The three micron "ice" band in grain mantles

University of Leiden, Laboratory Astrophysics, P.O. Box 9504, 2300 RA Leiden, The Netherlands

Received January 18, accepted July 17, 1982

Summary. Laboratory optical constants for a 3 μm "ice" band in mixtures representing interstellar grain mantles are applied to the absorption observed towards two different types of object: the protostellar source BN and the late type star OH 231.8 + 4.2 (OH 0739-14). In BN, simultaneous reproduction of the extinction and polarization band shapes including the long wavelength wing is achieved by normal size particles (d=0.15 μm) with molecular mantles containing mixtures of H₂O with certain molecules among which are those such as NH₃ that form hydrogen bonded complexes. With mantle mixtures the match is better than with the abnormally large pure amorphous H₂O particles (d=0.4 μm) which produce the required long wavelength wing by scattering rather than absorption. On the other hand, the 3 μm absorption in OH 231.8 + 4.2 which contains no such wing can best be fitted with pure amorphous H₂O grains which have been heated to (or created at) about 80 K. The difference in the grain mantle composition between young stellar objects (like BN) and late type stars losing mass (like OH 231.8 + 4.2) is attributed to a fundamental difference in the formation and evolution mechanism of the grains in which the former are condensed in interstellar space and the latter are condensed in the outgoing matter from the star.

Keywords: interstellar dust mantle - infrared - extinction and polarization - three micron band.

1. INTRODUCTION

One of the most direct ways to study the properties of dust in dense interstellar media is by infrared spectroscopy. Broad spectral features in extinction or emission appear superimposed on the infrared continua of a number of interstellar sources obscured by dense regions of dust. Because of their spectral width most of these features are attributed to vibrational transitions in solids.

Absorption, emission and linear polarization at the frequency of 1030 cm⁻¹ (9.7 μm) observed in most infrared objects is commonly interpreted as due to silicate particles (see recent reviews by Aitken, 1981; Dyck and Lonsdale, 1981). The most intense feature next to the "silicate" band is the 3250 cm⁻¹ (3.08 μm) "ice" band generally attributed to solid H₂O. This band is seen in spectra of sources associated with dense molecular clouds in absorption (Aitken, 1981) and linear polarization (Dyck and Lonsdale, 1981). A number of other minor absorption features are also present in some interstellar spectra. They are seen in conjunction with the "ice" band (Willner et al., 1980). Infrared spectra of some interstellar objects show emission features not attributed to silicates. These features do not occur at the same frequency as those seen in absorption (Aitken, 1981).

The 3250 cm⁻¹ "ice" band and the other absorption and emission features are the subject of a number of theoretical and experimental investigations in the Leiden Astrophysics laboratory. Studies of vibrational transitions of simple molecules in solid mixtures have shown that molecules in accretion mantles of interstellar dust particles can account for the infrared bands both in emission (Allamandola and Norman, 1978; 1979) and absorption (Allamandola, Greenberg and Norman, 1979; Allamandola, Greenberg and Norman, 1980b). In the present paper we extend this work and describe a study of the influence of different mantle constituents on extinction and polarization due to H₂O absorption in grain mantles, in particular on the 3250 cm⁻¹ band. A comparison of the experimental results with the presently available interstellar spectra allows us to draw conclusions on the grain mantle composition in certain objects. However it is also our intention to provide incentives for extended spectrophotometric observations of different interstellar sources at medium resolution and high signal to noise ratio. Interpretation of such observations in the light of the results presented here may yield a better knowledge of the grain mantle composition in different interstellar regions.

H₂O ice and mixtures of solid H₂O, NH₃ and CH₃ were believed to be important constituents of interstellar grains ever since the earliest grain models were put forward (Buhl, van de, 1943, 1949; Greenberg, 1968). This encouraged Danielson et al., (1965) and Knacke et al. (1969) to search for the strongest ice absorption in the infrared, the 3250 cm⁻¹ band, in a number of highly reddened stars. These first searches turned out negative. A few years later a strong infrared absorption at 3250 cm⁻¹, identified with H₂O ice, was detected in the spectrum of the protostellar BN project (Gillett and Forrest, 1973; Gillett et al., 1975). This was followed by detection of the band in the 4750-2440 cm⁻¹ region of the spectra of an IR source in the Rosette nebula (Cohen, 1976), molecular clouds (Merrill et al., 1976), HII regions (Soffer et al., 1976; Willner et al., 1979b), the young stellar object W3A (Capps et al., 1978), OH maser source OH 231.8 + 4.2 (OH 0739-14 (Gillett and Soffer, 1976), OH 26.5 + 0.6 (Forrest et al., 1978)

Send offprint requests to: J. M. Greenberg
* Present address: Koninklijke/Shell-Laboratorium, Amsterdam, P.O. Box 3003, NL-1003 AA Amsterdam, The Netherlands
** Present address: NASA, Ames Research Center, Mail Stop N-245-6 Moffett Field, CA 94035, USA

© European Southern Observatory • Provided by the NASA Astrophysics Data System
a highly obscured infrared source in the Corona Australis dark cloud (Whittet and Blades, 1980). With the exception of OH 231.8 + 4.2 the shapes of the spectral features of the different sources are similar if one takes into account the available resolution and signal-to-noise ratio. The temperatures, at least for the 10 to 15 km s\(^{-1}\) sources, are variable (Willner et al., 1980). In some spectra, in particular when the minor absorptions are relatively strong, the 3250 cm\(^{-1}\) "Ice" band exhibits substructure peaking at about 3380, 2940 and 2860 cm\(^{-1}\). The "Ice" band and the minor absorption bands are probably a general characteristic of interstellar spectra. These absorptions are only observed towards sources in high density molecular clouds. It has been suggested that the "Ice" band could be severely reduced by photolysis of the ice mixture resulting in the oxygen being not in the form of polymeric water but rather in the form of free radicals or complex molecules (Donn and Jackson, 1970; Greenberg et al., 1971). Linear polarization in the 3250 cm\(^{-1}\) "Ices" band has been measured towards BN (Capps et al., 1978; Kobayashi et al., 1980). In planetary spectroscopy infrared features due to solid H\(_2\)O were detected on Mars, the moons of Jupiter, and the moons and rings of Saturn (Pink and Larson, 1979). Attempts to fit the interstellar 3250 cm\(^{-1}\) absorption with laboratory spectra of H\(_2\)O ice (polycrystalline cubic, \(I_3\), or hexagonal, \(I_6\)) at 100 K (from Bertle et al., 1969) or 267 K (from Irvine and Pollack, 1982) were unsuccessful. The main discrepancies between the laboratory ice band and the interstellar feature were in the large width, the extension to higher frequencies and the low frequency wing of the interstellar band which were absent in the laboratory spectra. Two approaches were chosen to resolve the discrepancies. First, the effect of grain size on the extinction was examined employing the Mie theory, but a satisfactory fit of the spectra of H\(_2\)O \(I_3\) or \(I_6\) and the interstellar spectra could not be obtained (Cohen, 1976; Merrill et al., 1976; Mukai et al., 1978). Secondly solid mixtures of H\(_2\)O and other species such as NH\(_3\) were suggested (Merrill et al., 1976). Several alternative compounds, not H\(_2\)O, were also proposed as carriers of the 3250 cm\(^{-1}\)-band. Notable among these are polysaccharides (Hoyle and Wickramasinghe, 1977; Hoyle et al., 1978; see Henbest, 1980 and Whittet and Butchart, 1981, for a critical discussion), HCN and CH\(_2\)N\(_2\) (Mukai et al., 1978), complex organic material, "Chemical Ice", whose general properties were deduced by electronic spectrum in the violet light (Sagan and Khare, 1979; see Whittet, 1979, for a critical discussion) and carbonyl (Webster, 1980). In line with calculations of the composition of grain mantles as they accrete in the dense interstellar medium (Tielens and Hagen, 1982) we presently limit our discussion to the simplest candidate for the interstellar absorptions: H\(_2\)O.

The first laboratory studies aiming at the simulation of the interstellar "Ice" band were performed before its actual detection. Infrared spectra of amorphous solid H\(_2\)O, produced by condensation of H\(_2\)O vapor on a 77 K infrared transparent window, were measured at 77 K and 20 K (Knacke et al., 1969). The same authors briefly discussed the effect of dilution of H\(_2\)O in CH\(_3\)OH and NH\(_3\). Hunter and Donn (1971) concluded on the basis of spectra of mixtures of H\(_2\)O, NH\(_3\) and H\(_2\)S at 77 K that complex formation by hydrogen bonding between H\(_2\)O and NH\(_3\) does not affect the infrared spectrum. A mixture of H\(_2\)S with 5% H\(_2\)O was shown to produce a number of sharp, but weak infrared absorption lines due to small aggregates of H\(_2\)O molecules at 3700-3355 cm\(^{-1}\) (Hunter and Donn, 1971).

After numerous interstellar spectra had become available, the laboratory studies attempting to reproduce the interstellar "Ice" band were taken up once again. The spectrum of amorphous solid H\(_2\)O at 77 K was measured by Léger et al. (1979) who noticed an excellent agreement with the BN spectrum for the high frequency side of the 3250 cm\(^{-1}\) band. In our laboratory the solid H\(_2\)O spectrum was measured over the temperature range from 15 to 130 K (Tielens, 1981, Hagen and Tielens, 1982a). We found a strong temperature dependence of the spectrum. It was concluded that all the H\(_2\)O spectra measured, that of unannealed amorphous solid H\(_2\)O, as it forms by very slow condensation at 10 K, fits the observed interstellar "Ice" band very well. The low frequency wing of the interstellar 3250 cm\(^{-1}\) band however was not present in the laboratory spectra of solid H\(_2\)O. In contrast to earlier work (Hunter and Donn, 1971) we found that mixing of H\(_2\)O with other species in the solid leads to a significant change of the spectrum and could produce the low frequency wing. (Hagen, 1979; Hagen et al., 1980a). This is in line with the well known capacity of H\(_2\)O to form strong hydrogen bands with other molecules (Plimentel and McClellan, 1960). Again, in contrast to the earlier work by Hunter and Donn (1971) in very diluted mixtures of H\(_2\)O and NH\(_3\) with inert species, sharp infrared absorption lines were observed due to H\(_2\)O, NH\(_3\) as well as mixed aggregates of complexes of hydrogen bonded species; Hagen, 1982). Elsewhere (Hagen, Tielens and Greenberg, 1982, hereafter referred to as HT82) we have examined the effects of different concentrations of other components in a mixture and the thermal history on the spectrum. A brief summary of the results from that paper are given below.

Temperature and thermal history determine the width and peak frequencies of the infrared absorptions of solid H\(_2\)O and solid mixtures containing H\(_2\)O. Moderate resolution interstellar spectra of high signal to noise ratio of the 3250 cm\(^{-1}\) band can provide information on the thermal history of dust grains. The non-detection of the H\(_2\)O \(v_4\) absorption (librational band, \(\sim 800\) cm\(^{-1}\)) in the presently available observed spectra with a low frequency cut-off at 750 cm\(^{-1}\) can be explained by the shallowness and very low peak frequency (763 cm\(^{-1}\)) of solid H\(_2\)O, as it is formed by condensation at 10 K. The previously considered higher temperature forms of H\(_2\)O ice have smaller widths and higher peak frequencies.

Dilution of solid H\(_2\)O with non hydrogen binding molecules gives rise to considerable changes in the infrared spectral features. The charged species such as H\(_2\)O\(^+\), \(\text{HCO}^-\), \(\text{HCO}^+\), \(\text{HCO}^+\) and \(\text{HCO}^-\) were used in order to probe the appearance of new feature at 3700 cm\(^{-1}\) and a shoulder to the 3250 cm\(^{-1}\) absorption at 3220 cm\(^{-1}\), (2) a shift to the blue and an increase of the width of the 3250 cm\(^{-1}\) absorption and (3) an increasing relative intensity of the 1650 cm\(^{-1}\) peak. Observations of these features in interstellar spectra allow an estimate of the degree of dilution. Finally it is important to note that (4) dilution to less than 66% H\(_2\)O shifts the peak of the H\(_2\)O \(v_4\) (800 cm\(^{-1}\)) absorption outside the frequency region covered by the presently available interstellar spectra. This adds a possible reason for its non-detection to the temperature effect mentioned above. The general shape of the H\(_2\)O features is maintained for H\(_2\)O concentrations as low as 32%. At concentrations below 10% the broad absorptions of solid H\(_2\)O are replaced by a number of sharp but weak lines. Dilution of H\(_2\)O with hydrogen bonding molecules alters its spectrum considerably. Simple empirical relations are established between the basic (or acidic) properties of the diluant and its influence on the spectra. Strong bases induce a low frequency wing to the 3250 cm\(^{-1}\) absorption in solid mixtures through hydrogen bond formation with H\(_2\)O. The simplest base producing the wing is NH\(_3\). Molecules that may also contribute to the low frequency wing of the 3250 cm\(^{-1}\) absorption are H\(_2\)S and CH\(_3\)OH.
cm⁻¹ band include other bases, H₂CO, H₂O₂ or mixtures of hydrocarbons. The presence of NH₃ in grain mantles can be verified with interstellar absorption spectra. NH₃ in mixtures with H₂O is characterized by (1) absorption at 3380 cm⁻¹ superimposed on the 3250 cm⁻¹ band, (2) a relatively strong 1650 cm⁻¹ absorption and (3) low frequency wings of the 3250 cm⁻¹ and 1650 cm⁻¹ absorptions. The wing of the 1650 cm⁻¹ absorption disappears when inert molecules are also present in the solid.

In the present paper optical constants derived from laboratory spectra are used to calculate extinction and polarization in the 3250 cm⁻¹ band. Excluding particle shape effects (Greenberg, 1972) the chief causes for differences between absorption shapes are differences in mixtures, temperature and size. Emphasis is placed here on the discrimination between two possible causes of the low frequency wing of the 3250 cm⁻¹ band: grain size effects versus molecule mixture effects.

2. EXTINCTION AND POLARIZATION CROSS SECTIONS

In order to compare the laboratory results with infrared observations of interstellar sources extinction and polarization profiles of small particles have to be calculated. This is done in the following way. The particles are represented by infinite core-mantle cylinders. It is assumed that the magnetic field is perpendicular to the line of sight and that the particles are spinning with their symmetry axis in a plane perpendicular to the direction of the magnetic field i.e. perfect Davis-Greenstein alignment (Davis and Greensein, 1951). Defining Q₉ and Q₉₀ as the extinction efficiencies per unit length for the electric vector parallel and perpendicular to the symmetry axis of the infinite cylinder we can write for the extinction and polarization:

\[Q_{\text{ext}} = \pi (Q_\parallel + 3Q_\perp) \] \hspace{1cm} (1)
\[Q_{\text{pol}} = \frac{1}{3} (Q_\parallel - Q_\perp) \] \hspace{1cm} (2)

Strictly speaking this expression is only valid in the Rayleigh limit for spheroids (Greenberg and Shah, 1966; Greenberg, 1969).

The extinction (K) and linear polarization (Δν) cross sections are given by

\[K = \oint N(a) a^2 L(a) Q_{\text{ext}}(a) \, da \] \hspace{1cm} (3)
\[\Delta \nu = \frac{\pi c}{a} \oint N(a) a^2 L(a) Q_{\text{pol}}(a) \, da \] \hspace{1cm} (4)

where N(a) and L(a) are the size and length distribution functions and where we have used a single core size, a. In the calculations it is assumed that the size and length distribution functions are given by

\[N(a) = \exp \left[-5 \left(\frac{a}{a_1} \right)^3 \right] \] \hspace{1cm} (5)
\[L(a) = 2a \] \hspace{1cm} (6)

where a₁ is an effective cut off size parameter and e is a constant elongation factor. For the core we have chosen a size of 500 Å and the optical constants appropriate for interstellar silicate grains around 3250 cm⁻¹ (m₁ = 1.55 - 0.054; Jones and Merril, 1976; Bedijn, 1977). The free parameters in these calculations are therefore the optical constants of the grain mantle, m₂, and the cut-off size parameter, a₁, or equally well the mean size of the mantle, \[a = \frac{a_1}{a} + 0.3 \] (Greenberg, 1968).

The optical constants of the grain mantle depend on the temperature and the composition of the grain mantle (HTGR82). We shall first consider amorphous solid water H₂O(as).

In fig. 1 the extinction and linear polarization efficiencies of amorphous solid water, H₂O(as), grain mantles at 10 K are presented for different sizes. The optical constants are taken from Hagen et al. (1981). All curves are normalized to the peak value. For small sizes the extinction profile peaks at shorter wavelength than the peak in the imaginary part of the complex index of refraction. For larger sizes the peak in the extinction shifts to longer wavelengths. The polarization is more asymmetric than the extinction and generally reaches a maximum at longer wavelengths. This is due to the fact that Q₉₀ and Q₉ reach maxima at different wavelengths. Upon increasing the particle size, the extinction and polarization features broaden and a low frequency wing develops, due to scattering by large grains. The wing is more pronounced in polarization than in the extinction (Greenberg and Hage, 1976). Using a size distribution given by eq. 5, broadens the feature and produces a shift of the peaks to lower frequencies. In effect the curves resemble those of a single particle with a size somewhat larger than the mean size.

![Fig. 1. Extinction and polarization cross sections (3250 cm⁻¹ feature) of grain mantles consisting of unannealed H₂O(as) (T = 10 K).](image)

1. Infinite cylinders with a size of 1000 Å
2. Infinite cylinders with a size of 3000 Å
3. Infinite cylinders with a size distribution given by eq. 5, mean size is 3000 Å

In fig. 2 we show the effect of increasing the temperature of H₂O(as) grain mantles. As expected, upon raising the temperature, the extinction and polarization peak at lower frequency and are less broad (Hagen et al., 1981).
Extinction and polarization cross sections (3250 cm$^{-1}$ feature) of grain mantles consisting of H$_2$O(as). The infinite cylinders have a size distribution given by eq. 5, and a mean size of 1000 Å.
1. Unannealed H$_2$O(as) (T = 10 K)
2. Partially annealed H$_2$O(as) (deposited at 10 K, warmed-up to 80 K and recooled to 10 K).

As discussed in HTG82, the optical constants of the grain mantle depend strongly on the relative concentration of impurities. We illustrate this in fig. 3 for two different mixtures. In fig. 4 the normalized extinction and polarization efficiencies of an H$_2$O/NH$_3$ mixture are compared with those of H$_2$O(as). The introduction of NH$_3$ in the mantle broadens the features and gives rise to a low frequency wing which is due to the intrinsic absorption and therefore present even for small sizes. In the extinction profile, a separate peak at 3380 cm$^{-1}$ is present due to NH$_3$. Upon increasing the grain size, the low frequency wing becomes more prominent and the peak at 3380 cm$^{-1}$ diminishes. The strength of the wing and the 3380 cm$^{-1}$ feature are of course a function of the NH$_3$ concentration. Again increasing the temperature shifts the peaks to lower frequencies and narrows the features. The strength of the wing and the prominence of the 3380 cm$^{-1}$ peak also diminishes.

3. COMPARISON WITH OBSERVATIONS

a) The 3250 cm$^{-1}$ feature in dense molecular clouds.

The near infrared spectrophotometry of sources with molecular cloud material along the line of sight reveal an extinction feature at 3250 Å which is generally attributed to H$_2$O ice (Merrill et al., 1976).
This feature is quite broad and shows a low frequency wing. The shape of this feature does not vary much from one source to the other (Wilner et al., 1982). In the following discussion we shall concentrate on the observations of the BN source in Orion and the high frequency wing of the BN feature in the near infrared region where the BN source is strongly polarized. The linear polarization rises from about 5% at 4 μm to about 35% at 1.6 μm. A large degree of circular polarization has also been measured from BN at near infrared frequencies (Breger and Hardop, 1973; Loer et al., 1973; Dyck et al., 1973, 1974; Capps et al., 1980; Kobayashi et al., 1982; Serkowski and Rieke, 1973; Lonsdale et al., 1980). The linear polarization of the 3250 cm⁻¹ feature peaks at lower frequencies than the extinction feature (Kobayashi et al., 1980).

Two models have been proposed to explain the observed polarization towards BN. In one model the polarization is caused by extinction by elongated particles aligned by the magnetic field (Dyck and Beichman, 1974; Dennison, 1977). In the other model the polarization is due to scattering of light by grains in a disk geometry (Claisen and Staude, 1978). In the latter model it is difficult to explain the large linear polarization at 20 μm (Knacke and Capps, 1979) and the difference in the peak wavelength of the extinction and polarization feature (Kobayashi et al., 1980).

In order to compare our laboratory based theoretical calculations of the extinction and polarization efficiencies across the 3250 cm⁻¹ band with the observations of BN the following procedure is adopted. The observed extinction profile is determined by drawing a smooth continuum from 400 cm⁻¹ to 2600 cm⁻¹ where zero absorption is assumed. The profile is then normalized at the peak value. The results of the theoretical calculations are treated in the same way. For the linear polarization the situation is slightly more complicated. For reasonable grain sizes the ratio of the continuum polarization around 5000 cm⁻¹ to the peak 3250 cm⁻¹ polarization produced by a "ice" grain mantle is small. This implies that most of the observed continuum 5000 cm⁻¹ polarization is produced by other particles than those that produce the 3250 cm⁻¹ feature in polarization. A similar conclusion has been drawn for the particles that produce the 1030 cm⁻¹ polarization (Lonsdale et al., 1980). That the 5000 cm⁻¹ continuum polarization seems to be due to an interstellar grain component other than silicates or H₂O "ice" is supported by the observations that the large value of the wavelength of maximum continuum polarization, λₘₐₓ, and of the color excess ratio, R, inside dense clouds is not due to coating of grains with H₂O ice (Harris et al., 1978; Whittet and Blades, 1980). A grain model has been proposed which may explain this (Greenberg, 1982a,b). In this model the grain mantle consists of two layers, the inner one being an organic refractory residue from photoprocessed ices; and the outer one having a high fraction (~ 60%) of H₂O ice. Grains which have organic refractory mantles alone are adequate to explain the average extinction and polarization in the diffuse cloud medium, the thickness of these mantles being probably a bit less than would be required of simple ice mantles. It may be shown that a very large total extinction is required to be able to observe the extinction from grains with larger than average values of λ and R. This has been demonstrated for the case presented by Whittet et al. (1981) by methods like those applied to the BN ice band (Greenberg, 1982a). It has been suggested in the latter that approximately one half of the extinction in the BN object is produced by grains which have only refractory organic mantles and therefore exhibit no H₂O ice structure.

It may also be that the increase in λₘₐₓ and R inside dense clouds is due to the growth of grain mantles containing only a small fraction of H₂O (~10%). The infrared spectrum of such a grain mantle will not show the 3250 cm⁻¹ band (Wargrave). Furthermore, calculations of gas phase and surface chemistry inside dense molecular clouds show that under certain conditions grain mantles may contain mainly molecules other than H₂O, e.g. CO₂ or CO and O₂ (Tielens and Hagen, 1982).

Observations show that the continuum linear polarization in the infrared can be reasonably well represented by a slightly modified Serkowski law (Wilking et al., 1980).

\[
\begin{align*}
\frac{P}{P_{\text{max}}} &= \text{EXP} \left(-1.7 \lambda_{\text{max}} (\ln \frac{\lambda}{\lambda_{\text{max}}})^2 \right)
\end{align*}
\]

After normalization at 4750 cm⁻¹ this law fits the observations from 6000 cm⁻¹ to 4750 cm⁻¹ reasonably well for λₘₐₓ = 0.55 μm, the mean value of λₘₐₓ in the diffuse interstellar medium. The choice of λₘₐₓ is not critical. λₘₐₓ equal to 0.7 gives a slightly different continuum.

We have added the theoretical polarization profiles of "ice" mantles to this continuum in such a way that the peak polarization in the feature is equal to the mean of the observed peak values (Capps et al., 1980; Kobayashi et al., 1980).

In Fig. 5 and 6 the extinction and polarization by unannealed (T = 10 K) amorphous solid water H₂O(ρ) with a mean size of 4000 Å and of an unannealed (T = 10 K) and annealed (warmed up to 50 K and recooled) mixture of H₂O and NH₃ (H₂O/NH₃ = 3:1) with a mean size of 1500 Å are compared with the observations towards BN.

We first concentrate on H₂O(ρ). A reasonable fit to the extinction profile can be obtained for a mean size of 4000 Å. The low frequency wing of this feature is then due to scattering by large grains. However, the calculated polarization profile is not in agreement with the observations. Due to the large mean size of the grains the peak in the polarization has shifted to about 3100 cm⁻¹ and the high frequency side

![Fig. 5](image-url)

Comparison of the extinction cross sections (3250 cm⁻¹ feature) of infinite cylinders with the observations towards BN (dots) (Cillett et al., 1975).

1. Unannealed mixture of H₂O/NH₃ (3:1) (T = 10 K) with a mean size of 1500 Å
2. Partially annealed mixture of H₂O/NH₃ (3:1) (deposited at 10 K, warmed-up to 50 K and recooled to 10 K). Mean size 1500 Å
3. Unannealed H₂O(ρ) (T = 10 K) with a mean size of 4000 Å

© European Southern Observatory • Provided by the NASA Astrophysics Data System
Fig. 6
Polarization cross sections (3250 cm\(^{-1}\) feature) of infinite cylinders with a size distribution given by eq. 5, compared with the observation towards BN. 1, 2 and 3 as in fig. 5.
Open circles: observations of Kobayashi et al. (1980)
Filled circles: observations of Capps et al. (1978)

of the profile rises sharply. Raising the temperature of the H\(_2\)O grain mantles to 80 K does not improve the fits (cf. fig. 2). The extinction profile becomes too narrow, the high frequency cut off falls short and the rise in the polarization on the high frequency side becomes even sharper than at 10 K. We conclude therefore that infinite cylinders of pure amorphous solid water H\(_2\)O(as) can not simultaneously reproduce the extinction and polarization profiles observed towards BN. We expect that this conclusion also holds for grain shapes other than infinite cylinders. Generally the large mean size of the particles needed to explain the low frequency wing of the observed extinction and polarization feature by scattering will produce a highly asymmetric feature in polarization which does not resemble the observations.

Adding a small amount of NH\(_3\) to the mixture produces a low frequency wing due to absorption. As a result a smaller mean size can be chosen and the polarization feature is more symmetric (fig. 6). For a mean size of 1500 Å the extinction and polarization cross-sections of the unannealed (T \(=\) 10K) H\(_2\)O/NH\(_3\) (3/1) mixture have a low frequency wing in accordance with the observations. The extinction profile has however two peaks at 3280 and 3380 cm\(^{-1}\). It has been pointed out that sometimes the profile of the interstellar 3250 cm\(^{-1}\) feature shows evidence for a double humped peak with maxima at about 3360 and 3250 cm\(^{-1}\) (Hagen, et al., 1980b). The 3380 cm\(^{-1}\) peak in the calculated extinction profile is due to the NH\(_3\)-stretching vibration in NH\(_3\). There are three ways in which the prominence of this peak can be diminished. First, obviously, the concentration of NH\(_3\) can be reduced. Second, upon raising the temperature the 3250 cm\(^{-1}\) peak shifts to lower frequency and the strength of the 3380 cm\(^{-1}\) peak decreases. This is illustrated in fig. 5 for the H\(_2\)O/NH\(_3\) mixture annealed to 50 K and recooled to 10 K. It should be noted that the recoiling is not of major importance. In amorphous solids spectral characteristics like peak position and width do not change much upon recoiling (HTG82). The theoretical extinction and polarization curves are now in reasonable agreement with the observations. It is possible to shift the peak frequency to the observed value the mixture must be annealed somewhat. It is however conceivable that this shift in peak frequency can also be produced by choosing a different shape for the particle (Greenberg, 1972). Third, the mean size of the particles can be increased to about 2000 Å by this shifts the 3280 cm\(^{-1}\) maximum to about 3250 cm\(^{-1}\). The strength of the 3380 cm\(^{-1}\) feature also decreases somewhat. However it will still be clearly discernible. Furthermore the polarization peak would shift to 3100 cm which is in disagreement with the observations. Finally the low frequency wing in the extinction and polarization would be more pronounced than observed. These objections rule out this possibility.

We wish to emphasize that the choice of the particular mixture is not of major importance. Any molecular mixture which produces a low frequency wing in absorption can be made to fit the extinction and polarization observations. Recent theoretical calculations of the composition of grain mantles in dense molecular clouds show that at a density of 10\(^{20}\) cm\(^{-3}\), they consist of H\(_2\)O (\(\leq 60\%)\) and H\(_2\)CO (25\%). Traces of other molecules such as CO\(_2\)(5%), NH\(_3\)(1%), H\(_2\)O\(_2\) (2%), HOCN\(_3\) (0.5\%) and NH\(_3\)-OH (0.2\%) are also present (Tielens and Hagen, 1982). From the discussion in HTG, 1982 it is obvious that such a mixture would produce a 3250 cm\(^{-1}\) "ice" band, having a low frequency wing due partly to the OH-stretch in H\(_2\)CO and partly to hydrogen bond formation between H\(_2\)O and NH\(_3\), NH\(_3\)-OH, H\(_2\)O\(_2\) or HOCN\(_3\). Further laboratory experiments on the 3250 cm\(^{-1}\) "ice" band in the spectra of these kind of mixtures should produce valuable information on the physical conditions in dense molecular clouds.

The librational band of H\(_2\)O(as) has not been detected superimposed on the 1030 cm\(^{-1}\) silicate feature in sources which show the 3250 cm\(^{-1}\) feature, despite large variations in the ice to silicate volume ratios. This has been used as an argument against the presence of solid H\(_2\)O (Capps et al., 1978; Attenk, 1981). The interstellar spectra on which this conclusion is based do not extend beyond 750 cm\(^{-1}\). The librational bands in our spectra of unannealed H\(_2\)O(as), as well as the H\(_2\)O/CO mixtures have absorption maxima close to this frequency and are very shallow. Only the crystalline forms of H\(_2\)O, \(I\sb{h}\) and \(I\sb{p}\), have a librational frequency around 850 cm\(^{-1}\). Furthermore complicated radiative transfer effects in the 10 \(\mu\)m silicate absorption feature may mask this additional absorption. We conclude that a comparison of the presently available interstellar spectra with our spectroscopic data on H\(_2\)O(as) and H\(_2\)O in molecular mixtures provides a plausible explanation for the absence of a librational band in the spectra of interstellar objects with 3250 cm\(^{-1}\) absorption bands. An observational test is of course provided by improving the signal to noise ratio at the low frequencies in interstellar spectra.

b Magnetic Alignment

It is interesting to try to derive a value for the strength of the magnetic field from the polarization observations. In equiaxial, a rotating grain in a gas in the absence of external torques will have a rotational kinetic energy in equilibrium with the kinetic energy of the gas. The presence of a magnetic field introduces a torque. Energy is removed from one component of the grain rotation and the grains tend to be aligned by the magnetic field (Bland and Greenstein, 1951). There are thus two opposing
effects: the gas-grain collisions which tend to randomize the grain spinning motion and the magnetic field which tend to align the grains. A parameter \(\xi \) can be defined which describes the effectiveness of the alignment (Jones and Spitzer, 1967)

\[
\xi = \frac{1 + 6 \frac{T_d}{T}}{1 + \delta}
\]

(8)

where \(\delta \) is the ratio of the mean magnetic torque to the mean torque of the gas-grain collisions, \(T_d \) is the grain temperature and \(T \) the gas temperature.

From our theoretical calculations of the extinction and polarization profiles we find that the ratio of peak polarization to peak extinction for perfect Davis-Greenstein alignment is about 0.2. The observed value is about 0.06. The reduction factor due to incomplete alignment is thus about 0.3, corresponding to a value of \(\xi \) in the range 0.4 to 0.6 (Greenberg, 1969). This is much smaller than the value obtained by Dyck and Beichman (1974) from their analysis of the extinction and polarization at 1030 cm\(^{-1}\). However they did not take into account radiative transfer effects which are important in the 1000 cm\(^{-1}\) region and not in the 3000 cm\(^{-1}\) region. They have therefore underestimated the 1030 cm\(^{-1}\) extinction optical depth considerably. Using more realistic values Dennison (1977) found values in reasonable agreement with ours.

The strength of the magnetic field, \(B \), required to produce the alignment is given by

\[
B^2 = 0.5 \frac{n_H T_d T}{T_d T} \left(1 - \xi^2 \right) \frac{3}{2 \xi^2 - T_d T}
\]

(9)

where \(n_H \) is the density of colliding species, \(a \) is in \(\mu \) and \(B \) in microgauss. For an order of magnitude estimate we insert \(a = 0.15 \mu \), \(n_H = 10^{18} \text{ cm}^{-3}, T_d = 10 \text{ K and } T = 50 \text{ K resulting in } B = 1 \text{ mG}. \) This is a large value but perhaps not totally unreasonable. Recent determinations of magnetic field strength from Faraday rotation of background radio sources and from Zeeman splitting of the OH lines indicate a magnetic field strength of about 50 \(\mu \)G inside dense molecular clouds (Helfer, 1976; Helfer et al., 1981; Crutcher et al., 1975, 1981). An upper limit of 25 \(\mu \)G has been obtained for the magnetic field strength in the Orion molecular cloud from observations of the SO emission lines (Clark et al., 1978). Theoretical work indicates that a \(n \) with \(n = 1/2 \) (Mouschovias, 1976). Assuming that the magnetic field and density in typical interstellar conditions are \(3 \mu \)G and \(1 \text{ cm}^{-3} \), respectively, cloud contraction to a density of \(10^4 \text{ cm}^{-3} \) gives an expected field strength of 300 \(\mu \)G, which is a factor 3 less than that derived above. Possibly grains are more efficiently aligned due to enhanced magnetic properties or superthermal rotation (Aannestad and Purcell, 1973; Purcell, 1975, 1979; Duley, 1978; Spitzer and McClintic, 1979).

c The 3250 cm\(^{-1}\) feature in the spectrum of the source OH 231.8 + 4.2
The source OH 231.8 + 4.2 is probably a late type star which has undergone significant mass loss (Morris and Knapp, 1976). The 3250 cm\(^{-1}\) feature detected in the spectrum of this source differs considerably from the 3250 cm\(^{-1}\) feature commonly observed in molecular cloud regions. The feature is much narrower and lacks the low frequency wing. This indicates that the H\(_2\)O ice is relatively uncontaminated by impurities.

In fig. 7 we compare the observed 3250 cm\(^{-1}\) feature with theoretical calculations using unannealed and annealed amorphous solid water, \(H_2O(\text{as}) \), grain mantles. The unannealed \(H_2O(\text{as}) \) absorption is much too broad to explain the observations, but partially annealed \(H_2O(\text{as})(T \geq 80K) \) provides a much better fit.

![Fig. 7](image)

Comparison of extinction cross sections (3250 cm\(^{-1}\) feature) of grain mantles consisting of \(H_2O(\text{as}) \) with the observations towards OH 231.8 + 4.2. The curve labeled 10 K is unannealed \(H_2O(\text{as}) \), 80 K is partially annealed \(H_2O(\text{as}) \) (deposited at 10 K, warmed-up to 80 K and recooled to 10 K).

We interpret the different composition of grain mantles around this star to a difference in formation mechanism. Grain mantles in interstellar molecular cloud regions are formed by accretion of gasphase atoms and molecules, mainly H, O, N, CO, O2 and NH, on a grain at 10K. Extensive model calculations of gasphase and surface chemistry show that \(H_2O \) ice mantles are likely to contain also \(H_2CO \), \(NH_3 \) and \(H_2O \) (Tielens and Hagen, 1982). Such a composition will broaden the 3250 cm\(^{-1}\) extinction feature and produce a low frequency wing.

Around late type stars the mantle formation mechanism is quite different. In the outflow of oxygen rich late type stars grains of silicate material are formed (condensation temperature ~1000 K). Upon expansion of the flow these grains cool down and other molecules present in the gasphase may condensate out when the grains reach their condensation temperature. The condensation temperature for \(H_2O \) molecules is about 90K under these circumstances (Nakagawa, 1980). For molecules like \(NH_3 \) and \(H_2CO \) the condensation temperature is much lower (~50K). By the time a grain reaches this temperature the local density has dropped by about a factor 20 as compared to the region where the grains are 90K and one expects no significant condensation of these molecules. In this way a relatively pure \(H_2O(\text{as}) \) grain mantle can be formed. This scenario is supported by the high temperature (~80K) needed to explain the observations of the 3250 cm\(^{-1}\) extinction feature.

It is conceivable that around late type stars with a much larger mass loss rate other molecules such as \(NH_3 \) can be deposited later on the \(H_2O(\text{as}) \) layer. The spectrum of such an "onion layered" grain mantle will differ considerably from the spectra of the mixtures reported in this article, since the spectrum of a mixture is not the sum of the spectra of the pure components. In particular the low frequency wing of the 3250 cm\(^{-1}\) feature which can be produced by interaction between \(H_2O \) and a strong base like \(NH_3 \), but it would be absent in the spectrum of a grain mantle composed of a layer of relatively pure \(H_2O(\text{as}) \) and a layer of \(NH_3 \) as an onion skin on top of it.

4 SUMMARY AND CONCLUSION

From a comparison of theoretically calculated extinction and polarization cross sections with the observations towards BN it is concluded that the
observed 3250 cm⁻¹ feature can not be due to pure H₂O(ν₃) mantles. Mixtures of H₂O(ν₃) with other molecules, notably NH₃, reproduce the extinction and polarization observations satisfactorily. The existence of such mixtures inside dense molecular clouds is in accordance with recent theoretical calculations of the grain mantle composition in those regions (Tielens and Hagen, 1982). Similar mixtures may result from photo-processing (Hagen, 1982).

Pure H₂O(ν₃) grain mantles can explain the shape of the 3250 cm⁻¹ feature observed towards the late type star OH 231.8 + 4.2. The temperature of these grains must at some time have been about 80K. It is suggested that these H₂O mantles form on silicate grains by condensation in the outflow of this star as soon as the silicate core reaches the condensation temperature of H₂O, about 90K.

ACKNOWLEDGEMENTS

We are extremely indebted to Dr. L.J. Allamandola for his invaluable assistance and critical discussions not only with respect to the laboratory but in all other phases as well. This work was supported in part by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

REFERENCES

© European Southern Observatory • Provided by the NASA Astrophysics Data System

Webster, A.: 1980, M.N.R.A.S. 192, 7P.