The handle http://hdl.handle.net/1887/66118 holds various files of this Leiden University dissertation.

Author: Duijn, S. van
Title: MRI and histologic studies on early markers of Alzheimer's disease
Issue Date: 2018-10-10
Chapter 6

Longitudinal monitoring of sex related in vivo metabolic changes in the brain of Alzheimer’s disease transgenic mouse using magnetic resonance spectroscopy

S van Duijn, MSc 1*, R.J.A. Nabuurs MSc 2, S.G. van Duinen PhD, MD 1, R Natté PhD, MD 1, M.A. van Buchem PhD, MD 2, A Alia PhD 2,3

1Department of Pathology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333 ZA Netherlands; Telnr: +31 71 5266594; Faxnr.: +31 71 5266952

2Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333 ZA Netherlands

3SSNMR, Leiden Institute of Chemistry, Gorlaeus Laboratory, Einsteinweg 55, p.o.box 9502, Leiden 2300 RA, The Netherlands

Abstract

Epidemiological studies indicate that the incidence of Alzheimer’s disease (AD) is higher in women than in men. There is evidence that changes in metabolites in the brain associated with the development of AD are present earlier than structural brain changes. The effect of sex on the metabolic profile during the development of AD has not yet been studied. In this study we longitudinally monitored and compared in vivo metabolic changes in male and female AβAPPswe, PSEN1dE9 transgenic mice brains using magnetic resonance spectroscopy. Our results show a lower level of glutamate as well as of N-acetylaspartate (NAA) in transgenic mice. The decline in NAA with age was more apparent in female mice. The level of taurine was higher in female mice and showed a faster decline over time. In conclusion, our study is the first to suggest that changes in the metabolic profile during AD development are influenced by sex.

Key words: Alzheimer’s disease; magnetic resonance spectroscopy; sex differences; APP/PS1 transgenic mouse model; longitudinal studies
Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that causes dementia and is an increasing health problem in the aging population; worldwide around 25 million people have AD and in 20 years this number will be doubled [1]. AD is associated with amyloid-β (Aβ) plaque formation, neurofibrillary tangles and cerebral cortical atrophy, mainly found in the hippocampus and the cerebral cortex [2]. There are strong indications that the clinical symptoms of AD start years after the onset of plaque formation [3]. Currently, AD can be diagnosed using a cognitive test combined with a magnetic resonance imagining (MRI) scan of the brain to detect cerebral atrophy and by determining the amount of Aβ and tau in the cerebrospinal fluid, but not with complete accuracy [4]. Dementia and cerebral atrophy are very late stages of AD; therefore, drugs that are able to modify the disease process can only be expected to have little effect. If patients could be diagnosed at the onset of neurodegeneration, when symptoms are absent or subtle, the therapeutic window for disease modifying drugs would be much wider and there would be an increased expected gain. Therefore, a more accurate and earlier diagnosis of AD is of vital importance.

It is known that females are at higher risk for developing AD than men [5,6]. The effect of the mentioned sex differences on the pathophysiology of AD has not yet been carefully examined. Hormonal influences have been suggested [7], however, the underlying pathways accounting for the sex related differences remain unknown. One way to examine the metabolic pathways non-invasively during early phases of AD, and to study the influence of sex differences on these metabolic pathways, is by focusing on the metabolic changes in a transgenic(Tg) mouse model, by means of magnetic resonance spectroscopy (MRS). MRS is a non-invasive tool which can be used to measure the concentration of various brain metabolites in vivo [8]. Measuring these metabolic changes in vivo, using MRS, could help identify AD at an early stage, prior to the onset of cognitive symptoms [3]. Furthermore, changes in metabolic profiles could provide superior insight in the sex related pathophysiological mechanism of the disease.

Several Tg mouse models are available that develop pathology similar, however, not identical to human AD. These Tg mouse models allow mon-
monitoring of the metabolic changes from the onset of AD, which is not detectable in patients. In the present study the AβAPPswEPSEN1dE9 mouse model is used. This mouse model demonstrates many of the cognitive [9] and neuropathological features of human AD, including plaque development. These mice develop plaques at 6 months of age and show decreased performance of exploratory activity and spatial learning tests at 12 months of age [9]. In reproductive phenotype no differences are found between this mouse model and control mice. Studies using this mouse model have mainly focused on histological data, including staining for Aβ, iron, and glial cells [10-16]. Among these histological studies, no sex-related differences were reported. However, in other AD mouse models, a sex-related difference was found, showing more Aβ in female mice [17,18]. For glial cells no sex difference was found yet.

Numerous MRS studies have been performed using Tg mouse models of AD. However, until now, the effect of sex on AD related metabolic changes has not been studied. The results of previous MRS studies have shown AD-related abnormalities for several metabolites [11,16,19-25]. N-acetylaspartate (NAA) in the brain is present predominantly in neuronal cell bodies. Decreased NAA levels, indicating neuronal damage, have been found in Tg mice in comparison to wild type (wt) mice [11,20-24]. Myo-inositol (mIns) and taurine play a role in osmoregulation and are mainly found in astrocytes of brain tissue. These metabolites were found to be higher in Tg mice than in wt mice [11,19-22]. Glutamate (glu) is an excit-
atory neurotransmitter, involved in learning, memory forming, and cognition, which is found to be decreased in mice with AD [20-25]. Whether the changes in these metabolites during AD progression are sex specific, and whether they correlate temporally with timing of plaque deposition in male and female mice, remained to be investigated.

In this paper, we present the first systematic longitudinal MRS study to investigate the sex-related differences in metabolic changes during development of AD in the AβAPPswe,PSEN1dE9 mouse model. The main findings of this study were the differences between male and female mice in NAA, taurine, and histological data. These results suggest that changes in the metabolic profile during AD development are clearly influenced by sex. Based on this, future MRS studies should consider specifying sex of the mice used and analyzing the data for both sexes separately.

Material and methods

Mice
In this study 20 AβAPP/PS1 transgenic mice (12 male, 8 female); B6C3-Tg (AβAPPswe,PSEN1dE9) 85Db0/Jtg/0 from the Jackson Laboratory (Bar Harbor, ME, USA) and 20 wildtype (wt) littermates (7 male, 13 female) were used. 10 Tg mice and 10 wt mice were followed for 18 months and scanned every 3 months (timepoints: 3, 6, 9, 12, 15 and 18 months). For each timepoint, following MRI, 2 Tg and 2 wt mice of the remaining 10 Tg and 10 wt mice were sacrificed for histological analysis; at timepoint 18 months the mice used for the longitudinal study were sacrificed. The Institutional Animal Care and Animal Use Committee approved all the experiments in accordance with the NIH guide for the care and use of laboratory animals. The mice were kept in a 12 hour light/dark circle.

Magnetic resonance spectroscopy
All measurements were conducted at 25°C on a vertical wide-bore 9.4T Bruker Avance 400WB spectrometer, with a 1000 mTm-1 actively shielded imaging gradient insert (Bruker BioSpin, Ettlingen, Germany). The RF coil used was a 25 mm volume RF coil, specifically, a birdcage transmit/receive coil (Bruker BioSpin). The system was interfaced to a Linux pc running Topspin 2.0 and Paravision 5.0 imaging software (Bruker BioSpin).
Mice were anaesthetized for in vivo MRS measurements using isoflurane (Forene, Abott, UK), inhalation anaesthesia, in addition with air and oxygen (1:1) at 0.2 litre/minute. The anaesthetic gas was administered via a special facemask, which also served as a fixation device for the mouse head since it was coupled to a specially designed toothbar to hold the head in place (Bruker Biospin GmbH). The respiration rate of the mouse inside the probe was constantly monitored using a pressure transducer placed on the abdomen. The transducer was connected to a BioTrig acquisition module, which was interfaced to a BioTrig command module and laptop running BioTrig BT1 monitoring software (Bruker Biospin GmbH).

Localized T2-weighted multislice RARE images were acquired to select a volume of interest [25]. The MRS voxels were localized in the cortex-hippocampus regions in the mouse brain (1.8x3.5x3.5 mm3; 22 µl) (fig. 1). The localized homogeneity was optimized by adjustment of first- and second-order shim coil currents using the FASTMAP sequence [26]. The field homogeneity in a 22 µl voxel typically resulted in water line-widths of 20-25 Hz.

The PRESS (Point Resolved Spectroscopy) sequence [27] was used for 1D localized 1H MR spectroscopy. This sequence uses 3 hermite RF pulses (90°, 180°, and 180°). The sequence details are described by Mandal et al., 2007. The repetition time and echo time were 1500 ms and 15 ms, respectively. The PRESS sequence used 2048 complex points, with a spectral width of 10 ppm. The final 1D spectra were obtained with number of scans of 256 and scan times of approximately 15 minutes. The 1D PRESS sequences were preceded by a VAPOR sequence [28] for global water suppression. The sequence consists of 7 variable power RF pulses with an optimized relaxation delay. The relaxation delays τ1-τ7 between the consecutive pulses were 150, 80, 160, 80, 100, 37.11 and 57.36 ms. Water suppression bandwidth was set at 350 Hz. Outer volume suppression (OVS) was combined in an interleaved mode with a water suppression scheme. This improves the localization performance and reduces the demands for spoiler gradients. The OVS scheme used a total of 18 hyperbolic secant RF pulses, each with 90° nominal flip angle and 1 ms pulse length. The OVS slice thickness was 4 mm with a 0 mm gap to the voxel.

The acquired in vivo 1D MR spectra were analyzed using LCModel [29]. This calculates the best fit of the experimental spectrum based on a linear
Figure 2: Longitudinal monitoring of sex related differences in (A) glutamate (glu)/Cr ratio, (B) NAA/Cr ratio (C) Tau/Cr ratio and (D) mIns/Cr ratio in the cortex-hippocampus regions of all mice, male and female mouse brain measured using in vivo MRS at 9.4 T. Combination of model spectra. The final analysis was performed in the frequency domain; however, raw data (FIDS) was used as standard data input. The following metabolites were included in the basis set for LCModel: alanine (Ala), aspartate (Asp), creatine (Cr), γ-aminobutyric acid (GABA), glucose (Glc), glutamate (Glu), glutamine (Gln), glycerophosphocholine (GPC), choline (cho), phosphocholine (PCho), myo-inositol (Ins), lactate
Table 1: R² of the linear regression line of the metabolic changes over time in wild type (wt) and transgenic (tg) mice. The differences are shown in male (M) and female (F) for glutamate, NAA, taurine and myo inositol.

<table>
<thead>
<tr>
<th></th>
<th>Glutamate</th>
<th>NAA</th>
<th>Taurine</th>
<th>Myo Inositol</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.00</td>
<td>0.21</td>
<td>0.20</td>
<td>0.00</td>
</tr>
<tr>
<td>TG</td>
<td>0.01</td>
<td>0.14</td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>M WT</td>
<td>0.07</td>
<td>0.26</td>
<td>0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>M TG</td>
<td>0.01</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>F WT</td>
<td>0.01</td>
<td>0.18</td>
<td>0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>F TG</td>
<td>0.01</td>
<td>0.29</td>
<td>0.54</td>
<td>0.05</td>
</tr>
</tbody>
</table>

(Lac), N-acetylacetate (NAA), N-acetylaspartylglutamate (NAAG), phosphocreatine (PCr), phosphoethanolamine (PE), scylo-inositol (sIns), and taurine. Quantification was obtained using the tCr resonance as an internal standard, in our study no difference was found in creatine. The LCModel fitting was performed over the spectral range from 0.2 to 4.2 ppm. Signal to Noise ratio was above 5 and a %SD of 20 or lower.

Histology

Following in vivo MRS measurements, 2 wt and 2 Tg mice were sacrificed at each timepoint, and their brains were fixed in 4% buffered formaldehyde. Following fixation, the brain was dehydrated and embedded in paraffin, after which coronal sections (8 µm thick) were carefully cut using a microtome. To detect the Aβ plaques, brain sections were pretreated for 1 hour with 70% formic acid followed by treatment with trypsin for 30 min at 37°C. Subsequently sections were washed in PBS and subjected to immunohistochemistry using the primary antibody polyclonal anti-amyloid-beta 40-42 antibody at 1:1000 (Alpha Diagnostics International, San Antonio, USA) overnight followed by a secondary antibody swine anti-rabbit (Dako) 1:600 for 1 hour. After washing 3 times with PBS immunolabelling was followed using a ABC kit (Vectastain) according to the manufacturer’s instructions and visualized with DAB (3,3’ diaminobenzidine, Sigma). Detection of iron was done by a DAB-enhanced Perl’s staining according to Smith et al. [30]. To stain glial cells, a primary polyclonal an-
ti-GFAP (glial fibrillary acidic protein) antibody (Dako) was used following standard procedure. To detect the activated microglia and macrophages a primary polyclonal anti-IBA1 (ionized calcium binding adaptor molecule 1) antibody 1:1000 (Wako Chemicals, Neuss, Germany) was used. Prior to the IBA-1 antibody, a pretreatment with trypsin was performed for 30 min at 37°C. Since the plaque development in APPswe, PSEN1dE9 transgenic mouse starts at approximately 6 months of age, the histological data in male and female mice are shown at the age of 3, 6 and 9 months. Histological images were acquired using a panoramic midi scanner (3D Histech, Budapest, Hungary). For quantitative histological analysis, regions of interest (ROIs) were selected in the cortex and hippocampus and the area percentage of stained tissue was calculated in these ROIs using ImageJ software (ImageJ, USA). The colours were unmixed using the plug-in colour deconvolution, the stained area was selected and the percentage of the total area was calculated using analyzing particles.

Statistical analysis

To investigate significant age-related differences between either sex or Tg and wt, a mixed model analysis was performed including scatter plots using SPSS software (version 17.0; SPSS, Inc., Chicago, IL). Mean differences were compared using one way ANOVA with statistical differences of p<0.05 stated as significant.

<table>
<thead>
<tr>
<th>Glu</th>
<th>NAA</th>
<th>Taurine</th>
<th>mIns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 months</td>
<td>18 months</td>
<td>3 months</td>
</tr>
<tr>
<td>WT</td>
<td>0.97 ± 0.05</td>
<td>0.93 ± 0.07</td>
<td>1.01 ± 0.08</td>
</tr>
<tr>
<td>TG</td>
<td>0.93 ± 0.08</td>
<td>0.90 ± 0.05</td>
<td>0.96 ± 0.01</td>
</tr>
<tr>
<td>M WT</td>
<td>.91</td>
<td>.84 ± 0.01</td>
<td>.97</td>
</tr>
<tr>
<td>M TG</td>
<td>.91 ± 0.07</td>
<td>.87 ± 0.04</td>
<td>.94 ± 0.11</td>
</tr>
<tr>
<td>F WT</td>
<td>.98 ± 0.04</td>
<td>.97 ± 0.06</td>
<td>1.03 ± 0.09</td>
</tr>
<tr>
<td>F TG</td>
<td>.95 ± 0.11</td>
<td>.94 ± 0.02</td>
<td>.97 ± 0.13</td>
</tr>
</tbody>
</table>
Figure 3: Quantitative analysis of sex related differences in Aβ (A) and iron (B) deposition in wt and tg mouse brain. (a) Surface percentage (%) of deposition in the cortex of wt and tg mice; (b) % of deposition in the cortex of male and female tg mice; (c) % of deposition in the hippocampus of wt and tg mice; (d) % of deposition in the hippocampus in male and female tg mice. Percentage of Aβ and iron deposition in the cortex and hippocampus elevate during the development of AD in tg mice. The elevations starts earlier in female mice as compared to male mice.

Results

Magnetic resonance spectroscopy

Of all metabolites measured only glu, NAA, tau and mIns are presented because they show either statistical significant results or a trend.

As shown in figure 2A, the glutamate (glu)/Cr ratio was lower in Tg mice compared to wt mice at all ages (Fig. 2A; table 1 and 2), and the rate of decline in glu/Cr ratio with age was more pronounced in Tg mice than in wt mice. A sex difference in the level and rate of decline in glutamate became apparent after separation of the data of male and female mice. In male wt mice, the glu/Cr ratio decreased over time, in contrast to wt female mice, in which it slightly increased. However, in Tg mice the glu/Cr ratio decreased in both male and female. At 18 months a significant difference (p < 0.05) is found between wt male (0.84) and wt female (0.97) mice, and between Tg male (0.87) and Tg female (0.94) mice (table 1 and 2).

The NAA/Cr ratio was higher in wt mice in comparison to Tg mice (Fig. 2B; table 1 and 2) and decreased over time in both wt and in Tg mice. Overall the NAA/Cr ratio was higher in female when compared to male in
both wt and Tg mice. In female mice a faster decrease in NAA/Cr ratio was observed in Tg than in wt mice leading to a more apparent difference at 18 months of age than in males. Female Tg mice showed a faster decline than male tg mice (Fig. 2B (b,c)).

When male and female mice were taken together the ratio of taurine/Cr was similar for Tg and wt mice at all time points (Fig. 2D; table 1 and 2). Male wt and Tg mice showed a comparable taurine/Cr ratio at 3 months and a similar decrease over time. Female Tg mice showed a much stronger decline compared with male Tg and female wt mice. The taurine/Cr ratio in female Tg mice started higher at 3 months and ended lower at 18 months than in male Tg, female wt and male wt mice.

In Tg mice the mIns/Cr ratio started lower than in the wt mice and increased over time while this ratio slightly decreased in wt mice (Fig. 2C; table 1 and 2). Separating male and female mice showed comparable results.

Histology

Figure 4 shows the results of Aβ in the brain sections of 6 and 9 month old male Tg and female Tg mice. The Aβ deposition in the brain increased

![Figure 4](image-url)

Figure 4: Aβ staining (A), GFAP staining (B) and IBA-1 staining (C) in brain sections of 6 months (6 mo) and 9 months (9 mo) old transgenic (tg) male and tg female mouse. Magnified area of (1) cortex (scale bar 200 um) and (2) hippocampus (scale bar 500 um) is shown. Arrows indicated immune stained Aβ plaques, GFAP depositions and IBA-1 depositions.
more rapidly in Tg female mice than in Tg male mice (Fig 4A). Iron deposition showed the same pattern as Aβ deposition. No Aβ or iron deposition was found in wt mice, even at 9 months. This difference between male and female was more prominent in the cortex than in the hippocampus (fig 3 and 4).

Quantification of the amount of GFAP and IBA-1 showed no difference between wt and Tg mice. However, in the Tg mouse brain the distribution of both GFAP and IBA-1 became irregular over time, because GFAP and IBA-1 positive cells aggregate around plaques (Fig. 4B, C). In wt mice the deposition of GFAP and IBA-1 was more evenly distributed than in Tg mice (Fig. 4B,C). The presence of these plaque associated GFAP depositions was visible earlier in female brain than in male brain (Fig. 4B).

Discussion

This is the first longitudinal study showing that changes in metabolic profile during AD development are influenced by sex in a mouse model of AD. The main findings of this study are: (1) female mice have increased plaque development as well as increased activation of microglia surrounding the plaques compared with male mice, and (2) the decline in NAA and taurine during AD development is more apparent in female Tg mice than in male Tg mice in both the cortex and hippocampus. Most of these differences are statistically not significant, probably due to the low number of mice and lower inter individual variability at the different time points, but a trend is apparent. We tried to limit inter individual variability by scanning the wt and Tg mice for each time point at the same day with the same protocol. Instrumental limitations were excluded as far as possible by doing phantom studies, being preparations with known amounts of metabolites.

One lesson we learned from our study is that sex-specific differences between animals can influence study results. Comparison of wt and Tg mice show different results than comparison of the individual male and female subpopulation. For instance, the difference in NAA/Cr ratio between female wt and Tg mice increases over time, while for male Tg and wt mice the difference in NAA/Cr ratio decreases. This may explain why the results, as presented in our study, differ at some parameters from earlier studies [11,22,23,25].

We observed an increase of the glu/Cr ratio in female wt mice and a de-
crease in male wt mice over time, which indicates that the glu/Cr ratio between wt and Tg is sex dependent. In several earlier studies glu/Cr ratio changes were observed, but the sex of the studied mice was not mentioned or sex was not taken into account in the analysis of the data [11,21,22,24].

In a previous study [22], mIns was increased in Tg mice compared with wt mice, however male and female mice in the Tg group were presented together, while only female wt mice were used, which means the 2 groups could in fact not be compared due to the sex differences. Chen et al. [11] found no significant differences between male and female and this study confirmed the differences between Tg and wt mice found by Marjanska et al. [22]

The ratio of taurine/Cr was higher in female Tg mice than in wt mice at an early age (3 and 6 month), but at 9 months the taurine/Cr ratio was lower in female Tg mice. However, the mIns/Cr ratio started slightly lower in the Tg mice than in the wt mice (3 and 6 months), but, at 12 month the ratio of mIns/Cr was higher in the Tg mice than in the wt mice. Myo inositol and taurine are known to be involved in osmotic regulation across the cellular membrane and are mostly present in glial cells [22]. Despite these functional similarities our results indicate that in tg mice the two metabolites show an opposite trend; mIns slightly increases with age (as opposed to a stable amount in wt) and taurine decreases with age (more than the decrease in wt).

Our histological data show an increase in plaque deposition in Tg mice which was correlated with an increase in iron as well as an increase of GFAP positive glial cells around plaques with age. This increase was more apparent in the female mice. Previous histological studies in AβAPP/PS1 mice have shown an increase in plaque deposition after 3 to 5 months. In addition, an increase in GFAP positive glial cells is reported in these mice at 5-8 months [11,14,15,31]. However, these studies did not show sex differences in deposition of plaque, iron or GFAP. Although the pattern of GFAP positive cells changes while plaques develop in the brain, the overall density of these cells is not clearly different between wt and Tg brain tissue. This is reflected by the minimal increase of myo inositol and even a decrease of taurine, both osmoregulatory proteins, which are particularly present in glial cells.
The increased level of the NAA/Cr ratio in the female brain, for both wt and Tg mice, can be explained by the fact that females seem to have a higher cerebral axonal density than males [32]. The mechanisms responsible for the sex differences in Aβ and iron deposition are not yet known.

Our study is the first study to systematically investigate the influence of sex on metabolic and histological changes in AD over time using an AD mouse model. The use of a mouse model allows examining early changes in AD, which is not possible in humans. Our findings show for the first time that changes in metabolic profile during AD development is influenced by sex. These results are in line with the known higher risk of AD in women [5,6]. The area of sex differences in AD is still largely unexplored but knowledge of metabolic differences would offer great promise for diagnosis and for the future development of better strategies for intervention in patients.

Acknowledgement

We thank Ingrid Hegeman for her excellent assistance and H.E. Kan, A.G. Webb and I. Ronen for useful suggestions and discussions. This work was supported by grants from Department of pathology (LUMC). Alia thanks grant support from Internationale Stichting Alzheimer Onderzoek (ISAO) and Centre for Medical Systems Biology (CMSB).
Reference List

