CHAPTER 2

ACTIVE MMPs CAPTURED BY ALPHA₂MACROGLOBULIN AS A MARKER OF DISEASE ACTIVITY IN RHEUMATOID ARTHRITIS

Ilja Tchetverikov, M.D. ¹,², Nicole Verzijl, Ph.D. ¹, Tom W.J. Huizinga, M.D., Ph.D. ², Johan M. TeKoppele, Ph.D. ¹, Roeland Hanemaaijer, Ph.D. ¹, Jeroen DeGroot, Ph.D. ¹

¹ Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands
² Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands

Clinical and Experimental Rheumatology 2003;21(6):711-8
Abstract

Objective. The aim of the present study was to analyze α_2Macroglobulin/MMP (α_2M/MMP) complex formation and to investigate whether MMP activity in α_2M/MMP complexes in serum can be used as a disease marker in rheumatoid arthritis (RA).

Methods. High and Low Molecular Weight (H/LMW) substrates and inhibitors and size exclusion were used to analyze α_2M/MMP complex formation. LMW fluorogenic substrates were used for quantification of MMPs in α_2M/MMP complexes in serum of RA patients and healthy controls.

Results. Active MMPs were fully inhibited by LMW inhibitor BB94 in the presence of α_2M, whereas no inhibition was achieved by HMW inhibitor TIMP-1. Size exclusion analysis showed α_2M/MMP complex formation in buffer and in normal plasma spiked with activated MMPs, which indicated α_2M/MMP complex formation in the systemic circulation. MMP activity in α_2M/MMP complexes in serum of RA patients was significantly higher than in serum of healthy controls ($P < 0.001$). MMP activity levels in serum of RA patients were correlated with ESR ($r = 0.72$, $P < 0.001$).

Conclusion. In the systemic circulation of RA patients, active MMPs form complexes with α_2M and can be detected using LMW fluorogenic substrates. MMP activity measurements in serum allow discrimination between RA patients and healthy controls and provide a new tool for the assessment of the disease process in RA.
Introduction

Matrix Metalloproteinases (MMPs) are Zn$^{2+}$ dependent extracellular enzymes that play a key role in normal and pathological remodeling of connective tissues. In rheumatoid arthritis (RA), a chronic disease characterized by polyarticular inflammation leading to loss of cartilage and bone, proMMPs are synthesized and released by synovial fibroblasts, chondrocytes, macrophages, neutrophils and endothelial cells. Based on domain structure and substrate specificity, MMPs can be divided into subclasses, e.g. collagenases, gelatinases, stromelysins and membrane type MMPs. Most of the proMMPs are activated extracellularly and they have the combined ability to degrade all components of articular cartilage. Stromelysins (MMP-3, -10 and -11) are believed to play an important role in this enzyme system due to their wide substrate specificity and ability to activate other MMPs. Collagenases (MMP-1, -8 and -13) are capable of degrading intact collagen (one of the main components of articular cartilage), which can be further degraded by gelatinases (MMP-2 and -9). Gelatinases can also degrade other components of the joint tissues such as aggrecan, fibronectin and elastin. Membrane-type matrix metalloproteinases (MMP-14, -15, -16, -17, -24 and -25) have also been shown to degrade various components of joint tissue and to be involved in activation of other MMPs.

MMP subclasses have been shown to be increased at tissue level in inflammatory joint diseases. Also in the systemic circulation, antigen levels of proMMPs are increased, indicating their involvement in the disease process. Recent research on the use of serum proMMP antigen levels as a marker for disease activity or as a prognostic tool in RA indicates that serum proMMP levels reflect not only the inflammation but also the degradation of articular cartilage. Although serum proMMP levels correlate with disease progression, they mainly reflect the potential of the proteolytic system to degrade cartilage. Other factors, such as the activation status (conversion of proMMPs into active MMPs) and the inhibitory capacity of the proteolytic system (presence of endogenous inhibitors) co-determine the eventual tissue degradation. Analysis of MMPs and their Tissue Inhibitors (TIMPs) shows a surplus of active MMPs (due to insufficient levels of TIMPs) at the tissue level, which supports the importance of the MMP/TIMP imbalance for joint diseases. Quantification of this MMP surplus may provide a useful tool for the evaluation of the clinical course of the disease inasmuch as this surplus of active MMPs reflects the actual end-status of the system: the proteolytic capacity after production, activation and inhibition.

It has been shown that active, not-TIMP-inhibited-MMPs can be entrapped by α_2Macroglobulin (α_2M), which results in α_2M/MMP complex formation in biological fluids. We hypothesized that in RA the surplus of active MMPs, i.e. the excess of active MMPs over TIMP will result in an increased level of α_2M/MMP complexes in the systemic circulation which can be quantified using Low Molecular Weight (LMW) fluorogenic substrates.

1 Abbreviations: α_2M: alpha2Macroglobulin; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; HMW: High Molecular Weight; MMPs: LMW: Low Molecular Weight; Matrix Metalloproteinases; proMMPs: pro-Matrix Metalloproteinases; RA: rheumatoid arthritis; TIMPs: Tissue Inhibitors of Metalloproteinases.
In order to provide evidence of α_2M/MMP complex formation in the systemic circulation of RA patients, the MMP/TIMP imbalance as it exists in the inflammatory joint disease was mimicked and MMP activity was measured after size exclusion analysis. Further, the use of LMW MMP-specific fluorogenic substrates for detection of α_2M/MMP complexes in the systemic circulation was investigated. To explore the feasibility of MMP activity measurements as a marker of disease activity, MMP activity levels in serum of RA patients were determined and compared to an inflammatory marker, ESR.

Patients and methods

Matrix metalloproteinases

ProMMP-13 was kindly provided by Dr. P. Mitchell (Pfizer Central Research, Groton, CT, USA) and was activated by incubation with 2 mM APMA for 2 h at 37°C in MMP buffer (50 mM Tris, 5 mM CaCl$_2$, 250 mM NaCl, 1 µM ZnCl$_2$, 0.02% NaN$_3$ and 0.01% Brij-35, pH 7.5). The amounts of active enzyme were calibrated by active-site titration with TIMP-1 (Oncogene Research Products, Cambridge, MA, USA) as described by others.18

Fluorogenic MMP substrate

The internally quenched fluorogenic peptide substrate Dabcyl-Gaba-Pro-Gln-Gly-Leu-Cys(Fluorescein)-Ala-Lys-NH$_2$ (TNO211-F) was synthesized according to the method described by Drijfhout et al.17 TNO211-F is converted by MMP (mainly MMP-2, -8, -9 and -13; and also at lower rate by MMP-1 and -1315) and not by other metalloproteinases such as ADAMs or ADAM-TS.

MMP activity measurements

A. Using fluorogenic MMP substrate

MMP activity was measured using 6.25 µM (all concentrations are final) fluorogenic substrate TNO211-F in the presence or absence of 5 µM BB94 (a general MMP inhibitor). TNO211-F is mainly converted by MMP-2, -3, -7, -9, -12 and -13. It is also converted, although at lower rate, by MMP-1 and -9 (15), whereas other metalloproteinases, such as ADAMs do not cleave TNO211-F.19 Serum samples were diluted (final dilution 1/50) in MMP buffer and EDTA-free Complete™ (serine and cysteine proteases inhibitor, Roche, Mannheim, Germany; 1 tablet in 50 ml) was added to all conditions. The difference in the initial rate of substrate conversion (linear increase in fluorescence in time) between samples with or without BB94 addition was used as a measure of MMP activity. Fluorescence was measured for 6 hrs at 30°C using a Cytofluor 4000 (Applied Biosystems, Foster City, CA, USA).

B. Using High Molecular Weight MMP substrate UKcol

UKcol is a modified pro-urokinase, which has general MMP cleavage site. MMP activity was measured using UKcol (final concentration 50 mg/ml) and chromogenic substrate S-2444 (Chromogenix, Mölndal).20 Color development was recorded in a Multiskan® MCC/340 (LabSystems, Helsinki, Finland) at 405 nm.
C. Collagen type I degradation by MMP-13

MMP-13 solutions were prepared (constant enzyme concentration of 0.5 nM) in buffer containing α₂M, of which the concentration varied from 0 up to 1.7 nM. MMP-13 was incubated for 2 hrs at room temperature with various concentrations of α₂M (MMP-13/α₂M ratios ranging from 0.01 through 100). An aliquot of each ratio (200 µl) was incubated with collagen type I (100 µg/ml). Cleavage of collagen into characteristic TC_A and TC_B fragments after overnight incubation at 30°C was visualized by non-reducing SDS-PAGE (10% polyacrylamide gel) and analyzed using TINA software (Isotopenmeßgeräte, GmbH, Germany).

α₂M sandwich ELISA

To determine human α₂M levels a two step ELISA was used. First, high binding ELISA plates (EIA/RIA Stripwell™ Plate, Corning Incorporated, NY, USA) were coated with sheep anti-mouse F(ab)' fragments (1.3 µg/ml, Jackson Laboratory) for 48 h at 4-8°C. The plates were washed 3 times with PBS/0.5%Tween-20 and blocked with PBS/0.5%Tween-20/1%BSA for 1 h at 37 °C in a plate incubator (LabSystems, Helsinki, Finland). α₂M specific monoclonal antibodies #5850-1004 (ANAWA Trading, SA, USA) were bound to the F(ab)' fragments overnight at 4°C. A sample aliquot (100 µl) was added and incubated for 2 hrs at 37°C in the plate incubator. The plates were washed 5 times with PBS/0.5%Tween-20/1%BSA and 100 µl secondary antibody #5850-0304 (α₂M specific sheep-anti-mouse polyclonal, HRP-conjugated; ANAWA Trading, SA, USA) was added and incubated for 2 hrs at 37°C. Color reagent (100 µl) was added and the reaction was stopped after 15 min. by the addition of 10% H₂SO₄. The yellow colored product was measured using a Multiskan® MCC/340 (LabSystems, Helsinki, Finland) at 450 nm wavelength.

FPLC

Human plasma or purified human α₂M (Sigma-Aldrich Corp., St. Louis, MO, USA) in MMP buffer were spiked with 10 nM (final concentration) active MMP-13. Samples were incubated for 1 hr at room temperature and analyzed by FPLC system (Superose® 6HR 10/30 column; Pharmacia Fine Chemicals, Uppsala, Sweden). The optical density was measured using a spectrophotometer at 280 nm. Fractions of 0.5 ml were collected and MMP activity was measured using the TNO211-F substrate as described above. α₂M levels were determined using the α₂M sandwich ELISA as described above. The same fractions were measured for MMP activity using High Molecular Weight substrate UKcol, as described above.

MMP activity in α₂M/MMP complexes vs. ESR in serum samples of early arthritis clinic patients

For this study, a selection was made from the Early Arthritis Clinic (EAC) cohort, which was started at the Department of Rheumatology of the Leiden University Medical Center, The Netherlands in 1992 and described in detail by Lard et al. From this large
population-based inception cohort 50 patients with a diagnosis RA according to the 1987 ACR criteria22 were selected. Serum samples used in the present study were prepared after blood collection and were stored at -20 °C prior to analysis. MMP activity in α₂M/MMP complexes was measured as described above, Erythrocytes Sedimentation Rate (ESR) was determined upon blood collection.

Statistical analysis
Differences between the groups were analyzed with the (un)paired Student’s \(t \)-test. Correlations were sought by calculating the correlations coefficients with SPSS software (Chicago, IL, USA). \(P < 0.05 \) was considered statistically significant.

Results
MMP-13 mediated degradation of High Molecular Weight substrates in the presence or absence of α₂M
In biological fluids, α₂M inhibits serine, cysteine, aspartic and metalloproteinases15 by molecular trapping.13,23,24 MMPs entrapped within the α₂M molecule loose their ability to degrade any natural substrates such as collagen type II.15 In the present work MMP-13 was used to study MMP activity in the presence or absence of α₂M because of its high activity towards both HMW (Collagen type I and UKcol) and LMW (fluorogenic peptides) substrates. To confirm the inhibitory ability of α₂M towards MMPs, the degradation of the natural HMW MMP substrate, collagen type I, was studied. Collagen type I breakdown by MMP-13 was analyzed by SDS-PAGE in the presence or absence of α₂M. MMP-13 solutions were prepared in buffer containing α₂M. Three possible test conditions were achieved: \textbf{a.} an excess of activated MMP-13 over α₂M; \textbf{b.} equal amounts of α₂M and MMP-13; \textbf{c.} an excess of α₂M over MMP-13. Active MMP-13 degraded collagen type I into the characteristic TC\textsubscript{A} and TC\textsubscript{B} fragments (27% of collagen was degraded during overnight incubation at 30°C). Similar results were seen when the MMP-13 concentration exceeded the α₂M concentration (29% degradation). However, no TC\textsubscript{A} and TC\textsubscript{B} fragments were seen when the α₂M concentration was equal to or higher than the MMP-13 concentration.

Similar experiments were performed using HMW substrate UKcol. UKcol is a modified urokinase in which the plasmin activation site has been replaced by a general MMP cleavage site.25 UKcol activation by MMP-13 was detected (11.2 Units/ml, 1.25 nM MMP-13) in the absence of α₂M whereas no activation was seen after pre-incubation of MMP-13 with α₂M (0.2 Units/ml, 1.25 nM α₂M/MMP-13).

These results show that the activity of MMP-13 towards the HMW substrates collagen type I and UKcol is inhibited by α₂M.

MMP-13 mediated degradation of Low Molecular Weight substrate in the presence or absence of α₂M
To investigate whether LMW fluorogenic substrates could be used to detect MMPs in the presence of α₂M, conversion of TNO211-F (a LMW fluorogenic substrate) by MMP-13
was studied in buffer in the presence or absence of α2M and in normal human serum (contains endogenous α2M) spiked with MMP-13. As shown in Fig. 1 (MMP-13 and MMP-13/α2M: “no inhibitor”), MMP-13 mediated TNO211-F conversion was detectable in buffer in the absence and presence of α2M. Possible explanations for the lower TNO211-F conversion rate by MMP-13 in the presence of α2M are a low diffusion rate of the substrate into the α2M/MMP complexes, lesser substrate availability (protein binding) or lower MMP-13 activity inside α2M. MMP-13 spiked to serum was also able to degrade LMW substrate TNO211-F (Fig. 2, MMP-13 and MMP-13/α2M: “no inhibitor”).

Further, the inhibitory activity of HMW MMP inhibitor TIMP-1 and LMW MMP inhibitor BB94 towards MMPs in the presence of α2M, was analyzed. MMP-13 was incubated in buffer in the presence or absence of α2M or in normal human serum and its activity was measured using LMW fluorogenic substrate TNO211-F. Incubations with BB94 and TIMP-1 in buffer showed that MMPs are effectively inhibited by BB94, both in the presence or absence of α2M (Fig. 1, MMP-13, MMP-13/α2M: “BB94”). TIMP-1 fully inhibited MMPs in the absence of α2M, but no inhibition was achieved in the presence of α2M (Fig. 1, MMP-13, MMP-13/α2M: “TIMP-1”). Subsequently, similar inhibition experiments were performed with active MMP-13 spiked to normal human serum. Again, all spiked MMPs were effectively inhibited by BB94 whereas no inhibition by TIMP-1 was found (Fig. 2, MMP-13, MMP-13/α2M: “BB94” and “TIMP-1”). This pattern of substrate conversion shows that the presence of α2M in the solution prior to the addition of the inhibitor prevents MMP/TIMP-1, but not MMP/BB94 complex formation. Altogether, these findings suggest that in fluids that contain α2M active MMPs are mostly present in the form of α2M/MMP complexes.
Figure 2. MMP mediated Low Molecular Weight substrate conversion in MMP-13 spiked serum.
Activated MMP-13 was pre-incubated in human serum for 2 hrs at 30 °C, inhibitors were added and the incubation was continued for 1 hr at 30°C. All of MMP-13 spiked to human serum (regardless of the pre-incubation with α2M) was inhibited by BB94 (solid bars), whereas no inhibition by TIMP-1 (gray bars) was seen.
* indicates P < 0.05 when compared to the MMP activity measured in the absence of the inhibitor.

Analysis of α2M/MMP complex formation: size exclusion analysis
Fractionation by 100 kDa cut-off filters

To confirm that active MMPs indeed form complexes with α2M in the systemic circulation another approach was used: size separation analysis. Based on the estimated MW of α2M/MMP complexes of ~ 775 kDa and the MW of activated MMP-13 of 48 kDa, a 100 kDa cut-off filter was used. Free MMPs should pass the filtration membrane, whereas HMW α2M/MMP-13 complexes should not. Solutions were ultra-filtrated and MMP activity was determined using LMW substrate TNO211-F in <100 kDa and >100 kDa fractions.

When dissolved in buffer in the absence of α2M (Fig. 3, MMP-13), the majority of the MMP-13 activity was detected in the <100 kDa fraction showing that free active MMP-13 was indeed ultra-filtrated. MMP activity in the >100 kDa fraction may be explained by aggregate formation of activated MMP-13 molecules which prevents passage through the membrane. When active MMP-13 was incubated with α2M prior to ultra-filtration (Fig. 3, MMP-13/α2M), all MMP activity was found in the >100 kDa fraction. As such this data indicates that ultrafiltration provides an adequate tool for discrimination between free and α2M entrapped MMPs.

Filtration of human control plasma spiked with MMPs (Fig. 3, MMP-13/plasma) resulted in 100% activity measured in the >100 kDa fraction, showing the same pattern as was obtained with MMPs in α2M containing buffer. Altogether, these results support the hypothesis that the surplus of active MMPs in the systemic circulation is entrapped in α2M.
Fractionation by 100 kDa cut-off filters. Solutions of activated MMP-13 (pre-incubated in buffer in the presence or absence of α2M or in normal human plasma) were ultra-filtrated and MMP activity was determined in the flow-through and supernatant. 70% of the MMP-13 activity in buffer was found in the <100 kDa fraction. In the buffer containing α2M, 100% of MMP-13 activity was recovered in the >100 kDa fraction; the same pattern was seen for MMPs spiked to plasma.

FPLC size exclusion analysis: α2M/MMP-13 complex formation

As another size-exclusion approach to determine whether active MMPs are indeed entrapped in α2M, FPLC size exclusion analysis of MMP-13 spiked human plasma was performed. The Superose 6 column was first calibrated with α2M (MW 725 kDa) and albumin (MW 69 kDa). The elution position of α2M was determined by α2M ELISA (Fig. 4A). As expected, α2M (725 kDa) eluted earlier than albumin (determined by protein absorption at 280 nm, confirmed by ELISA).

The elution pattern of free active MMP-13 (MW 48 kDa) and α2M/MMP-13 (MW ~ 775 kDa) was established (A 280 nm, solid black line, A) with α2M (MW 725 kDa) and albumin (MW 69 kDa); an α2M ELISA (A 450 nm, gray triangles, A) was used to detect α2M in the fractions. Free activated MMP-13 dissolved in buffer in the presence or absence of α2M was measured using TNO211-F. Analysis of MMP-13 (white circles, B) in buffer showed a major peak of enzyme activity at the tail of the albumin peak. Activity of MMP-13 in α2M containing buffer was measured in fractions at the identical position as α2M. Similarly, enzyme activity of plasma spiked with MMP-13 (black circles, B) showed an MMP enzyme activity peak at the α2M and α2M/MMP-13 positions. These findings show a shift in MMP-13 activity from LMW into the HMW fractions after pre-incubation in α2M containing buffer or in normal human plasma.
After calibration, active MMP-13 dissolved in buffer in the presence or absence of \(\alpha_2 \text{M} \) was analyzed. All fractions were collected and MMP activity was measured using LMW fluorogenic substrate TNO211-F (Fig. 4B). Albumin was spiked to all solutions to serve as a reference point. FPLC analysis of the MMP-13 in buffer showed a major peak of enzyme activity at the tail of the albumin peak. An additional peak of enzyme activity eluted earlier than albumin (MW >100 kDa), which may be explained by aggregate formation of active MMP-13 molecules as was also seen in the experiment using the 100 kDa cut-off filters (Fig. 3). Activity of MMP-13 in \(\alpha_2 \text{M} \)-containing buffer was found in the fractions at the \(\alpha_2 \text{M} \) position. Similarly, enzyme activity in plasma spiked with MMP-13 showed an MMP activity peak at the \(\alpha_2 \text{M} \) and \(\alpha_2 \text{M} \)/MMP-13 elution position. To investigate whether the MMPs are indeed in complex with \(\alpha_2 \text{M} \) and therefore are not able to break down HMW substrates, all fractions were measured for MMP activity using HMW substrate UKcol. No MMP mediated UKcol conversion was detected at the elution position of \(\alpha_2 \text{M} \)/MMP complexes where it was detectable with LMW substrate TNO211-F, suggesting \(\alpha_2 \text{M} \)/MMP complex formation.

Altogether these findings show a shift in MMP activity into the HMW fraction, i.e. to the \(\alpha_2 \text{M} \) elution position, after incubation of MMPs with \(\alpha_2 \text{M} \).

MMP activity levels in serum of RA patients and healthy controls

To establish the feasibility of MMP activity measurements to discriminate between normal and pathological situations, MMP mediated TNO211-F substrate conversion was determined in serum of RA patients and healthy controls (N = 8 and N = 15, respectively). MMP activity could be detected in both populations but was significantly increased in serum of RA patients as compared with healthy controls (\(P < 0.001 \) RA vs. controls), indicating a measurable surplus of active MMPs in the systemic circulation in this pathological situation (Fig. 5).

Figure 5. MMP activity in serum of rheumatoid arthritis patients vs. healthy controls.

MMP activity was determined in serum of the RA patients and healthy controls (\(N = 8 \) and \(N = 15 \), respectively, symbols represent individual values (mean of duplicate measurements). MMP activity could be detected in both subsets, but was significantly higher in serum of RA patients (\(P < 0.001 \) RA vs. controls, unpaired Student’s t-test).
Further, to investigate the feasibility of MMP activity measurements as a marker of disease activity in RA, MMP activity in serum of 50 RA patients was compared to ESR. The analysis showed a significant correlation between the two parameters ($r = 0.72$, $P < 0.001$, Fig. 6).

To study the potential clinical use of MMP activity measurements for the evaluation of the treatment efficacy, MMP activity was determined in serum of Leflunomide treated RA patients ($N = 4$) at baseline and after 16 weeks of treatment. Leflunomide has previously been shown to influence the MMP/TIMP balance in favor of TIMP \textit{in vitro}.26 If this is the case \textit{in vivo} as well, Leflunomide is expected to decrease the surplus of active MMPs in the circulation of these patients. In this pilot experiment, all 4 patients showed a 40% decrease in MMP activity levels after 16 weeks of treatment (mean (SD): from 0.038(0.007) to 0.022(0.014), $P = 0.015$).

\textbf{Discussion}

The present study shows that MMP activity can be measured in the systemic circulation using Low Molecular Weight fluorogenic substrates. Further analysis showed that measured MMP activity originates from α_2Macroglobulin/MMP (α_2M/MMP) complexes. The results of this study also show that MMP activity measurements in serum of RA patients may provide an interesting new tool for evaluation of the disease process in RA.

It has previously been shown that activated MMPs can form complexes with α_2M in biological fluids.13,15,24 In general, α_2M acts as a proteinase scavenger and can inhibit serine, cysteine, aspartic and metalloproteinases by molecular trapping. After proteinases are enclosed in α_2M, they are rapidly eliminated from the circulation.23 MMPs entrapped within the α_2M molecule lose their ability to break down natural HMW substrates such as collagen type II,15 but are still capable of degrading LMW peptide substrates, provided that the substrate reaches the active site of the MMPs in α_2M/MMP complexes.23 Our results
on degradation of a natural substrate of MMPs (collagen type I) or a modified HMW protein substrate (UKcol) confirm these findings. Neither collagen type I nor UKcol was degraded by MMPs in the presence of \(\alpha_2 \mathbf{M} \), whereas full degradation was achieved in the absence thereof. On the contrary, LMW fluorogenic substrates were easily degraded by MMPs in the presence or absence of \(\alpha_2 \mathbf{M} \), as such demonstrating the feasibility of using LMW fluorogenic substrates for MMP activity detection in the presence of \(\alpha_2 \mathbf{M} \).

Previously we have shown that MMP activity measured in the systemic circulation using LMW fluorogenic substrates is likely to originate from \(\alpha_2 \mathbf{M}/\text{MMP} \) complexes (Beekman et al., 1999). In the present study, we provided further evidence of \(\alpha_2 \mathbf{M}/\text{MMP} \) complex formation in the systemic circulation using size exclusion analysis. According to our working hypothesis, activated MMP form stable complexes with \(\alpha_2 \mathbf{M} \) (approximate MW of 725 kDa). Using 100 kDa cut-off filters we showed that after spiking of activated MMP to buffer in the presence of \(\alpha_2 \mathbf{M} \), MMP activity is indeed found in the HMW (> 100 kDa) fraction, indicating \(\alpha_2 \mathbf{M}/\text{MMP} \) complex formation. Similar results were seen after filtration of normal human plasma, which was spiked with activated MMP-13. Further, MMP activity was measured after size separation by FPLC. This analysis showed a switch of MMP activity from the LMW fraction to HMW fractions after incubation of activated MMPs in buffer in the presence of \(\alpha_2 \mathbf{M} \). The same pattern of MMP activity distribution was found in normal human plasma spiked with activated MMPs. Moreover, the results showed that MMPs in the HMW fraction were still active towards a LMW substrate and not towards the HMW synthetic substrate UKcol. Taken together, these results confirm that in the systemic circulation activated MMPs are present in the form of \(\alpha_2 \mathbf{M}/\text{MMP} \) complexes.

Further, the results of the present study show that MMP activity levels in the systemic circulation of RA patients are increased when compared to those in healthy controls. As such, these findings are in line with the current view on the pathological process in RA. Martel-Pelletier et al.8 suggested that at tissue level, differential regulation of MMP and TIMP synthesis by IL-1 may promote cartilage degradation in RA by creating an imbalance between the level of MMPs and their Tissue Inhibitors. If this situation is reflected in the circulation, the excess of activated MMPs will result in \(\alpha_2 \mathbf{M}/\text{MMP} \) complex formation, which could explain increased levels of \(\alpha_2 \mathbf{M}/\text{MMP} \) complexes found in serum of RA patients.

It can be questioned where the increased MMP levels present in the systemic circulation found in this study originate from. Firstly, it is possible that MMPs are produced as a systemic response to the joint inflammation.27 Secondly, a leakage of MMPs may occur from the inflamed joints into the systemic circulation.28 Based on measurements of MMP activity in plasma after spiking with active MMPs we conclude that the surplus of active MMPs will be entrapped in \(\alpha_2 \mathbf{M} \) regardless their origin. Additional studies are needed to investigate the origin of the MMPs in complexes with \(\alpha_2 \mathbf{M} \), i.e. to investigate whether the MMPs present in the systemic circulation of RA patients represent the local situation in the inflamed joint.
Nowadays, serum MMP antigen levels are used to study the status of the proteolytic system, which is directly involved in joint tissue degradation. Correlations have been found between antigen levels of proMMP-3 and development of radiological damage in early arthritis (8), proMMP-2 levels and joint erosion during early synovitis, and proMMP-1 levels and the number of new joint erosions. However, the proMMP antigen levels represent mainly the potential of the proteolytic system to degrade joint tissues. The present study shows that MMP activity measurements in α2M/MMP complexes in the systemic circulation may in fact reflect the end status of the proteolytic system, e.g. the end status of the system after production, activation and inhibition of MMPs. Moreover, the results of the present study show that MMP activity levels in the circulation are correlated with an inflammatory marker, ESR, which is widely used to assess the disease activity. These results imply that activity of the proteolytic system is related to the inflammatory process in RA. Further studies will give insight in the association between cartilage degradation and systemic MMP activity levels.

Assessment of MMP activity in serum of Leflunomide-treated RA patients indicates, to our knowledge for the first time, the effect of therapy on net MMP activity. MMP activity in serum was significantly reduced after 16 weeks of Leflunomide treatment, implicating lower amounts of α2M/MMP complexes present in the systemic circulation, i.e. lower surplus of active MMPs. These findings are consistent with in vitro experiments showing a decrease in MMP and an increase in TIMP production by Leflunomide, leading to lower surplus of active MMP.

In conclusion, the present study shows that MMPs form complexes with α2M in the systemic circulation of RA patients and that levels of α2M/MMP complexes are also increased in patients with higher inflammatory activity, as shown by correlation between α2M/MMP levels and ESR. Our data provide sufficient basis for further exploration of α2M/MMP activity measurements as biomarker for disease activity in RA.

Acknowledgments

We wish to thank Benno van El for his expert opinion and Mrs. Elly de Wit for her excellent technical assistance.
CHAPTER 2

References

27. Manicourt DH, Fuiimoto N, Obata K et al.: Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with

