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Chapter 2

Heuristics for counting ratio-
nal points on diagonal quar-
tic surfaces

If to do were as easy as to know what were good to do, chapels had
been churches, and poor men’s cottages princes’ palaces

Portia, The Merchant of Venice, Scene 1.2, lines 9-10

This chapter is concerned with finding heuristics for a conjecture in the
style of Manin’s Conjecture 1.2.15 for some K3 surfaces over Q. In par-
ticular we will restrict ourselves to diagonal quartic surfaces. We use the
circle method to obtain such heuristics. We do not take into account that
such surfaces may have accumulating subvarieties, but we discuss these in
relation to the circle method at the very end of this chapter.

In particular, the goal of this chapter is to prove the following main result,
where we assume the generalized Riemann hypothesis (hereafter GRH).
In fact, we do not need to assume GRH for all L-functions; just some of
specific origin, as will come up in Proposition 2.2.5. Recall the singular
integral J(Q) from Definition 1.3.9 and the modified singular series S∗(Q)
from Definition 1.3.17. For diagonal quartic surfaces we have n = d = 4, so
the singular integral and singular series together make up the contribution
of the major arcs to counting points up to bounded height, provided that
the major arcs do not overlap. In accordance to Lemma 1.3.5 and Remark
1.3.8 we implicitly assume δ < 1

5 to have been chosen.

Theorem 2.0.1. For a1, . . . , a4 ∈ Z \ {0}, let F =
∑4

i=1 aixi define a
diagonal quartic surface X of Picard rank ρ ≥ 2. Under the assumption
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

of GRH, there exists a constant cF such that as Q →∞ the contribution
J(Q)S∗(Q) equals

cF (logQ)ρ + o((logQ)ρ).

This theorem should be viewed in light of computational data produced
by van Luijk and available on his website [Lui]. Indeed the heuristic in
this theorem matches with the growth that the data seems to imply.

Remark 2.0.2. Some diagonal quartic surfaces (e.g. those with all ai
positive) have no rational points, so in general one should not expect cF to
be non-zero. Ideally, one would hope that a detailed treatment of cF would
show obstructions to it being positive. Such obstructions should be more
complicated than just local obstructions as counterexamples to the Hasse
principle are known for diagonal quartic surfaces (see for example [SD00]
or [Bri06]).

2.1 Averages of multiplicative functions

In a recent preprint [GK17], Granville and Koukoulopoulos present a very
strong theorem dealing with averages of multiplicative functions. Very
similar theorems were first discovered by Wirsing using ideas of Selberg
and Delange. In fact, the contents of this chapter were first proven us-
ing Wirsing’s work [Wir61, Satz 1]. The downside of Wirsing’s original
theorem is that it only deals with non-negative multiplicative functions,
restricting us to only apply the result to specific diagonal quartic sur-
faces. The new theorem of Granville and Koukoulopoulos however needs
a good error term in one of its conditions. This is automatically provided
by assuming GRH; see Proposition 2.1.11 and the remark following it.
This assumption may be removed by knowing good zero-free regions for
L-functions of varieties; see Remark 2.2.6.

2.1.1 A powerful result by Granville and Koukoulopoulos

In order to phrase the theorem, we need to introduce some notation. We
will let Γ denote the classical Gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt.

In particular, for positive integer z we have Γ(z) = (z − 1)!.
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

Definition 2.1.1. For any complex number α the multiplicative function
τα is given on prime powers by

τα(pν) = α(α+ 1) · · · (α+ ν − 1)/ν!.

In particular, on primes the function τα evaluates to α, and if α is a
positive integer, then τα(pe) =

(
α−1+e

e

)
holds.

Definition 2.1.2. For a multiplicative function f , its associated Dirich-
let series will be denoted by Lf (s) =

∑∞
n=1 f(n)n−s. Fix some complex

number α such that the function (s − 1)αLf (s) is J times continuously
differentiable in the half-plane <(s) ≥ 1. For all j ≤ J we set1

cj :=
1

j!

dj

dsj

∣∣∣∣
s=1

(s− 1)αLf (s)

s
.

Theorem 2.1.3 (Granville–Koukoulopoulos). Let f be a multiplicative
function for which there exist α ∈ C and A ∈ R>0 such that for x ≥ 2, the
function f satisfies∑

p≤x
f(p) log(p) = αx+O

(
x

(log x)A

)
, (2.1)

where the sum is over the prime numbers at most x. Furthermore assume
that there exists some k ∈ R>0 such that |f | ≤ τk holds. If J = dA− 1e is
the largest integer smaller than A, then with notation cj as above, x ≥ 2
validates

∑
n≤x

f(n) = x

J∑
j=0

cj
(log x)α−j−1

Γ(α− j)
+O

(
x(log x)k−1−A(log log x)IA=J+1

)
.

The implied constant depends at most on k, A and the implied constant
from (2.1). The dependence on A is twofold: from its size and its distance
from the nearest integer.

Proof. This is [GK17, Theorem 1].

1Notice that our notation is slightly different from that in [GK17] as we have sur-
pressed some notation from the source since we will only need part of the conclusion of
its main theorem.
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

Remark 2.1.4.

• Implicit in the formulation of the previous theorem is that assump-
tion (2.1) implies that the Dirichlet series associated to f is dA− 1e
times continuously differentiable in the half-plane <(s) ≥ 1.

• The Γ-function has poles at all non-positive integers, hence in the
result of Theorem 2.1.3, for integer α all terms with j ≥ α vanish.
In particular, the theorem only yields an asymptotic for α 6= 0, and
only then if k −A < α holds.

For our purposes we only consider the j = 0 term from the conclusion of
Theorem 2.1.3, which under the conditions in the remark above yields the
dominating term.

The following lemma allows us to convert the conclusion of Theorem 2.1.3
into a form that we prefer. Notice that the case a = −1 below does not
appear in the conclusion of the theorem – nor do any other cases with
negative a.

Lemma 2.1.5. If f : Z>0 → C satisfies
∑

n≤x f(n) ∼ cx(log x)a for some
constants a ∈ Z and c ∈ C, then for a 6= −1 we have∑

n≤x

f(n)

n
∼ c

a+ 1
(log x)a+1,

and for a = −1 we have ∑
n≤x

f(n)

n
∼ c log log x.

Proof. This is a simple application of Abel’s partial summation formula
(cf. Theorem1.3.1). We have

∑
n≤x

f(n)

n
=

∑
n≤x

f(n)

 1

x
+

∫ x

1

∑
n≤t

f(n)

 1

t2
dt

∼ c(log x)a + c

∫ x

1
(log t)a

1

t
dt.

For a 6= −1 the integral evaluates to 1
a+1(log x)a+1, whereas for a = −1 it

evaluates to log log x, in either case giving the dominating term.
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

2.1.2 Chebyshev-like functions

In his study towards the Prime Number Theorem, Chebyshev introduced
the function

ψ(x) =
∑
n≤x

Λ(n),

where

Λ(n) =

{
log(p) if n = pe is a non-trivial prime power,

0 otherwise

is known as the von Mangolt function.

The function ψ(x) relates to the Riemann zeta function ζ(s) =
∑∞

n=1 n
−s

which is the Dirichlet series of the constant multiplicative function 1.
In studying averages of multiplicative functions, one often works with
Chebyshev-like functions that we will now define. We generalize some
definitions from §1.3.4.

Definition 2.1.6. Let f : Z>0 → C be a function. Its associated Dirichlet
series is Lf (s) =

∑∞
n=1 f(n)n−s. If f is multiplicative, the von Mangoldt

function Λf associated with f is defined indirectly through its Dirichlet
series as

−
L′f (s)

Lf (s)
=

∞∑
n=1

Λf (n)n−s

and its associated Chebyshev function is

ψf (x) =
∑
n≤x

Λf (n).

Lemma 2.1.7. For a completely multiplicative function f we have

Lf (s) =
∏
p

1

1− f(p)p−s
.

Proof. This follows from writing Lf (s) as a product over primes

Lf (s) =
∏
p

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
and then recognizing the sums as geometric series.
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

Lemma 2.1.8. The von Mangoldt function associated with a multiplicative
function f is supported on the prime powers and for any prime number p
it evaluates as Λf (p) = f(p) log(p). If f is completely multiplicative, the
von Mangoldt function satisfies

Λf (n) = Λ(n)f(n).

Proof. These properties may be found without proof on [IK04, page 17].
For the sake of completeness, we will give a proof here.

First, it is easily seen that −L′f (s) is the Dirichlet series of f · log. The
convolution of two functions f, g : Z>0 → C is defined as

(f ∗ g)(n) =
∑
d|n

f(d)g(nd )

and it is well known (or easily computed) that the Dirichlet series of
a convolution is the product of the two Dirichlet series. Hence we get
f ∗ Λf = f · log.

We compute some values of Λf . Expanding (f ∗ Λf )(1) = f(1) log(1) = 0
and using f(1) = 1, we find Λf (1) = 0. Using this result, we move on to
work out (f ∗ Λf )(p) = f(p) log p for any prime number p and conclude
Λf (p) = f(p) log p.

Finally, taking p and q two different prime numbers, using the same strat-
egy we conclude Λf (pq) = 0. Using this as a base case, one may apply
induction to prove the same for numbers with more than two prime factors
or higher exponents, hence Λf is supported on prime powers.

Having already proven Λf (p) = f(p) log p, we may apply induction to
the power of p to show that for completely multiplicative f we have
Λf (pk) = f(p)k log p = f(pk) log p = f(pk)Λ(pk). The strategy is com-
pletely analogous to the first part of this proof.

Remark 2.1.9. From the last lemma and the definition of Λ it imme-
diately follows that if f is a completely multiplicative function, then for
k ≥ 1 we have

Λf (pk) = Λ(pk)f(pk) = f(p)k log(p)

as was already seen in the proof, but is worth stating separately.
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

The Chebyshev function associated with a multiplicative function f is
often useful to study the sum

∑
p≤x f(p) log p, provided one can bound

the contribution of higher prime powers. Indeed, we have

∑
p≤x

f(p) log p = ψf (x)−
∞∑
k=2

∑
pk≤x

Λf (pk),

where the sum over k is actually a finite sum as for k > log2(x), the second
sum is empty.

Lemma 2.1.10. Let f be a multiplicative function for which there exists
some b ∈ R>0 bounding from above every |f(p)| for prime numbers p. For
some a ∈ Z>0 define a completely multiplicative function f∗ by

f∗(pe) =


1 if e = 0,

0 if e ≥ 1, p ≤ a,
f(p)e if p > a.

Then for sufficiently large x we have∣∣∣∣∣∣ψf∗(x)−
∑
a<p≤x

f(p) log p

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑
k=2

∑
p

pk≤x

Λf∗(p
k)

∣∣∣∣∣∣∣� x1/2+loga(b).

Proof. By definition we have
∑

a<p≤x f(p) log p =
∑

p≤x f
∗(p) log p and as

we have already remarked above, the equality of the statement follows.
For the remainder of the proof, we will focus on the absolute value of the
sum on the right-hand side of the equality, which we will call S.

After applying the triangle inequality, we begin by switching the order of
summation and extending the sum over primes to all p satisfying p2 ≤ x,
thereby increasing its total value, i.e.

|S| ≤
∑
p

p2≤x

log p

blogp(x)c∑
k=2

|f∗(p)|k =
∑
p>a

p2≤x

log p

blogp(x)c∑
k=2

|f(p)|k.

Without loss of generality we may assume b ≥ 2. The sum over k is
bounded from above by

blogp(x)c∑
k=2

bk ≤ b2 · x
logp(b) − 1

b− 1
≤ b2xloga(b).

39



2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

For sufficiently large x, the number of primes p with p2 ≤ x is of the order
2x1/2

log x and for each of those we may trivially bound log p by 1
2 log x. Hence

the absolute value of S is bounded by b2 · x1/2+loga(b) as required.

In order for Theorem 2.1.3 to be useful in the application that we have in
mind, and following our proof, we will need (2.1) with an arbitrarily high
exponent A. It is not unthinkable that this may be derived with some
skilful application of zero-free regions for appropriate L-functions but in
our main result of the chapter we opt to take the shortcut of assuming
GRH.

Iwaniec and Kowalski dedicate Chapter 5 of their book [IK04] to a wide
class of L-functions. They explicitly let their notation remain somewhat
vague and suggestive, but they do give a list of requirements to what
they call an L-function. For us it is enough to know that Dirichlet se-
ries, L-functions of cusp forms, and (sometimes conjecturally) L-functions
of varieties fall in the class for which the following proposition is true.
In particular, with the knowledge from §1.2.3, we see that the following
proposition applies to L(H2(X), s).

Proposition 2.1.11. Let 1
2 ≤ σ < 1. The following statements are equiv-

alent for an L-function:

1. There are neither zeros nor poles of (s−1)rLf (s) in <(s) > σ, where
r is a non-negative integer.

2. Let r ≥ 0 be the order of the pole of Lf (s) at s = 1. Then for all
ε > 0 and x ≥ 2 we have

ψf (x) = rx+O
(
xσ+ε

)
,

the implied constant depending on f and ε > 0.

Proof. This is part of [IK04, Proposition 5.14].

Remark 2.1.12.

• The numbers r appearing in the two statements of the previous
proposition are necessarily the same. Indeed, if the number r in the
first statement is not the order of the pole of Lf (s) at s = 1 then
(s− 1)rLf (s) will either have a pole or a zero at s = 1.
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2.2. EVALUATING THE SINGULAR SERIES

• GRH asserts that the first statement in the proposition above is true
for σ = 1

2 , and hence also the second one which is the statement that
we want to use.

• Although the notation of the proposition seems to rely on some
function f , we do not really need it for the result. Via L′f (s)/Lf (s)
one may define Λf (n) implicitly and from that also ψf (x).

2.2 Evaluating the singular series

We now turn to the main goal of the chapter, namely evaluating the
contribution of the major arcs to rational points on those diagonal quartic
surfaces X as given in Theorem 2.0.1: defined by F (x) =

∑4
i=1 aix

4
i with

ai ∈ Z \ {0} such that X has Picard rank ρ ≥ 2. Throughout the rest
of the chapter we write S for the finite set of primes where X has bad
reduction.

Section 2.1 provides the tools for evaluating the singular series. The sin-
gular integral will have to wait until §2.3.

In order to apply Theorem 2.1.3, we introduce a suitable multiplicative
function f such that we have

∑Q
q=1

f(q)
q = S∗(Q). This is provided by the

following choice:

Definition 2.2.1. We denote f(q) =
S∗q
q3 where S∗q is given in Definition

1.3.17.

Indeed, Lemma 1.3.18 shows that f is multiplicative.

Before we proceed, we relate the function f to the geometry of X. Using
the Lefschetz trace formula, which gives #X(Fp) = p2+Tp·p+1 where Tp·p
is the trace of Frobenius on H2

ét(XFp ,Q`), and moreover using that N∗(p)

counts the number of non-zero affine zeroes over Z/pZ of the equation
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2.2. EVALUATING THE SINGULAR SERIES

F (x) = 0, one finds

f(p) =
S∗p
p3

= p

(
N∗(p)

p3
− 1

)
= p

(
#X(Fp)(p− 1)

p3
− 1

)
= p

(
p3 + (Tp − 1)p2 − (Tp − 1)p− 1

p3
− 1

)
= (Tp − 1)

(
1− 1

p

)
= (Tp − 1) +O

(
1
p

)
.

The first non-trivial equality uses the result of Lemma 1.3.18 with n = 4.

The following lemma will be useful in checking the conditions of Theorem
2.1.3 for our chosen function f .

Lemma 2.2.2. For every prime p we have |Tp| ≤ 22.

Proof. The number Tp · p is the trace of Frobenius on H2
ét(XFp ,Q`). By

the Weil conjectures, each of the eigenvalues has absolute value p. Hence
|Tp · p| is bounded by p times the dimension of H2

ét(XFp ,Q`), which by
comparison with singular cohomology is the second Betti number b2. For
K3 surfaces, the second Betti number equals 22, completing the proof.

This description on prime values will be used to check that f satisfies the
conditions of Theorem 2.1.3. We first assure ourselves of the assumption
that there exists some k ∈ R>0 such that |f | ≤ τk holds, leaving the more
involved assumption (2.1) for later.

Lemma 2.2.3. There exists a number k ∈ R>0 validating |f | ≤ τk.

Proof. Since for positive real k, both |f | and τk are multiplicative and take
values in R≥0 when applied to positive integers, we need only check the
assertion on prime power values.

We first consider the values of |f | on primes. By Lemma 2.2.2, |Tp| is
bounded by 22, so for every prime p, the value |f(p)| is bounded by 23.
Recalling Corollary 1.3.22, we see that for almost all primes p, we have
f(pe) = 0 for all e ≥ 2. Hence we only need to further consider a finite set
of primes T , and moreover, by Lemma 1.3.19, only a finite set of prime
powers P = {pe : p ∈ T, f(pe) 6= 0}. Over this finite set, |f | takes a
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2.2. EVALUATING THE SINGULAR SERIES

maximum value. Moreover, for fixed e, the value of
(
k+e−1
e

)
as a function

of k is unbounded. Hence there exists some positive integer K such that
for all pe ∈ P we have

|f(pe)| ≤
(
K + e− 1

e

)
= τK(pe).

Hence |f(pe)| ≤ τmax{23,K}(p
e) holds for all prime powers pe and therefore

the desired inequality |f | ≤ τmax{23,K} holds on all positive integers. Hence
we retrieve the statement of the lemma with k = max{23,K}.

Remark 2.2.4. Since the number k in the lemma above is ineffective, and
the result of Theorem 2.1.3 is only useful for k−A < α, we need to verify
condition (2.1) for arbitrarily large A.

To verify condition (2.1) we need to evaluate

∑
p≤x

f(p) log p =
∑
p≤x

Tp log p−
∑
p≤x

log p+O

∑
p≤x

1
p log p

 (2.2)

where we have used that the implicit constants in f(p) = (Tp−1)+O
(

1
p

)
are universally bounded by 23.

We consider this sum in three parts: first, evaluation of∑
p≤x

1
p log p = log x+O(1)

is standard in analytic number theory and is known as Mertens’ first the-
orem.

Then, the middle term
∑

p≤x log p comes up in the proof of the Prime
Number Theorem (Theorem 1.3.2), and the validity of

∑
p≤x log p ∼ x is

in fact equivalent to it by application of Abel’s summation formula from
Theorem 1.3.1.

In order to evaluate
∑

p≤x Tp log p we will use an L-function involving Tp.

Consider the function g given on primes by p 7→ Tp and extended to have
domain Z>0 by complete multiplicativity. Its Dirichlet series becomes

Lg(s) =
∏
p

1

1− Tpp−s

by Lemma 2.1.7.
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2.2. EVALUATING THE SINGULAR SERIES

Proposition 2.2.5. Assuming GRH and writing r for the order of the
pole of Lg(s) at s = 1, for any A > 0 and x ≥ 2 we have∑

p≤x
Tp log p = rx+O

(
x

(log x)A

)
and moreover ∑

p≤x
f(p) log p = (r − 1)x+O

(
x

(log x)A

)
.

Proof. We apply Lemma 2.1.10 to the completely multiplicative function
g defined through p 7→ Tp. Indeed by Lemma 2.2.2 it is applicable with
b = 22. We may use a = 223 as this makes the resulting power of x in the
conclusion of Lemma 2.1.10 equal to 1

2 + 1
3 = 5

6 < 1. In fact, any a > 222

would also have sufficed.

Having fixed a, the sum
∑

p≤a Tp log p is bounded, hence with notation of
Lemma 2.1.10 we have∑

p≤x
Tp log p = ψg∗(x) +O

(
x5/6

)
.

The Dirichlet series of g∗ and Lg(s) are not equal, but their Euler products
only differ for primes p < a. These are finite in number, so the order of
the pole at s = 1 is not affected. Hence, by Proposition 2.1.11 we have

ψg∗(x) = rx+O

(
x

1
2 +ε

)
.

Combining these two estimates, we conclude∑
p≤x

Tp log p = rx+O

(
x

max
{

5
6 ,

1
2 +ε

})
.

Realizing that saving a power of x gives a stricter error term than sav-
ing any power of log x, we conclude the proof of the first equality upon
choosing any ε < 1

2 .

The second equality immediately follows by recombining the three terms

in (2.2). Indeed the error O
(

x
(log x)A

)
also applies to the middle sum∑

p≤x log p ∼ x.

Remark 2.2.6. In the proposition above, we did not really need to assume
the full power of GRH: by Proposition 2.1.11, a zero-free region <(s) > σ
for any σ > 1

2 would have sufficed.
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2.2. EVALUATING THE SINGULAR SERIES

2.2.1 Identification of the logarithmic exponent

The last step in calculating the singular series is to identify the constant r
appearing in Proposition 2.2.5. So far, Lg(s) =

∏
p(1 − Tpp−s)−1 seemed

to have appeared out of nowhere, and a priori it is not obvious what the
order r of the pole would be. We will now explain how Lg(s) is related to
the variety X and how r is related to the Picard group of X. Recall the
L-function L(H2(X), s) from Definition 1.2.19.

Proposition 2.2.7. The order of the pole of L(H2(X), s) at s = 2 is the
Picard rank of X.

Proof. As was already seen in §1.2.3, this is part of the Tate conjecture,
which is known for K3 surfaces and hence in particular for X.

Proposition 2.2.8. The shifted Dirichlet series Lg(s−1) and L(H2(X), s)
have poles of the same order at s = 2.

Proof. First notice that indeed both L-functions have a pole at s = 2. We
compare the p-adic factors for both Euler products

Lg(s− 1) =
∏
p

1

1− Tpp1−s

and

L(H2(X), s) =
∏
p/∈S

1

det(1− Frobp p−s | H2
ét(Xp,Q`)

.

Note that there are only finitely many bad primes p ∈ S, so their appear-
ance will not affect the order of the pole. Let αj for j = 1, . . . , b2 = 22
be the eigenvalues of Frobp on H2

ét(Xp,Q`). Since one obtains the expres-
sion det(1 − Frobp p

−s | H2
ét(Xp,Q`) as the characteristic polynomial of

the Frobenius endomorphism, read backwards, with p−s substituted, this
determinant equals

∏22
j=1(1− αjp−s), which is

1− (Tp · p)p−s +
∑
i<j

αiαjp
−2s −

∑
i<j<k

αiαjαkp
−3s + . . .+

 22∏
j=1

αj

 p−22s.

Let us study the fraction between p-adic factors for the two L-functions
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2.2. EVALUATING THE SINGULAR SERIES

L(H2(X), s) and Lg(s− 1) for p /∈ S:

1− (Tp · p)p−s +
∑

i<j αiαjp
−2s −

∑
i<j<k αiαjαkp

−3s + . . .

1− Tpp1−s

= 1+

∑
i<j αiαjp

−2s −
∑

i<j<k αiαjαkp
−3s + . . .

1− Tpp1−s =: F (p, s)

Each of the αj has modulus p, so for every l, the term in the numerator
involving p−ls has modulus at most

(
22
l

)
pl−ls. Moreover, for any s > 3

2 and
p > 442, the denominator is larger than 1

2 . Hence for s > 3
2 and p > 442

the expression F (p, s) is 1 + O(p−2(s−1)). We need to study
∏
p≤t F (p, s)

as t→∞ and subsequently s→ 2. Writing C for the implicit constant in
the bound for F (p, s), we have

∏
442<p≤t

F (p, s) ≤ exp

C ∑
442<p≤t

p−2(s−1)

 . (2.3)

Since for every positive ε, the sum
∑

p≤t p
−(1+ε) converges absolutely as

t → ∞, so does the sum in the exponential above for any s > 3
2 and

in particular for s = 2. Therefore, for fixed s, the product of F (p, s)
converges absolutely as t → ∞. Moreover, since the inequality (2.3) is
uniform in s, we may switch the limits t→∞ and s→ 2 to conclude that∏
p F (p, 2) has a finite, non-zero value. This confirms the statement of the

proposition.

Corollary 2.2.9. Assuming GRH, and denoting the Picard rank of X
by ρ, there is a constant c such that we have S(Q) ∼ c(logQ)ρ−1.

Proof. We take the j = 0 term from Theorem 2.1.3. Proposition 2.2.5
tells us to use α = r − 1 and Propositions 2.2.7 and 2.2.8 verify r = ρ.
Now we apply Lemma 2.1.5 with a = ρ− 2.

Lemma 2.2.3 provides us with an ineffective k to be used in the assump-
tions of Theorem 2.1.3. In order for the error term in this theorem not to
dominate, we need to take A > k − α = k + 1− ρ. Indeed, the error term
in Proposition 2.2.5 allows such a choice of ineffective A.

Remark 2.2.10. Following our proof, we have to exclude the case ρ = 1
from our main result. The specific place where the proof falls short is the
case 0 = α = ρ− 1 in Theorem 2.1.3.
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2.3 Evaluating the singular integral

In this section we will show that in the case of diagonal quartics, the
singular integral contributes a factor of log(B) to the counting function.

Recall that the singular integral is

J(Q) =

∫ Q

−Q

∫
[−1,1]n

e(θF (x))dxdθ

for some small power Q = Bδ.

Our first step is to evaluate the integral

I(θ) =

∫
[−1,1]4

e

(
θ

4∑
i=1

aix
4
i

)
dx

=
4∏
i=1

∫ 1

−1
e
(
θ · aix4

i

)
dxi

=
4∏
i=1

2

∫ 1

0
e
(
θ · aix4

i

)
dxi,

hence we focus on the 1-dimensional integral that appears fourfold. We
split the calculation into two cases: where θ · ai > 0 and where θ · ai < 0
hold.

For θ · ai > 0 we substitute u = θaix
4
i , transforming the integral into

1

4(θ · ai)1/4

∫ θai

0
e(u)u−3/4du.

For θ · ai < 0 we substitute u = −θaix4
i , transforming the integral into

1

4(−θ · ai)1/4

∫ −θai
0

e(−u)u−3/4du.

Definition 2.3.1. For any σ ∈ (−1, 0) ⊂ R and t ∈ R>0 we introduce
notation

iσ(t) =

∫ t

0
e(u)uσdu,

jσ(t) =

∫ t

0
e(−u)uσdu = iσ(t).
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Using this notation, we have found the validity of

I(θ) =
1

16

∏
i:θai>0

1

(θai)1/4
i−3/4(θai) ·

∏
i:θai<0

1

(−θai)1/4
j−3/4(−θai)

=
1

16|θ|
∏
i

1

|ai|1/4
∏

i:θ·ai>0

i−3/4(θai)
∏

i:θ·ai<0

j−3/4(|θai|).

2.3.1 The integral over theta

We are left with calculating
∫ R
−R I(θ)dθ. Without loss of generality we

may assume R > 1, and we have∫ R

−R
I(θ)dθ =

∫ −1

−R
I(θ)dθ +

∫ 1

−1

I(θ)dθ +

∫ R

1

I(θ)dθ (2.4)

=

∫ 1

−1

I(θ)dθ

+
1

8
∏
i |ai|1/4

∫ R

1

1

θ
<

{ ∏
i:ai>0

i−3/4(θai)
∏
i:ai<0

i−3/4(−θai)

}
dθ,

where we have used I(−θ) = I(θ).

From

I(θ) =

4∏
i=1

2

4∏
i=1

∫ 1

0
e(θ · aix4

i )dxi

we see |I(θ)| ≤ 24
∫ 1

0 |e((θ · aix
4
i )|dxi = 16, hence we may estimate∫ 1

−1
I(θ)dθ = O(1).

The integral over the interval (1, R) requires further study.

Lemma 2.3.2. For every σ ∈ (−1, 0), there exists a constant cσ such that
the function iσ(t) equals cσ +O(tσ) for t ≥ 1.

Proof. We write

iσ(t) =

∫ ∞
0

e(u)uσdu−
∫ ∞
t

e(u)uσdu
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and we prove that
∫∞

0 e(u)uσdu =: cσ converges and that the second
integral can be estimated by O(tσ).

We split each of the integrals into their real and imaginary parts∫ b

a
e(u)uσ =

∫ b

a
cos(2πu)uσdu+ i

∫ b

a
sin(2πu)uσdu

and we argue on the real parts; the calculation on the imaginary parts is
completely analogous.

We first bound the integral over u > t; we apply integration by parts:∫ ∞
t

cos(2πu)uσdu =

[
1

2π
sin(2πu)uσ

]∞
t

− σ

2π

∫ ∞
t

sin(2πu)uσ−1du.

The latter integral is bounded from above by
∫∞
t uσ−1du = O(tσ).

The convergence of
∫∞

0 e(u)uσ is proven by splitting the positive real line

into the two parts (0, 1) and R≥1. It is easily seen that
∫ 1

0 cos(2πu)uσdu

converges: it is bounded from above by
∫ 1

0 u
σdu which clearly converges

for σ > −1. The integral over R≥1 converges by substituting t = 1 in the
previous calculation.

Lemma 2.3.2 clearly also applies to the function jσ(t) with constant cσ.
Write n ≤ 4 for the number of coefficients ai that are positive and write

c := <
{
cn−3/4c−3/4

4−n
}

. The last integral in (2.4) is well approximated

by c
∫ R

1
1
θdθ, which provides the logarithm that we were out to find.

Proposition 2.3.3. With the constant c as given above, the singular in-
tegral evaluates as

J(Q) =

∫ Q

−Q
I(θ)dθ =

c

8
∏
i |ai|1/4

log(Q) +O(1).

Proof. The proof is no more than following the arguments and calculations
in this section in a linear fashion.

2.3.2 The proof of the main theorem

Proof of Theorem 2.0.1. The proof of the theorem is now a simple combi-
nation of the statements of Corollary 2.2.9 and Proposition 2.3.3 with Q
a sufficiently small power of B.
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2.4. MINOR ARCS AND BAD SUBVARIETIES

One might notice that we did not specify any choice for δ in the proof of
the theorem. Indeed, we did not make any, other than those mentioned for
the machinery to work (cf. Remark 1.3.8). Any actual choice will influence
the result in the sense that Q = Bδ will be affected. Secondarily, through
the logarithm that appears in the statement of the theorem, the leading
constant cF will depend on said choice, after switching to the variable B.
The overall shape of the major arc contribution however, will not.

2.4 Minor arcs and bad subvarieties

As a variation on the concept of Hardy–Littlewood systems where the cir-
cle method counts rational points in accordance with Manin’s conjecture,
Vaughan and Wooley [VW95] have introduced what they call quasi Hardy–
Littlewood systems (QHL models). The circle method may not work for
QHL models in the sense that the minor arcs give a contribution that is
not necessarily dominated by the contribution of the major arcs, but the
major arcs nonetheless contribute exactly the rational points away from ac-
cumulating subvarieties. The contribution of accumulating subvarieties is
found in the minor arcs. Vaughan and Wooley observe that many varieties
are QHL models; explicit examples include the zero locus of x1x2 = x3x4

(worked out in [VW95] and the zero locus of x4
1 + x4

2 + x4
3 = y4

1 + y4
2 + y4

3

(attributed to Wooley in [Con16, p. 14]). In this light it must also be
recorded that in [HB98], Heath-Brown was succesfull in separating out
the contribution of accumulating subvarieties, using a modified version of
the circle method.

After introducing their terminology, Vaughan and Wooley immediately
confess that their notion needs to be adapted to include information on
the possible failure of the Hasse principle. As originally stated, diagonal
quartic surfaces lie outside the range of expected QHL models. However,
neither do diagonal cubic surfaces satisfy the original definition of QHL
models, but Browning has produced a heuristic showing that for such sur-
faces the major arcs indeed give the contribution as predicted by Manin’s
conjecture, albeit with a leading constant that is different from the one
predicted by Peyre [Bro09, Chapter 8]. A further adaptation to the no-
tion of QHL models is not unthinkable and it may not be unreasonable to
believe that in the case of diagonal quartic surfaces the major arcs indeed
reveal the rational points away from accumulating subvarieties.
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