presented from each of the observational programs. The aim is to view the AGN phenomenon and, especially blazars, as a whole, using novel observational methods to look for similarities and differences between distinct classes of objects.

The visible spectropolarimetric characteristics of 3C273, 3C434 and CDA102 will be discussed in detail. Observations at 8A resolution with the 4.2m William Herschel Telescope are contrasted with existing knowledge from broad band photopolarimetry of these objects. It is found that the data is in broad agreement with the predictions of synchrotron theory, but numerous problems remain. Very contrasting behavior is seen in the polarization of the spectral lines in each object and, in 3C434 it is even found that different spectral lines within the same spectrum show sharply different polarization characteristics. Observations of LPQs show that at least 50% have detectable polarization, generally of 0.5-1%. The observations suggest that there are similarities between LPQs and blazars, with good evidence of variable polarization in a number of objects. Our initial sample of objects shows that almost all LPQs with detectable polarization are Radio Quiet and/or x-ray loud. Extensive fast photometry has been performed of a number of objects, especially OJ287 (visible and infrared), Mark421 and Mark501 (infrared). Rapid variability is found to be common, whilst simultaneous UBVRJHK observations show that fast spectral variability on time scales of an hour or less also occurs with some frequency; this last has major implications for models of the active nucleus.

21.03
CGRO COMPTEL Observations of AGNs

During its first year of operation, the imaging Compton telescope COMPTEL aboard the Compton Gamma Ray Observatory has searched the sky for medium-energy gamma-ray emission (0.7 to 30 MeV) from AGNs and quasars. We report on the detections of the quasars 3C273 and 3C279, PKS 0528+134, and the radio galaxy Cent A. Skylsaps and preliminary spectra for these objects will be presented. Evidence for spectral breaks and possible time variability in the high-energy emission from these sources will be discussed. A brief status report on the search for medium-energy gamma radiation from other gamma-ray AGNs discovered by the high-energy EGRET experiment aboard the CGRO will also be presented.

21.05
Unidentified High Energy Gamma Ray Sources Detected by EGRET at High Galactic Latitudes

In addition to the 16 announced EGRET detections of gamma ray emission from active galactic nuclei (AGNs), a number of high latitude sources have been detected by EGRET for which no compelling identification has been made. The statistical significance of these detections is high, although none of the fluxes have been observed to be as high as the brightest identified objects. Two have been observed to undergo substantial time variations of high statistical significance. The positions and properties of these sources will be presented, as well as possible identifications.