear cell chondrosarcoma 257

11 Osteogenic tumours 259
 Osteoid osteoma 260
 Osteoblastoma 262
 Conventional osteosarcoma 264
 Telangiectatic osteosarcoma 271
 Small cell osteosarcoma 273
 Low grade central osteosarcoma 275
 Secondary osteosarcoma 277
 Parosteal osteosarcoma 279
 Periosteal osteosarcoma 282
 High grade surface osteosarcoma 284

12 Fibrogenic tumours 287
 Desmoplastic fibroma of bone 288
 Fibrosarcoma of bone 289

13 Fibrohistiocytic tumours 291
 Benign fibrous histiocytoma of bone 292
 Malignant fibrous histiocytoma of bone 294

14 Ewing sarcoma / Primitive neuroectodermal tumour 297
 Ewing tumour / PNET 298

15 Haematopoietic tumours 301
 Plasma cell myeloma 302
 Malignant lymphoma 306

16 Giant cell tumours 309
 Giant cell tumour 310
 Malignancy in giant cell tumour 313

17 Notochordal tumours 315
 Chordoma 316

18 Vascular tumours 319
 Haemangioma and related lesions 320
 Angiosarcoma 322

19 Myogenic, lipogenic, neural, and epithelial tumours 325
 Leiomyoma of bone 326
 Leiomyosarcoma of bone 327
 Lipoma of bone 328
 Liposarcoma of bone 330
 Schwannoma 331
 Adamantinoma 332
 Metastases involving bone 334

20 Tumours of undefined neoplastic nature 337
 Aneurysmal bone cyst 338
 Simple bone cyst 340
 Fibrous dysplasia 341
 Osteofibrous dysplasia 343
 Langerhans cell histiocytosis 345
 Erdheim-Chester disease 347
 Chest wall hamartoma 348

21 Congenital and inherited syndromes 349
 Familial adenomatous polyposis 352
 Beckwith-Wiedemann syndrome 354
 Enchondromatosis: Ollier disease and Maffucci syndrome 356
 McCune-Albright syndrome 357
 Multiple osteochondromas 360
 Retinoblastoma syndrome 363
 Rothmund-Thomson syndrome 365
 Werner syndrome 366

Contributors 369
Source of charts and photographs 374
References 376
Subject index 420
Osteochondroma

Definition
Osteochondroma is a cartilage capped bony projection arising on the external surface of bone containing a marrow cavity that is continuous with that of the underlying bone.

ICD-O codes
Osteochondroma 9210/0
Osteochondromatosis NOS 9210/1

Synonyms
Osteochondroma: Osteochondromatous exostosis, solitary osteochondroma.

Multiple osteochondromas: Hereditary osteochondromatosis, hereditary deforming osteochondromatosis, hereditary chondrodysplasia, diaphyseal aclasis, metaphyseal aclasis, hereditary multiple exostoses.

Epidemiology
Solitary osteochondroma
Osteochondroma may be the most common bone tumour (988,1875,2155). The reported incidence, 35% of benign and 8% of all bone tumours, probably is an underestimate as the majority are asymptomatic and not clinically apparent (2155). Most reported cases have been in the first 3 decades with no known sex predilection.

Multiple osteochondromas
Approximately 15% of patients (of all osteochondromas) have multiple lesions (2155), with an incidence up to 1:50,000 in some series (1887). The age of patients with multiple lesions is similar to those with solitary osteochondromas and there is also no sex predilection. Inheritance is autosomal dominant.

Sites of involvement
Osteochondromas generally arise in bones preformed by cartilage. The most common site of involvement is the metaphyseal region of distal femur, upper humerus, upper tibia and fibula (2155).

Involvement of flat bones is less common with the ilium and scapula accounting for most of the cases.

Clinical features
Signs and symptoms
Many, if not most lesions, are asymptomatic and found incidentally. In symptomatic cases, the symptoms are often related to the size and location of the lesion. The most common presentation is that of a hard mass of long-standing duration. Some cases present with symptoms related to secondary complications such as mechanical obstruction, nerve impingement, bursa forming over the osteochondroma, pseudoaneurysm of an overlying vessel, infarction of the osteochondroma or fracture of the stalk of the lesion (131,188,470,988,1072,1468,1681,1875,2119,2152,2155). Increasing pain and/or growing mass may be a manifestation of malignant transformation of osteochondromas. It is estimated to be less than 1% in patients with solitary and approximately 1-3% in patients with multiple osteochondromas. Higher incidences, some up to 20% of malignant transformation in multiple osteochondromas have been reported because of case selection and variable criteria used (211,1131,1875,2155,2206).

Imaging
Solitary osteochondromas may be pedunculated or sessile lesions. The characteristic feature is a projection of the cortex in continuity with the underlying bone. Irregular calcification is often seen. Excessive cartilage type flocculent calcification should raise the suspicion of malignant transformation. CT scan or MRI images typically show continuity of the marrow space into the lesion. These modalities may also predict the thickness of the cartilage cap (464,775, 2285). A thick cap raises the suspicion of malignant transformation. Osteochondromas grow away from the site of active growth, most likely due to forces from adjacent tendons and muscles.

Multiple osteochondromas are similar to the solitary ones but are generally associated with remodeling defects of bone. Many are flat and cauliflower shaped.

Aetiology
The aetiology is not known. Based on the resemblance of the cartilage cap to the growth plate, several hypotheses have been offered. These include the possibility of breakage, rotation and aberrant growth of the physeal plate or herniation of the plate in the metaphysis (415,988,1457,1464,1718).
Fig. 10.03 Outer aspect and cut section of osteochondroma of the upper fibula demonstrating the continuity of the cortex and marrow cavity of the osteochondroma with that of the underlying bone.

Macroscopy
An osteochondroma may be sessile or pedunculated. The cortex and medullary cavity extend into the lesion. The cartilage cap is usually thin (and decreases in thickness with age). A thick and irregular cap (greater than 2 cm) may be indicative of malignant transformation.

Histopathology
The lesion has three layers – perichondrium, cartilage and bone. The outer layer is a fibrous perichondrium that is continuous with the periosteum of the underlying bone. Below this is a cartilage cap that is usually less than 2 cm thick (and decreases with age). Within the cartilage cap the superficial chondrocytes are clustered, whereas the ones close to the transition to bone resemble a growth plate. They are organised into chords and undergo endochondral ossification similar to the zone of provisional mineralization. Loss of the architecture of cartilage, wide fibrous bands, myxoid change, increased chondrocyte cellularity, mitotic activity, significant chondrocyte atypia and necrosis are all features that may indicate secondary malignant transformation. Fractures within a stalk may elicit a focal fibroblastic response. Surface chondrosarcomas differ from osteochondromas by the absence of a stalk and the presence of lobular masses of cartilage that permeate and infiltrate the soft-tissues (1366). Parosteal osteosarcoma may have a zone of typical cartilage simulating a "cap". They are, however, radiographically and microscopically different from an osteochondroma. The characteristic fibroblastic proliferation and cytological atypia is not observed in an osteochondroma.

Genetics
It was long debated whether osteochondroma was a developmental disorder or a true neoplasm. Cytogenetic aberrations involving 8q22-24.1, where the EXT1 gene is located, have been found in ten out of 30 sporadic and in 1 out of 13 hereditary osteochondromas (264, 1430). Moreover, DNA flow cytometry of the cartilaginous cap demonstrated aneuploidy (DNA index range 0.88-1.17) in four of 10 osteochondromas (238). LOH detected by microsatellite analysis using DNA isolated from the cartilaginous cap was found almost exclusively at the EXT1 locus in 3 of 8 sporadic and 2 of six hereditary osteochondromas (238). Fluorescence in situ hybridization revealed loss of the 8q24.1 locus in 27 of 34 (79%) osteochondromas (645).
These findings suggest that both sporadic and hereditary osteochondromas are true neoplasms. The EXT genes, involved in hereditary multiple osteochondromas (HMO), are hypothesised to be tumour suppressor genes. Most of the mutations found in HMO patients are predicted to result in a truncated or non-functional protein. Germ-line EXT mutations combined with loss of the remaining wild type allele were demonstrated in three osteochondromas of two HMO patients (238). One sporadic osteochondroma was described to harbour a deletion of one EXT1 gene combined with an inactivating mutation in the other EXT1 gene (168). Although second mutations have been demonstrated in the minority of cases so far, these findings strongly suggest that inactivation of both copies of an EXT gene in a cartilaginous cell of the growth plate is required for osteochondroma formation in both hereditary and sporadic cases. Indeed, diminished levels of the EXT1 and EXT2 proteins (168) and of their putative downstream effectors (IHh/PTHrP and FGF signalling pathway, see chapter 21) (241) were demonstrated in both sporadic and hereditary osteochondroma chondrocytes (168). Moreover, EXT mutations were described to induce cytoskeletal abnormalities (altered actin distribution) in osteochondroma chondrocytes (168, 169, 1237).

Fig. 10.06 Chromosomal band 8q24 rearrangement in sporadic osteochondroma (on the left). LOH at 8q24 in a patient with multiple exostoses is demonstrated by microsatellite analysis (D8S198). SSCP mutation analysis reveals aberrant bands (indicated by arrows) in both normal (N) and osteochondroma (T) DNA. Sequence analysis reveals a constitutional 15 bp deletion. The PCR fragment containing the mutation is run on a denaturing gel, illustrating loss of the wild-type allele (arrow).

Prognostic factors

Excision of the osteochondroma is usually curative. Recurrence is seen with incomplete removal, however, multiple recurrences or recurrence in a well excised lesion should raise the suspicion of malignancy.