The handle http://hdl.handle.net/1887/62360 holds various files of this Leiden University dissertation

Author: Aghajani, Moji
Title: The juvenile antisocial brain: brain imaging studies in clinically antisocial youth with nascent psychopathic traits
Date: 2018-01-23
References

Flandin, G., Friston, K.J. (2016) Analysis of familiality error rates in statistical parametric mapping using random field theory.ARXIVO.

CHAPTER 8 The Juvenile Antisocial Brain

The Juvenile Antisocial Brain

Dutch Summary

Het ontwikkelingstraject van psychopathie begint ogenschijnlijk al in de vroege levensjaren en kenmerkt zich door uiting van kille-ongevoelige persoonlijkheidsstrekken (Callous-Unemotional traits; CU) bij gedragsgestoorde (Conduct-Disordered; CD) kinderen en adolescenten. Deze jongeren met ontluikende psychopathische trekken hebben een tekort aan empathie, een verminderde emotionele reactiviteit (met name ten opzichte van negatieve gevoelens), en ervaren nauwelijks gevoelens van schuld en spijt. Bovendien vertonen ze geregeld gewelddadig en antisociaal gedrag, reageren ze niet of nauwelijks op behandeling, en veroorzaken ze daarmee grote economische en emotionele lasten voor de maatschappij. Ondanks deze zorgwekkende feiten is er niettemin vrij weinig bekend over de pathophysiologie van gedragsstoornissen met kille-ongevoelige trekken (CD/CU+). De verwachting is echter dat neurobiologisch onderzoek naar CD/CU+ diepere inzichten in onderliggende pathomechanismen zal bieden die mogelijk de klinische aanpak van CD/CU+ jongeren zouden kunnen bevorderen. Er wordt zelfs voorzichtig gesuggereerd dat zulke vorderingen het neurobiologische ontwikkelingstraject van psychopathie in kaart kunnen brengen, en dat deze kennis uiteindelijk ingezet kan worden om gerichte preventieve behandelingen op te zetten. Het onderzoek besproken in deze thesis richtte zich daarom met name op de neurobiologie dat schuil gaat achter CD/CU+.

Amygdala Subregionale Netwerken

De amygdala speelt een belangrijke rol in de pathophysiologie van CD/CU+, waarbij afwijkingen in structuur en functie van amygdala sterk gelinkt zijn aan kern-eigenschappen van CD/CU+, zoals verminderde empathie en emotionele reactiviteit. Dit kleine subcorticale hersengebied gelegen in het midtemporale deel van het brein, speelt een cruciaal rol bij het verwerken van affectief en motivationeel relevante informatie. Bovendien fungeert het ook als een belangrijk integratief hub waar socio-affectieve informatiestromen uit corticale en subcorticale hersencircuits convergeren en tevens snel gedeodeerd worden. Deze complexe functies worden grotendeels gerealiseerd door de modulaire architectuur van het amygdaloïde complex, waarin afzonderlijke neurale populaties door onderscheidende neurale responses en interactie patronen socio-affectief gedrag zeer verschillend aanstu-
Hoofdstuk 2 van deze thesis richtte zich daarom op intrinsieke (spontaan/ruststaat) connectiviteitspatronen van basolaterale (BLA) en centromediale (CMA) amygdala netwerken bij jeugdige delinquenten met CD/CU+. Dit hoofdstuk onderzocht verder of verstoorde subregionale netwerkconnectiviteit binnen CD/CU+ mogelijk gepaard gaan met structurele veranderingen (volume en vorm) van het amygdaloïde complex. De analyses toonden aan dat CD/CU+ gekenmerkt wordt door verminderde subregionale amygdala functie en connectiviteit. Hoewel de amygdala als een homogene structuur benaderd, waardoor de bijdrage van subregionale amygdala netwerken aan CD/CU+ pathofysiologie nog onbekend is.

Hoofdstuk 3 richtte zich op de stoffelijke vergelijkingen van deze thesis over de klinische kenmerken van deze stoornissen. Onze analyses toonden aan dat hoewel de meeste neurobiologische studies zich tot dus ver voornamelijk op de affectieve dimensies van psychopathie gerichte, met empathisch en emotioneel dysfunctie, er een sterkere koppeling bestaat met de subregionale amygdala. Hoewel PTSS als een tegenhanger van CD/CU+ wordt gezien, zijn er echter verschillen in de klinische kenmerken. PTSS wordt vaak gekenmerkt door hypoemotionailiteit, terwijl CD/CU+ meer gekenmerkt wordt door hyperemotionailiteit. Deze bevindingen bieden nieuwe inzichten in de afectieve en emotionele kenmerken van PTSS en CD/CU+.

Hoofdstuk 4 bouwt voort op Hoofdstuk 2, en onderzoekt of subregionale connectiviteitspatronen van de amygdala niet alleen aan de affectieve dimensie van psychopathie gerelateerd zijn, maar ook aan de interpersoonlijke en gedragsmatige dimensies van psychopathie. Hoewel psychopathie gekenmerkt wordt door een pathologische samenhang van affectieve (kil-ongevoelig: CU), interpersoonlijke (manipulatief-egoencentrisch), en gedragsmatige (impulsief-onverantwoordelijk) persoonlijkheidsstrekken, hebben de meeste neurobiologische studies zich tot dus ver voornamelijk op de affectieve trekken gericht. Multidimensionale modellen van psychopathie suggereren echter dat specifieke dimensies geassocieerd zullen zijn met discrete neurale eigenschappen. In lijn met deze veronderstelling, toonde onze analyse inderdaad aan dat subregionale connectiviteitspatronen van de amygdala unieke en uiteenlopende associaties met verschillende dimensies van psychopathie vertonen. De interpersoonlijke trekken hadden invloed op BLA en CMA connectiviteit met een netwerk van gebieden dat socio-cognitief en beloning-gereguleerde informatieverwerking ondersteunt. De affectieve trekken daarentegen hadden impact op CMA connectiviteit met een frontolimbisch netwerk dat nauw betrokken lijkt bij het verwerken van emotioneel en affectief relevante informatie, alsook bij het aasturen van affectieve responses die daarop volgen. Als laatste zagen we ook dat de gedragsmatige trekken van invloed waren op BLA connectiviteit met een frontoparietale netwerk dat vaak in verband is gebracht met zelfregulatie en actie-planing. Een dimensionele benadering van psychopathie kan dus in potentie diepe inzichten omtrent neurobiologie van psychopathische trekken aanreiken, inzichten die over het hoofd gezien kunnen worden wanneer men een categorie of unidimensionale benadering hanteert.
Het Oxytocinerge Systeem

Conclusies
Het werk beschreven in deze thesis biedt mogelijk belangrijke aanwijzingen omtrent de pathofysiologie van psychopathische trekken in klinisch antisociale jeugd. De bevindingen suggereren dat dysfuncties binnen corticolimbische netwerken hierbij een belangrijke rol spelen, waarbij veranderingen in amygdala subregionale netwerken buitengewoon relevant lijken. De bevindingen tonen verder aan dat sommige van deze netwerk dysfuncties en verwante neurocognitieve beperkingen mogelijk gedreven worden door veranderingen in het oxytocinerge systeem. De bevindingen bieden tevens voorzichtig neurobiologische steun aan de mogelijke bruikbaarheid van psychopathische trekken ten behoeve van subtypering binnen de zeer heterogene groep van klinisch antisociale jeugd. Hoewel deze bevindingen een belangrijke stap lijken in het beter begrijpen van psychopathie en antisociaal gedrag bij jeugdigen, is vervolg onderzoek absoluut noodzakelijk die dit werk verder exploreert en valideert, en hopelijk daarmee effectieve preventie en interventie strategieën in zicht brengt.
Acknowledgement

I have had the help, guidance, support and love of many wonderful people along my PhD journey. I would like to take this opportunity to express my gratitude to all of you.

First, I would like to thank my supervisors Prof. dr. Robert Vermeiren, Prof. dr. Nic van der Wee, and Dr. Olivier Collins for giving me the opportunity to conduct my PhD research. Not only were you confident enough to hire me, but also granted me considerable autonomy to develop my line of research along the way, which I immensely appreciate. I have learned a lot from you and am grateful for the support and enthusiasm you have shown me over the years.

Special thanks to my dear colleague Eduard Klapwijk, without whom the BESD imaging project would have not been successfully completed. I truly enjoyed working with you, and much appreciate your compassion, understanding, and friendship. Thanks for everything.

A big thank you to my dear friend Ilya Veer, who inspired me to become a scientist through his enthusiastic, refreshing, and passionate approach towards science in general, and neuroscience in particular: You are a great mentor and friend.

My appreciation also goes to Prof. dr. Arne Popma, Dr. Natasja van Lang, Prof. dr. Henrik Andershed, Prof. dr. Katharina Domschke, and Prof. dr. Serge Rombouts, who have supported the work described in this thesis in one way or the other.

I would also like to thank my dear colleagues at Curium and LUMC for the support and good times in the past few years.

My appreciation also goes out to all who were willing to participate in our studies, for there would have been no thesis at all without them. I specially like to thank the participants and staff at De Jutters Palmhuis Forensic Psychiatric Unit, Forensic Center and Correctional Facility Teylingereind, Center for Autism Rivierduinen, Psychotrauma Center and Department of Child and Adolescent Psychiatry Rivierduinen, and the Child and Adolescent Psychotrauma Center in Haarlem.

My heartfelt thanks to the wonderful staff of LIBC, LUMC Radiology and Human Genetics, and the Walaeus Library at the LUMC, whose support was instrumental for successfully carrying out the MRI studies described in this thesis. I would like to particularly highlight the contributions of Michèle Huijberts, Michel Villerius, Paul de Bruin, and Wouter Tseeuwisse.

My special thanks to Prof. dr. Brenda Penninx, who not only offered me a great new job at her department in Amsterdam, but also granted me the time to finish this thesis. Thanks for the kind and warm welcome I received from you and everybody else at your department.

Eduard Klapwijk and Ilya Veer, many thanks again for being my fantastically cool paranymphs.

My sincere thanks to all my friends, who were supportive and understanding during the time I was working on my thesis. Specially, my best friends Reza and Erik, I am truly grateful to have you guys in my life.

Finally, I want to express my deepest gratitude to my wonderful mom (Soheila) and dad (Mohamad-Reza), my loving sister (Hadis), little nephew (Arvin) and brother-in-law (Shahin), and my caring and supportive partner (Sheyma). Being part of such warm, loving, and supportive family is truly a privilege and I am thankful for having you all in my life. I couldn’t thank you enough for all the support and love you have shown me over the years, specially during times that things didn’t look as rosy as they do today! My parents, and my mom in particular, deserve an especially big thank you in this regard for all the sacrifices they have made for the sake of my happiness, comfort, and progress. My dear family, you are the centerpiece of my life and without you I would be probably lost.
Curriculum vitae

Moji Aghajani was born on November 29th, 1981 in Tehran, Iran. He obtained a Bachelor’s degree in Psychology (2009; Cum Laude) and a Research Master’s degree in Clinical Psychology with a focus on Cognitive Neuroscience (2011; Cum Laude) from Leiden University. In 2012 he started his PhD project at the Leiden University Medical Center, Department of Child and Adolescent Psychiatry, Curium, under supervision of Prof. dr. Robert Vermeiren, Prof. dr. Nic van der Wee, and Dr. Olivier Colins. As of July 2016, Moji is a postdoctoral researcher in Neuroimaging & Psychiatry at the VU University Medical Center, Department of Psychiatry, within Prof. dr. Brenda Penninx’s research group.

Publications

Accepted/Published

Altered white-matter architecture in treatment-naive adolescents with clinical depression. Aghajani M, Veer IM, van Lang ND, Meens PH, van den Bulk BG, Rombouts SA, Vermeiren RR, van der Wee NJ. Psychological Medicine, 2014.

In Revision/Under Review

