The handle http://hdl.handle.net/1887/65601 holds various files of this Leiden University dissertation.

Author: Veen, T.P.M. van
Title: GDE transmembrane ecto-enzymes : novel signaling functions through GPI-anchor cleavage
Issue Date: 2018-09-19
Chapter 4

Glycerophosphodiesterase GDE2/GDPD5 affects pancreas differentiation in zebrafish

Int J Biochem Cell Biol. 2018; 94:71-78

Michiel van Veen2&, Laurie A. Mans1&, Elisa Matas-Rico2, Jason van Pelt1, Anastassis Perrakis3, Wouter H. Moolenaar2, and Anna-Pavlina G. Haramis1

1 Institute of Biology, Leiden University, Leiden, The Netherlands
2 Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
3 Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
& These authors contributed equally
Abstract

Notch signaling plays an essential role in the proliferation, differentiation and cell fate determination of various tissues, including the developing pancreas. One regulator of the Notch pathway is GDE2 (or GDPD5), a transmembrane ecto-phosphodiesterase that cleaves GPI-anchored proteins at the plasma membrane, including a Notch ligand regulator. Here we report that Gdpd5-knockdown in zebrafish embryos leads to developmental defects, particularly, impaired motility and reduced pancreas differentiation, as shown by decreased expression of insulin and other pancreatic markers. Exogenous expression of human GDE2, but not catalytically-dead GDE2, similarly leads to developmental defects. Human GDE2 restores insulin expression in Gdpd5a-depleted zebrafish embryos. Importantly, zebrafish Gdpd5 orthologues localize to the plasma membrane and show catalytic activity against GPI-anchored GPC6. Thus, our data reveal functional conservation between zebrafish Gdpd5 and human GDE2, and suggest that strict regulation of GDE2 expression and catalytic activity is critical for correct embryonic patterning. In particular, our data uncover a role for GDE2 in regulating pancreas differentiation.
Introduction

A better understanding of pancreatic homeostasis is essential to identify new ways to increase insulin-producing beta cell number and to enhance their function, in order to tackle diabetes, a rising epidemic.

The Notch cell-to-cell signaling axis plays an important role in proliferation, differentiation and cell-fate decisions in the developing pancreas and other tissues [241, 242]. Notch receptor signaling is activated by transmembrane Notch ligands in adjacent cells [243]. Following ligand binding, Notch is cleaved by the metalloprotease TACE (factor-a-converting enzyme) [243]. Truncated Notch is in turn cleaved by the a secretase complex, leading to intracellular release of NICD (Notch intracellular domain) [243] and activation of Notch target genes [243].

Different levels of Notch can elicit distinct fates [241, 242]. Notch signaling maintains progenitor cells in an undifferentiated proliferative state and regulates timing of differentiation, not only in the embryonic pancreas but also in developing motor neurons [109, 244]. Loss of Notch signaling in mice [245] and zebrafish [244, 246] results in aberrant/excessive differentiation of pancreatic progenitors to endocrine cells, at the expense of the later-appearing exocrine cells [242]. Modulation of Notch signaling may thus affect the balance between proliferation and differentiation of pancreatic progenitor cells.

A recently identified modulator of Notch activity is GDE2 (aka GDPD5), a multipass membrane glycoprotein with an extracellular glycerophosphodiesterase (GDPD) domain. The GDE2 catalytic domain cleaves a subset of glycosylphosphatidylinositol (GPI)-anchored proteins, including a Notch ligand regulator (RECK) [110] and certain heparan sulfate proteoglycans, the glypicans (GPCs) [113, 137]. Through RECK cleavage, GDE2 sheds and inactivates the Notch ligand Delta-like 1 in the developing spinal cord, leading to Notch inactivation in adjacent progenitor cells [109, 110]. Thus, GDE2 promotes motor neuron differentiation by downregulating Notch signaling during spinal cord development. Mice lacking GDE2 exhibit selective losses of limb-innervating motor neuron pools leading to neurodegeneration [109, 113]. In addition, GDE2 can promote neuronal differentiation in a cell-autonomous manner, namely through GPI-anchor cleavage of glypican-6 (GPC6), which correlates with improved clinical outcome in neuroblastoma [247]. However, a possible role for GDE2 in regulating the fate of non-neuronal cell types has not been investigated to date.

Here, we examine the role of Gde2 during embryonic development, focusing on pancreas differentiation in zebrafish. Zebrafish is an excellent model to conduct developmental studies owing to the availability of large numbers of readily-accessible, transparent embryos. Importantly, mammalian and zebrafish pancreas share many morphological and physiological similarities [242], while important genes in mammalian islet development are functionally conserved in zebrafish [242]. The conservation of signaling pathways and mechanisms of
pancreas development suggests that results found in zebrafish will advance our understanding of pancreas development in humans.

We show that Gdpd5 knockdown affects the differentiation of specific endocrine and exocrine progenitors. Furthermore, exogenous expression of human GDE2 restores insulin expression in Gdpd5a-depleted zebrafish embryos. Expression of human GDE2 but not catalytically-dead GDE2 in zebrafish embryos leads to developmental defects, in a dose-dependent manner. Importantly, zebrafish Gdpd5 orthologues localize to the plasma membrane and show catalytic activity against GPC6. These results highlight the functional conservation of GDE2 and suggest that tight regulation of Gdpd5a levels and catalytic activity are important for correct embryonic patterning.

Results

Analysis of zebrafish Gde2/Gdpd5

GDE2, encoded by GDPD5, is a six-transmembrane-domain protein with an extracellular phosphodiesterase domain and intracellular N- and C-termini (Fig. 1A). GDE2 catalytic activity has long been elusive, but recent studies have shown that GDE2 cleaves GPI-anchored proteins at the plasma membrane to drive neuronal differentiation and survival, in either a cell-autonomous or non-cell-autonomous manner [110, 113, 137] (Fig. 1A). Human GDPD5 has two orthologues in the zebrafish genome, gdpd5a and gdpd5b. Gdpd5a (glycerophosphodiester phosphodiesterase domain containing 5a) gives rise to three alternatively spliced isoforms; Isoforms gdpd5a-001 and gdpd5a-002 are included within the long isoform gdpd5a-201, which encodes for 595-aa protein. Phylogenetic analysis shows that the long isoform of zebrafish gdpd5a is closely related to human, rodent and chicken GDPD5/Gdpd5 (Fig. 1B). The predicted catalytic domains of human GDE2 and zebrafish Gdpd5a share 53% identity and 81% similarity (Fig. 1C). Gdpd5b (ENSDARG00000076962) encodes a 566-aa protein that is characterized by a relatively short, truncated C-terminal tail (SFig. 1).

Gdpd5 depletion leads to developmental defects

To investigate the function of Gdpd5 during zebrafish embryonic development, we knocked down its function by using antisense morpholino oligonucleotides (MO) against gdpd5a and gdpd5b mRNAs. The MO against gdpd5a mRNA targets the 5′UTR of the long isoform, gdpd5a-201, and blocks translation of the message [248]. Since the other isoforms are included in gdpd5a-201, we reasoned that this MO would block translation of all isoforms.

Zebrafish embryos were injected with various amounts of gdpd5aMO at the 1-2 cell stage, and development of the injected embryos was followed up to 5 days post-fertilization (dpf). Injections with low amounts (< 8.4 ng/ul) MO did not result in morphological abnormalities. Following injection of 8.4 ng/ul (1 mM) gdpd5aMO, injected embryos
Glycerophosphodiesterase GDE2/GDPD5 affects pancreas differentiation in zebrafish

exhibited developmental defects. Specifically, the majority of gdpd5aMO-injected embryos exhibited heart abnormalities accompanied by heart oedema, as well as a shorter and bent body axis (Fig. 2). Furthermore, while at 3 dpf almost all non-injected controls have hatched from their chorions, the majority of gdpd5aMO-injected embryos were still in their chorions, indicating inability to hatch (SFIG. 2). At 5 dpf, very few of the gdpd5aMO-injected larvae had hatched. The Gdpd5a-depleted larvae that hatched (either on their own or following manual dechorionation) showed severe motility defects, either swimming inability or trembling (data not shown), consistent with Gdpd5 knockout causing behavioral motor deficits in mice [113]. To investigate the function of Gdpd5b in zebrafish embryonic development, we injected a morpholino targeting the 5’ UTR of the zebrafish gdpd5b mRNA. Embryos injected with gdpd5bMO at the one-cell stage, exhibited dose-dependent developmental defects at 3 dpf. Specifically, injection of 2ng/ul (0.25 mM) gdpd5bMO led to slight body curvature defects and heart oedemas (SFig. 3B). Following injection of 4 ng/ul (0.5 mM) gdpd5bMO, injected
embryos showed more severe axis defects, small eyes, and larger heart oedemas (SFig. 3C). Finally, embryos injected with 8 ng/ul (1 mM) gdpd5bMO showed very severe antero-posterior axis truncations, cyclopia, and very large heart oedemas (SFig. 3D). In contrast to gdpd5a morphants however, the majority of gdpd5bMO-injected embryos hatched normally and did not show motor defects. These results indicate that the two zebrafish Gdpd5 homologs have both shared and distinct functions during zebrafish development.

Figure 2. Gdpd5a depletion causes developmental defects
(A) Non-injected embryo at 3 dpf. Arrow indicates looped heart. (B) Representative example of a gdpd5aMO-injected embryo at 3 dpf. Gdpd5aMO-injected embryos show a bent and shorter body axis, heart oedemas (arrow) and unlooped heart. Whole-mount in situ hybridization (WISH) for expression of gdpd5a and notch1b in non-injected wt (C, E) and gdpd5aMO-injected embryos (D, F) at 3 dpf. Lateral views. (C) wt embryo at 3 dpf stained for gdpd5a. Gdpd5a expression is detected in the brain, strongly in the heart (arrow) as well as the intestine. (D) Gdpd5MO-injected embryo at 3 dpf stained for gdpd5a. Gdpd5a is expressed at comparable levels as in non-injected controls, except for reduced expression in the heart (arrow). (E) wt embryo at 3 dpf stained for notch1b. Strong expression in the head and heart (arrow) is detected (F) Gdpd5MO-injected embryo at 3 dpf stained for notch1b. The expression pattern of notch1b is similar to that of the non-injected controls.
Figure 3. Expression of *insulin* and *trypsin*, but not *pdx1* or *ptf1a*, is reduced upon Gdpd5a knockdown

WISH for expression of the endocrine pancreas markers, *insulin* (*ins*) and *pancreatic and duodenal homeobox 1* (*pdx1*) and the exocrine pancreas markers, *trypsin* and *ptf1a* in non-injected wt (A, C, E, G) and gdpd5aMO-injected embryos at 3 dpf (B, D, F, H). Dorsal views. (A) wt embryo at 3 dpf stained for *insulin*. Strong expression is detected in the endocrine pancreas (arrow). (B) Gdpd5MO-injected embryo at 3 dpf. *ins* expression is dramatically reduced. (C) wt embryo at 3 dpf stained for *pdx1*. *Pdx1* is expressed in the intestine and endocrine pancreas (arrow). (D) *Pdx1* expression in the intestine and endocrine pancreas is very similar in gdpd5MO-injected embryos at 3 dpf. (E) wt embryo at 3 dpf stained for *trypsin*. Strong expression is detected in the exocrine pancreas (arrow). (F) Gdpd5MO-injected embryo at 3 dpf. *Trypsin* expression is dramatically reduced. (G) wt embryo at 3 dpf stained for *ptf1a*. *Ptf1a* expression is detected in the brain and the exocrine pancreas (arrow). (H) Gdpd5MO-injected embryo at 3 dpf. *Ptf1a* is expressed at comparable levels in the brain and exocrine pancreas (arrow) as in non-injected controls.
Expression studies
We next assayed gdpd5a and notch1b expression in gdpd5aMO-injected embryos at 3 dpf. We analysed expression of gdpd5a by in situ hybridization using an antisense riboprobe against gdpd5a-201. Gdpd5a mRNA was expressed in the brain and intestine, and at high levels in the heart and associated blood vessels in larvae at 3 dpf (Fig. 2C). This localization pattern suggests a role for gdpd5a during differentiation of these organs. The MO against gdpd5a is targeted to the 5’ UTR including the ATG start codon blocking translation, and is not expected to influence mRNA levels. Nonetheless, we detected reduced expression of gdpd5a mRNA in gdpd5aMO-injected embryos, particularly in the heart (Fig. 2D), suggesting that the MO may affect the stability of the gdpd5a mRNA. We also assayed notch1b expression in gdpd5a morphants. Notch1b is expressed highly in brain and heart of 3 dpf un-injected embryos (Fig. 2E). Notch1b expression was comparable in gdpd5a morphants (Fig. 2F).

Pancreas differentiation is affected upon Gdpd5 depletion
Given the role of Notch1b signaling in pancreas differentiation and the purported role of Gdpd5 in modulating Notch activity, we examined how Gdpd5a depletion affects pancreas differentiation in zebrafish embryos. The pancreas in zebrafish develops from the posterior foregut endoderm; the dorsal bud which produces endocrine cells emerges after 24 hours post-fertilization (hpf), and the ventral bud emerges at 32 hpf and produces mostly exocrine and some endocrine cells [249]. At around 72 hpf the pancreas is fully developed [242]. At 14 hpf the pancreatic progenitor cells express different levels of pdx1 (Pancreatic and duodenal homeobox 1) [242]. Cells expressing high levels of pdx1 give rise to the endocrine cells, while cells with lower pdx1 expression give rise to exocrine and intestinal cells. The first expression of insulin begins at 15 hpf when the insulin-producing cells begin to migrate towards the midline (Tehrani and Lin, 2011). In the mature pancreas, insulin is expressed exclusively in the beta cells.

To investigate the role of Gdpd5a in pancreas differentiation we studied the expression of markers of endocrine and exocrine pancreas components in wt and gdpd5a morphants at 3 dpf. In gdpd5aMO-injected embryos insulin (ins) expression was greatly reduced (Fig. 3A). Pdx1 was expressed in the head, intestine and endocrine pancreas at 3 dpf (Fig. 3C and SFig. 4A), with no differences in pdx1 expression between non-injected and gdpd5aMO-injected embryos (Fig. 3D and SFig. 4B). We therefore conclude that the defect in insulin expression is specific.

We next examined exocrine pancreas development in Gdpd5a-depleted embryos. Trypsin and pancreas-specific transcription factor 1a (ptf1a) mark the exocrine pancreas. As shown in Fig. 3E, trypsin expression was dramatically reduced in gdpd5aMO-injected embryos compared to un-injected controls. Ptf1a was strongly expressed in the head and the exocrine pancreas in un-injected controls at 3 dpf (Fig. 3G and SFig. 4C). The ptf1a expression pattern was not altered in gdpd5aMO-injected embryos (Fig 3H and SFig. 4D).
To investigate whether Gdpd5b depletion would also affect pancreas differentiation, we assayed *insulin* and *trypsin* expression in embryos at 3 dpf, following injection of 2 ng/µl *gdpd5b* MO at the one-cell stage. As mentioned, this concentration of *gdpd5b* MO leads to only mild developmental defects. We found that upon *gdpd5b* MO injection, expression of both *insulin* and *trypsin* was reduced in Gdpd5b morphants at 3 dpf (SFig. 5). Specifically, the *insulin* expression domain was smaller and appeared split in *gdpd5b* MO-injected embryos (SFig. 5B, D). Furthermore, the *trypsin* expression domain was smaller and irregularly shaped in *gdpd5b* MO-injected embryos (SFig. 5F, H). These results suggest that the two zebrafish Gdpd5 genes share common functions in pancreas differentiation.

Since Gdpd5a-depleted embryos exhibit mobility defects and impaired pancreas differentiation, and *Gdpd5* knockout in mice leads to motor neuron defects [109], we examined expression of *islet1* in Gdpd5a morphants. The transcription factor Islet1 is involved in both motor neuron differentiation and pancreas differentiation in mice and zebrafish [250] [251]. *Islet1* was expressed in the brain, spinal motor neurons and the pancreas in wt embryos at 3 dpf (Fig. 4A, C). In Gdpd5a morphants, *islet1* was expressed at high levels in the brain and pancreas (Fig. 4B, D). However, in the ventral spinal cord, *islet1* expression was reduced upon Gdpd5a knockdown (Fig. 4B).

**Figure 4. Islet1 expression upon Gdpd5 knockdown**

WISH hybridization for *islet1* expression on non-injected (A, C), or *gdpd5* MO-injected embryos (B, D) at 3 dpf. (A, B) Lateral views, anterior to the left. (A) wt embryo at 3 dpf, *Islet1* is expressed in the brain, spinal cord (arrowheads) and the pancreas (arrow). (B) *Islet1* is expressed at similar levels in *gdpd5* MO-injected embryo. (C, D) Dorsal views of the head region. (C) wt embryo at 3 dpf. *Islet1* is expressed at distinct domains in the brain. (D) *Gdpd5* MO-injected embryos at 3 dpf show a staining pattern similar to that in non-injected controls.
Expression of human GDE2 in zebrafish leads to developmental defects

To investigate the functional conservation between human GDE2/GDPD5 and zebrafish Gdpd5, we injected mRNA encoding human GDE2 (hGDE2) tagged with HA in zebrafish embryos at the one-cell stage. Expression of hGDE2-HA mRNA led to developmental abnormalities in a dose-dependent manner (Fig. 5B, C). Specifically, hGDE2 mRNA-injected larvae showed malformations in the body axis and defects in the vasculature at 4 dpf (Fig. 5C). Higher doses resulted in more severe disruption of the axis, of the vasculature, blood accumulation and heart oedemas (Fig. 5C). Importantly, expression of catalytically-dead human GDE2 (GDE2^{His233Ala} or GDE2^{His233Ala/His275Ala}) [137] did not induce morphological abnormalities (Fig. 5D). We verified that wt hGDE2, hGDE2^{His233Ala} and hGDE2^{His233Ala/His275Ala} are expressed in zebrafish at comparable levels (Fig. 5E). These data indicate that

![Representative pictures of zebrafish larvae at 4 dpf that have been injected at the one-cell stage with mRNAs encoding human GDE2:HA (B, C), or catalytically-dead hGDE2^{H233A} mRNAs (D). Lateral views, anterior to the left. (A) Non-injected larva at 4 dpf. (B) Larva injected with 250 pg of wt hGDE2:HA mRNA. The body axis is shorter with an upward curvature, and defects in the organization of posterior vasculature can be observed (arrowheads). (C) Larva injected with 390 pg of hGDE2:HA. The defects are stronger, the body axis is severely shortened, there is blood accumulation and disruption of the posterior vasculature (arrowheads), as well as heart oedemas (arrow). (D) Larva injected with 250 pg of the catalytically-dead hGDE2^{H233A}; mcherry mRNA. No obvious morphological abnormalities are observed. (E) Western-blot analysis of zebrafish larvae at 4 dpf, expressing HA-tagged wt human GDE2, or mCherry tagged GDE2 catalytic dead mutant, GDE2^{H233A}. Actin is used as a loading control.](image-url)
the malformations observed depend on the catalytic activity of GDE2, and they confirm functional conservation between human and zebrafish GDE2.

We next examined whether exogenously provided human GDE2 could rescue the defects in pancreas differentiation induced by Gdpd5a knock-down. We assayed for *insulin* expression in embryos that have been injected with either 1mM *gdpd5a* MO, 300pg hGDE2-HA mRNA, or co-injected with 1mM *gdpd5a* MO and 300pg hGDE2-HA mRNA. *Insulin* expression was dramatically reduced in Gdpd5a morphants at 3 dpf as we previously observed (Fig 6B). Expression of hGDE2-HA mRNA did not affect *insulin* expression (Fig. 6C). Notably, *insulin* expression was restored in embryos that have been co-injected with *gdpd5a* MO and hGDE2-HA mRNA (Fig. 6D). These results further validate functional conservation between zebrafish and human GDE2 in pancreas differentiation.

To further validate whether the conservation extends at the biochemical level, we examined zebrafish Gdpd5 enzymatic activity using cell-based assays. We co-expressed Glypican-6 (GPC6) and zebrafish constructs or human GDE2, confirmed that zebrafish Gdpd5 localized to the plasma membrane (Figure 7A), and examined the presence of GPC6 in the conditioned medium by immunoblotting, as described by [247]. We used intact cells treated with bacterial phospholipase C (PI-PLC) as positive control. As shown in Figure 7B, we found GPC6 released into the medium from cells transfected with zebrafish Gdpd5, although the amount of GPC6 detected into the medium appears to be smaller than that generated by hGDE2 cleavage.

![Figure 6. Human GDE2 mRNA restores insulin expression in Gdpd5a morphants.](image)

Representative pictures of zebrafish embryos at 3 dpf stained for *insulin* (*ins*) expression that have been either non-injected (A), *gdpd5a* MO-injected (B), hGDE2 mRNA-injected (C) or co-injected with *gdpd5a* MO + hGDE2 mRNA (D), at the one-cell stage. Dorsal views, anterior to the right. (A) Non-injected control embryo at 3 dpf Strong *ins* expression is detected in the endocrine pancreas (arrow). (B) *Gdpd5* MO-injected 3 dpf embryo. *ins* expression is dramatically reduced (arrow). (C) 3 dpf embryo injected with 300 pg hGDE2 mRNA. Arrow indicates *ins* expression. (D) 3 dpf embryo that was co-injected with 1mM *gdpd5a* MO and 300 pg hGDE2 mRNA at the one-cell stage. *Ins* expression is restored (arrow).
Taken together, these results demonstrate that zebrafish Gdpd5 can cleave GPC6 and show that activity over GPC6 is conserved between hGDE2 and zebrafish GDPD5a.

**Discussion**

In this study we have identified a previously unknown role for glycerophosphodiesterase Gde2 (Gdpd5) in non-neuronal cell types, particularly the pancreas. Here, we focused on the possible role of Gdpd5 during pancreas development in zebrafish and show that Gdpd5 knockdown leads to defects in the differentiation of specific endocrine and exocrine progenitors.

![Figure 7. Zebrafish Gdpd5 orthologues localize to the plasma membrane and promote GPC6 release](image)

(A) Confocal images of HEK293 cells transiently transfected with human GDE2, zebrafish Gdpd5a or Gdpd5b (GFP-tagged), as indicated. Insets show high-power images of cells depicting that Gdpd5a and Gdpd5b localize to the plasma membrane, similarly to human GDE2-GFP. Scale bars, 10 μm. (B) HEK293 cells co-transfected with GPC6-HA and hGDE2-GFP or zebrafish Gdpd5-GFP, or transfected with GPC6 alone as control. The expression levels of the transfected proteins in cell lysates and conditioned media were assessed by Western-blot analysis. GPC6 expression is visualized by antibodies to HA, and both hGDE2 and Gdpd5 using anti-GFP antibody. Cells transfected with GPC6 and treated with PI-PLC were used as positive control.

Gdpd5-knockdown leads to dramatic reduction in expression of pancreatic markers *trypsin* (which marks exocrine cells) and *insulin*. Other markers of the endocrine pancreas, such as the transcription factor *pdx1* are not affected upon Gdpd5 depletion, indicating that Gdpd5 specifically affects *insulin* expression rather than the development of the entire endocrine pancreas. Our results therefore strongly suggest that Gdpd5 affects terminal differentiation of insulin-producing beta cells. With regard to the exocrine pancreas, expression of *ptf1a* is not affected by Gdpd5a knockdown. *Trypsin* expression, however, is strongly reduced. Gdpd5b knockdown also leads to defects in *insulin* and *trypsin* expression, indicating that both zebrafish GDPD5 homologs have important functions in pancreas development. Interestingly, GDPD5 is also expressed in the human pancreas [252] [253]. However, a role for
Glycerophosphodiesterase GDE2/GDPD5 affects pancreas differentiation in zebrafish

GDPD5 in pancreas differentiation has not previously been reported. It is of note that ectopic activation of Notch1 signaling inhibits acinar cell differentiation but not initial commitment to the exocrine lineage [246]. We therefore suggest that gdpd5a knockdown affects acinar cell differentiation likely through upregulation of Notch signaling. Consistent with this, islet1, a marker of early pancreas development, is not affected upon gdpd5 knockdown, indicating that Gdpd5 affects differentiation of specific subtypes of pancreatic cells. Given that GDPD5 promotes motor neuron differentiation in chicken embryos and mice [108] [109], while Gdpd5a morphants show severe mobility defects, it was unexpected to find islet1 expression at relatively normal levels in the brain and spinal cord motor neurons in the morphants. A possible explanation could be that motor neurons are specified normally in the Gdpd5a-depleted zebrafish but undergo impaired terminal differentiation downstream of islet1. In addition, protein downregulation achieved by morpholino injections is not complete. Gdpd5 knockdown in zebrafish induces developmental defects including a short and curved body axis and heart defects. We observed reduced gdpd5a expression in the heart of Gdpd5a morphants, which may lead to increased Notch1 activity in the heart and account for the abnormalities. In chicken embryos and in mice, GDE2/GDPD5 downregulates Notch signaling in motor neuron progenitors. It was previously shown that GDE2 promotes neuroblastoma cell differentiation [137]. In adult mice, GDE2 prevents neurodegeneration by promoting motor neuron survival [113]. Mechanistically, GDE2 does so by specifically cleaving GPI-anchored Notch ligand regulator RECK as well as glypicans at the plasma membrane [137] [113]. In zebrafish, Glypicans are highly conserved and affect various signaling pathways including the Wnt and Bmp signaling axis [254, 255]. Interestingly, Gpc4 depletion in zebrafish results in strongly reduced cardiomyocyte proliferation [255]. Similarly, perturbations in Notch signaling affect cardiomyocyte proliferation during heart development [256] and regeneration [257]. We find that zebrafish Gde2 localizes to the cell surface, where it cleaves and releases GPC6, similarly to human. Thus, the biochemical properties of GDE2 are conserved between zebrafish and humans. Future studies should reveal if the observed heart malformations after perturbed Gde2 expression are associated with impaired Gpc4 or Notch signaling. Exogenous expression of human GDE2 mRNA restores insulin expression in Gdpd5a-depleted zebrafish embryos indicating functional conservation between human and zebrafish Gde2. Notably, over-expression of human GDE2 leads to developmental abnormalities in zebrafish, namely body axis malformations and vasculature and heart defects, which strictly depend on GDE2 catalytic activity. Interestingly, zebrafish Gdpd5 orthologues localize to the plasma membrane of human cells and show activity against GPI-anchored GPC6. These results further highlight the functional conservation between human and zebrafish Gdpd5, and indicate that GDE2 expression levels must be tightly regulated for proper development. Because of the functional conservation between human and zebrafish Gdpd5, the use of zebrafish is an effective model to elucidate the precise signaling axis of GDE2 in pancreas development with potential therapeutic value to diabetes.
Acknowledgements

We thank Dr. Rubén Marín-Juez, (MPI, Bad Neuheim, Germany) for probes, Yvette Stijf-Bultsma (NKI, Amsterdam) for technical assistance, and the animal caretakers at Leiden University for excellent care of the fish. The work was supported by grants from the Dutch Cancer Society (KWF UL 2012-5395) to APGH, and Netherlands Organization for Scientific Research (NWO; TOPGO 700.10.354) to WHM.

Experimental Procedures

Zebrafish strains and genotyping methods
Adult zebrafish were maintained at 28°C in compliance with the local animal welfare regulations. Their culture was approved by the local animal welfare committee (DEC) of the University of Leiden and all protocols adhered to the international guidelines specified by the EU Animal Protection Directive 2010/63/EU. Embryos were staged according to [258].

mRNA and Morpholino injections
For mRNA injections, GDE2 constructs previously described in [137] were used. Briefly, a GDE2 image clone was used as template for PCR amplification and BamH1 and EcoRV were used to clone human full-length GDE2 into pcDNA3 vector containing a C-terminal mCherry or HA tag. The vectors were linearized with XbaI. Capped mRNA was synthesised using the SP6 mMessage mMACHINE kit (Ambion). mRNA (200-500 pg) encoding either wt hGDE2:HA or hGDE2H233A was injected into one-cell stage zebrafish embryos. Translation-blocking morpholinos (MOs) directed against gdpd5a (5'- GTTTCCACCATA GTCAGCCAC GAC 3'), or gdpd5b (5'- TGCTTCACCAC TCTCCTTGA TCCAATCCA-3') were obtained from Gene-Tools (Oregon, USA). Embryos were injected at the 1-2-cell stage with 0.25 to 1mM of MOs.

Whole-mount in situ hybridization
Whole-mount in situ hybridizations were carried out according to standard protocols [259]. Riboprobes against notch1b, ins, trypsin have been previously described. Plasmids encoding pdx1 and pfta1 were a kind gift from Dr. Rubén Marín Juez. The probe against islet1 was generated from cDNA clone MGC: 73031, IMAGE: 4144017 (Source Bioscience Lifesciences, Germany), which was linearized with NotI and transcribed using SP6 RNA Polymerase. To generate a riboprobe against gdpd5a, an 870 bp fragment was amplified from zebrafish cDNA using the following primers: Forward: 5' CAGGTTGTAA CTCTGGCGGT 3', Reverse: 5' TGGGACGAGGCA CTTTCTTC 3'. The fragment was cloned into the PGEMT vector, was linearized with XhoI and was transcribed using SP6 RNA polymerase.
Western blot analyses
Approximately 20 larvae/sample were lysed (3 μl per larva) in ice-cold standard RIPA buffer supplemented with proteinase inhibitors. Lysates were dounced for 5 min and homogenized using an insulin syringe, followed by centrifugation at 13,000 rpm for 15 min at 4 °C to pellet nuclei and cell debris. The protein concentration was measured using a standard BCA protein assay kit (Pierce). Lysates containing 4x Bolt LDS sample buffer, supplemented with DTT were boiled for 5 min. 12 – 30 μg was loaded onto 12% Bis-Tris SDS-PAGE precast gel (Nu-Page Invitrogen) and transferred to nitrocellulose membranes. Nonspecific protein binding was blocked using 5% skimmed milk in TBST. Primary antibodies were incubated overnight at 4°C followed by 1hr incubation with HRP-conjugated secondary antibodies (DAKO, Glostrup, Denmark) and detection using ECL Westernblot reagent (GE Healthcare). Antibodies used were: home-made rabbit anti-GDE2 [137], mouse anti-beta-actin (1:10,000, Sigma, #A5441).

GDE activity assays
GDE activity assays were carried out in HEK293 cells, as previously described [137]. In brief, HEK293 cells were seeded on polyethyleneimine-coated 6-well plates and co-transfected with expression vectors for human GDE2, or zebrafish Gdpd5a/5b (GFP-tagged) together with GPC6-HA. Bacterial PI-PLC was used as positive control. The amount of GPC6 in the medium and cell lysates was analyzed by western blotting. GPC6 expression was assessed using anti-HA antibody (3F10, Roche), zebrafish Gdpd5 and hGDE2 with home-made anti-GFP antibody.

Microscopy
HEK293 cells were cultured on 24 mm glass coverslips and transiently transfected with human GDE2- or zebrafish Gdpd5a-GFP, Gdpd5b-GFP using Fugene 6 reagent (Invitrogen). After 24 hr, the cells were washed with PBS, fixed with 4% PFA, mounted with Immuno-MountTM (Thermo Scientific) and visualized on a LEICA TCS-SP5 confocal microscope.

Expression vectors
Human GDE2 cDNA was subcloned as described (Matas-Rico et al., 2016). Zebrafish Gdpd5a and Gdpd5b were PCR amplified from synthetic g-Blocks gene fragments (Integrated DNA Technologies Inc., USA) and cloned into pcDNA3-GFP digested with BamHI/EcoRV using SLiCE (Seamless Ligation Cloning Extract)[260] cloning. Primers used: gdpd5a, Forward: 5’ AACTTAAGCTTGGTACCGAGCTCGGATCCATGGTGAAACACCAGCCG 3’, Reverse: 5’ GCTCCTCGCCCTTGCTCACCATGATATCTAGTTTGGCGGTATGTCGC 3’; gdpd5b, Forward: 5’ AACTTAAGCTTGGTACCGAGCTCGGATCCATGGTGAAACACCAGCCG 3’, and Reverse: CTCCTCGCCCTTGCTCACCATGATATCTAGTTTGGCGGTATGTCGC 3’.
Supplementary Figure 1. Comparison of zebrafish Gdpd5a and Gdpd5b

Protein sequence comparison between zebrafish Gdpd5a and Gdpd5b, using Clustal Omega. Identical amino acids are shaded in grey. Gdpd5b is characterized by a truncation at the C-terminal cytoplasmic tail. The key catalytic residue (H233 in human GDE2) is indicated by the red line.
Supplementary Figure 2. The majority of gdpd5aMO-injected larvae do not hatch
(A) Population of non-injected zebrafish larvae at 3dpf. Almost all the embryos have hatched from their chorions. (B) Population of gdpd5aMO-injected embryos at 3dpf. The majority of the morphants are still in their chorions and very few have hatched. In addition, Gdpd5a-depleted ambryos do not swim away upon poking.

Supplementary Figure 3. Gdpd5b depletion causes developmental defects
Representative pictures of zebrafish embryos at 3 dpf micro-injected with different amounts of gdpd5bMO at the one-cell stage. (A) Un-injected embryo at 3 dpf. Arrow indicates looped heart. (B) Embryo injected with 2 ng/ul (0.25mM) gdpd5bMO. Arrow indicates heart oedema and unlooped heart. Note the slightly shorter antero-posterior body axis. (C) Embryo injected with 4 ng/ul (0.5mM) gdpd5bMO. Arrow indicates heart oedema and unlooped heart. Note the shorter and kinked body axis. (D) 3 dpf embryo injected with 8 ng/ul (1mM) gdpd5bMO. Note the severe body truncations, defective eye development, large heart oedema and unlooped heart (arrow).
Supplementary Figure 4. The expression of pdx1 and ptf1a is not affected in Gdpd5a morphants
WISH for expression of the endocrine pancreas marker pdx1 and exocrine pancreas marker ptf1a and
in non-injected wt (A,C) and gdpd5aMO-injected embryos at 3dpf (B,D). Lateral views, anterior to
the left. (A) wt embryo at 3dpf stained for pdx1. Pdx1 is expressed in the brain and the endocrine
pancreas (arrow). (B) Gdpd5aMO-injected embryo at 3dpf. Strong pdx1 expression is detected in the
endocrine pancreas (arrow). (C) wt embryo at 3dpf stained for ptf1a. Ptf1a expression is detected in the
brain and the exocrine pancreas (arrow). (D) Gdpd5aMO-injected embryo at 3dpf. Ptf1a is expressed at
comparable levels in the brain and the exocrine pancreas (arrow) as in non-injected controls.
Supplementary Figure 5. Expression of insulin and trypsin is reduced upon Gdpd5b knockdown
WISH for expression of insulin (ins) (A-D) and trypsin (E-G) in non-injected wt (A, C, E, G) and 2ng/ul gdpd5bMO-injected embryos (B, D, F, H) at 3 dpf. (A, B, E, F) lateral views, and (C, D, G, H) dorsal views, anterior to the right. (A) Lateral view of a 3 dpf non-injected embryo stained for insulin. Strong expression is detected in the endocrine pancreas (arrow). (B) Gdpd5bMO-injected embryo at 3 dpf. ins expression is reduced and the expression domain appears split (arrow). (C) Dorsal view of a 3 dpf wt embryo, arrow depicts insulin expression. (D) Dorsal view of a gdpd5bMO-injected embryo, the insulin expression domain is smaller and split (arrow). (E) Lateral view of non-injected 3 dpf embryo stained for trypsin. The arrows demarcate the trypsin expression domain. (F) Lateral view of a gdpd5bMO-injected embryo at 3 dpf. The trypsin expression domain is smaller and irregularly shaped (arrows). (G) Dorsal view of non-injected 3 dpf embryo, arrows demarcate trypsin expression. (H) Dorsal view of a Gdpd5b morphant, the trypsin expression domain is reduced (arrow).