The handle [http://hdl.handle.net/1887/68643](http://hdl.handle.net/1887/68643) holds various files of this Leiden University dissertation.

**Author:** Pardi, D.J.  
**Title:** Exploring the relationships of gamma-hydroxybutyrate and sleep on metabolism, physiology, and behavior in humans  
**Issue Date:** 2019-01-24
Exploring the Relationships of gamma-Hydroxybutyrate and Sleep on Metabolism, Physiology, and Behavior in Humans

Daniel John Pardi
Exploring the Relationships of \textit{gamma}-Hydroxybutyrate and Sleep on Metabolism, Physiology, and Behavior in Humans

Proefschrift
ter verkrijging van de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 24 januari 2019
klokke 16:15 uur

door
\textbf{Daniel John Pardi, MS}
Geboren te Marin Country, California, USA
in 1974
Promotor
Prof. dr. H. Pijl

Co-promoter
Dr. G.J. Lammers

Leden Promotiecommissie
Prof. dr. N.R. Biermasz, Leiden University
Prof. dr. P.C.N. Rensen, Leiden University
Prof. dr. S. Overeem
Dr. Jamie Zeitzer, Stanford University
If you don’t have time to do it right, when will you have time to do it over?

**John Wooden**
1910 – 2010

---

I have no special talents, I am only passionately curious.

**Albert Einstein**
1879 – 1955

---

The method of science is the method of bold conjectures and ingenious and severe attempts to refute them.

**Karl Popper**
1902 - 1994

---

For my family and my other advisors
# CONTENTS

## CHAPTER 1
THEESIS INTRODUCTION AND AIMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Thesis Introduction</td>
<td>12</td>
</tr>
<tr>
<td>1.2 Abstract for Part I - Neurobiological and Clinical Effects of Sodium Oxybate</td>
<td>13</td>
</tr>
<tr>
<td>1.3 Abstract for Part II - Sleep, Eating, and Energy Regulation</td>
<td>15</td>
</tr>
<tr>
<td>1.4 Aims</td>
<td>17</td>
</tr>
</tbody>
</table>

## CHAPTER 2
INTRODUCTION TO GAMMA-HYDROXYBUTYRATE (GHB) / SODIUM OXYBATE (SXB): NEUROBIOLOGY AND CLINICAL EFFECTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to GHB / SXB</td>
<td>23</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>26</td>
</tr>
<tr>
<td>1.2 Abuse Liability</td>
<td>27</td>
</tr>
<tr>
<td>2. Biology and Pharmacology of GHB / SXB</td>
<td>29</td>
</tr>
<tr>
<td>2.1 Distribution</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Synthesis</td>
<td>30</td>
</tr>
<tr>
<td>2.3 Metabolism</td>
<td>31</td>
</tr>
<tr>
<td>2.4 GHB as a Neurotransmitter</td>
<td>32</td>
</tr>
<tr>
<td>2.5 GHB Binding Site(s) in the Brain</td>
<td>32</td>
</tr>
<tr>
<td>2.5.1 Stimulation of GHB Binding Site(s)</td>
<td>32</td>
</tr>
<tr>
<td>2.5.2 Stimulation of GABA&lt;sub&gt;B&lt;/sub&gt; Receptors by GHB</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Intracellular Response to GHB</td>
<td>33</td>
</tr>
<tr>
<td>2.7 Effects on Neurotransmitter Systems</td>
<td>34</td>
</tr>
<tr>
<td>2.7.1 Dopaminergic System</td>
<td>34</td>
</tr>
<tr>
<td>2.7.2 Serotonergic System</td>
<td>35</td>
</tr>
<tr>
<td>2.7.3 Opioidergic System</td>
<td>35</td>
</tr>
<tr>
<td>2.7.4 Cholinergic System</td>
<td>36</td>
</tr>
<tr>
<td>2.7.5 Noradrenergic System</td>
<td>36</td>
</tr>
<tr>
<td>2.7.6 Glutamatergic System</td>
<td>37</td>
</tr>
<tr>
<td>3. Hormonal and Metabolic Effects of GHB / SXB</td>
<td>37</td>
</tr>
<tr>
<td>3.1 Hormonal Effects of GHB / SXB</td>
<td>37</td>
</tr>
<tr>
<td>3.1.1 Growth Hormone</td>
<td>37</td>
</tr>
<tr>
<td>3.1.2 Neurosteroids</td>
<td>39</td>
</tr>
</tbody>
</table>
3.1.3 Prolactin - 39 -
3.1.4 Melatonin - 40 -
3.1.5 Ghrelin - 40 -
3.2 METABOLIC EFFECTS OF GHB / SXB - 41 -
  3.2.1 Insulin Sensitivity - 41 -
  3.2.2 Thermoregulation - 42 -
  3.2.3 Weight and Energy Balance - 43 -

4. CLINICAL EFFECTS OF GHB / SXB - 47 -
4.1 HEALTHY SUBJECTS - 48 -
  4.1.1 Sleep - 48 -
  4.1.2 Mood, Prosocial, and Prosexual Effects - 48 -
4.2 CLINICAL POPULATIONS - 49 -
  4.2.1 Insomnia - 49 -
  4.2.2 Fibromyalgia - 50 -
  4.2.3 Parkinson’s Disease - 52 -
  4.2.4 Alzheimer’s Disease - 52 -
  4.2.5 Narcolepsy - 55 -

5. CONCLUSIONS - 61 -
  5.1 NEUROBIOLOGY - 61 -
  5.2 CLINICAL EFFECTS - 62 -

CHAPTER 3
SODIUM OXYBATE FOR EXCESSIVE DAYTIME SLEEPINESS IN PARKINSON DISEASE - AN OPEN-LABEL POLYSOMNOGRAPHIC STUDY - 63 -

ABSTRACT - 64 -
INTRODUCTION - 65 -
METHODS - 65 -
RESULTS - 67 -
COMMENT - 69 -

CHAPTER 4
THE NIGHTLY ADMINISTRATION OF SODIUM OXYBATE RESULTS IN SIGNIFICANT REDUCTION IN THE NOCTURNAL SLEEP DISRUPTION OF PATIENTS WITH NARCOLEPSY - 73 -

ABSTRACT - 74 -
INTRODUCTION - 75 -
1.2 Obesity is a major public health concern - 157 -
1.3 Obesity is multifactorial and related to sleep - 157 -
1.4 Sleep times are reduced - 158 -

2. Sleep times impact body weight - 158 -
2.1 Reduced sleep, weight, and energy regulations - 158 -
   2.1.1 Epidemiological evidence - 158 -
   2.1.2 Actigraphy and PSG evidence - 159 -
2.2 Sleep elongation, weight, and energy regulation - 160 -

3. Potential causes of weight gain with sleep disturbance - 161 -
3.1 Metabolic, endocrine, immune, and autonomic relationships - 161 -
   3.1.1 Glucose metabolism - 161 -
   3.1.2 Fatty acid metabolism - 163 -
   3.1.3 Hormones - 163 -
   3.1.4 Endocannabinoids - 165 -
   3.1.5 Immune system - 166 -
   3.1.6 Energy expenditure and temperature - 166 -
3.2 Chronobiology - 167 -
   3.2.1 Circadian introduction - 167 -
   3.2.2 Circadian metabolism - 167 -
3.3 Altered energy intake and expenditure - 168 -
   3.3.1 Energy intake - 168 -
   3.3.2 Energy expenditure - 169 -
   3.3.3 Altered energy regulation under calorie restriction - 170 -

4. Sleep, brain processing, and energy regulation - 170 -
4.1 Arousal, attention, cognition, affective processing, and sleep - 170 -
   4.1.1 Vigilance regulation - 170 -
   4.1.2 Compensatory sleep - 171 -
   4.1.3 Executive functioning - 172 -
4.2 Sleep disturbance, brain processing, and energy regulation - 175 -
   4.2.1 Altered inhibitory control and energy regulation - 175 -
   4.2.2 Altered memory and energy regulation - 176 -
   4.2.3 Altered mood and energy regulation - 176 -
   4.2.4 Altered reward processing and energy regulation - 176 -