resemblance with the lightcurve of R Normae but this variable has a range of 6.5 magnitudes which differs considerably from that of SY Muscae which is 0m9 only.

A faint wide double star of which one component is an eclipsing variable,
by A. van Hoof.

The variability of the star 10h15m56s—60°572 (1875) was discovered by H. van Gent by comparison in the blinkmicroscope of plates taken with the Franklin-Adams instrument in Johannesburg at J.D. 2426124.36 and 2426155.22, the star being faint on the former.

The variable has a companion in the approximate position 60°,15′. Another nearby star is situated at 250°,25′. During its variation the brightness of the variable reaches or even passes that of the closer companion, which will therefore be a convenient comparison star with a larger instrument. On the Franklin-Adams plates the estimates were difficult.

The comparison stars used are indicated on the accompanying diagram (fig. 1). Their adopted brightnesses in steps are a = 0, b = 3; c = 5, and the corresponding approximate magnitudes 14.12, 14.45 and 14.71 respectively, as derived from star counts using the table given in Groningen Publ. 43. The magnitude of the variable at maximum is about 14m33. The rather uncertain minimum brightness is estimated to be 14m8. This gives the following relation between steps and magnitude:

\[m = 14.115 + .117 s. \]

The 806 plates used were taken between J.D. 242 3786 and 242 6827. In table I are given the epochs at which the brightness of the variable in scale of steps was found to be 6 or fainter. From least squares solution of these data the period found to be 2d756442 ± 00033 (m.e.). Another least squares solution of 19 estimated epochs minimum, as collected in table II, gave 2d756
The mean 2\textdegree 756459 is considered to be the most probable value of the period. Actually the phases have been calculated with an immaterially different period viz. 2\textdegree 756469, the formula being

\[
\text{phase} = 0.362783 \text{(J.D. Hel. M. Astr. T. Grw. — 242 0000)}
\]

The 866 observations were then arranged according to phase and divided into groups as indicated in table III. A graphical representation of the minimum is shown in fig. 2. The mean error of one estimate was found to be ± 0.7. Using the method described in B.A.N. 147, p. 179 the phase of the minimum was found to be 0.829 and the mean J.D. of the observations near minimum 242 4640. Accordingly the ephemeris of the epoch of minimum is

\[
\text{J.D.} \quad 242 4641.422 + 2.75646 \times E \\
\text{± 0.03 \ ± 0.0003 (m.e.)}
\]

The mean error of the normal epoch is estimated.

I wish to thank Prof. E. HERTZSPRUNG for his continued advice and kind help with the redaction of this paper.

© Astronomical Institutes of The Netherlands • Provided by the NASA Astrophysics Data System