The handle http://hdl.handle.net/1887/63217 holds various files of this Leiden University dissertation.

Author: Ostroukh, V.
Title: Lattice models for Josephson junctions and graphene superlattices
Issue Date: 2018-06-27
1. The doubled Fraunhofer periodicity observed in an edge-channel Josephson junction can be explained by the appearance of a conducting channel along the interface with the superconductor.

Chapter 2

2. The SQUID-like Fraunhofer diffraction pattern observed in InAs quantum wells is not conclusive evidence for topologically protected edge channels.

Chapter 3

3. A non-circular Fermi surface may induce a two-dimensional vortex lattice in the normal region of a ballistic Josephson junction.

Chapter 4

4. An index theorem protects the valley degeneracy of the lowest Landau level in the presence of valley-momentum locking.

Chapter 5

5. Contrary to the claim by Gutiérrez et al., the Kekulé bond texture in a graphene-on-copper superlattice does not produce a gapped spectrum.

6. The topologically protected valley switch in a graphene superlattice, reported by Beenakker et al. for electron reflection, exists also in transmission.

7. The Dynes-Fulton relationship, used to reconstruct the current density from the magnetic-field dependence of the Josephson effect, can be relied upon only in tunnel junctions.

8. The dispersion relation of a spin-1 Weyl semimetal can be understood as the effect of a non-Abelian gauge field, by application of the theory of de Juan.

Viacheslav Ostroukh
27 June 2018