The handle http://hdl.handle.net/1887/57561 holds various files of this Leiden University dissertation

Author: Poovuttikul, N.
Title: Transport coefficients and low energy excitations of a strongly interacting holographic fluid
Date: 2017-11-16
Transport coefficients and low energy excitations of a strongly interacting holographic fluid

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus Prof. Mr. C. J. J. M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 16 November 2017
te klokke 10:00 uur

DOOR

Napat Poovuttikul

geboren te Bangkok (Thailand) in 1990
The work described in this thesis has been carried out at the Lorentz Institute, Leiden University. The author was supported by Development and Promotion of Science and Technology (DPST) Scholarship from the Thai government.

The cover shows the private and public transport phenomena of electricity, heat, humans and other pollutants. Incidentally, this photo was taken at Wong-sawang junction (close to the author’s house in Bangkok), infamous for its traffic congestion, a few seconds before a waterfall-like fluid (a.k.a. a tropical rain) starts to pour down and almost destroys the author’s camera.
Contents

1 Introduction 1

1.1 Preface: What is QFT? 1

1.2 Gauge/gravity duality and effective theory 4

1.3 This thesis: A hunt for universality

 beyond standard hydrodynamics 9

2 Lightning review of hydrodynamics and gauge/gravity duality 12

2.1 Global symmetry, conserved current

 and background fields 13

 2.1.1 Charge neutral relativistic fluid 15

 2.1.2 Breaking translational symmetry 20

 2.1.3 Introducing anomalous $U(1)$ current 22

 2.1.4 Generalised global symmetry 24

2.2 2-point correlation functions and Kubo formulae 28

2.3 Bottom-up approach to holographic duality 30

 2.3.1 Capturing global symmetry 31

 2.3.2 Holographic thermal 1-point and 2-point function 35

 2.3.3 Holographic RG flow 36

 2.3.4 The "membrane paradigm" 38

 2.3.5 Higher derivative holography 40

3 Shear viscosity in holography and effective theory of transport

 without translational symmetry 42
3.1 Motivation .. 42
3.2 Effective theory for systems with broken translational symmetry 46
 3.2.1 Constructing the constitutive relation 47
 3.2.2 Kubo’s formula for η^* 52
3.3 Holographic computation 54
 3.3.1 Action and Thermodynamics 55
 3.3.2 Coherent regime and constitutive relation from fluid/-
 gravity correspondence 57
 3.3.3 Fluctuations and violation of the viscosity bound at leading
 order ... 59
 3.3.4 Numerical results and beyond the leading order 62
3.4 Discussions and outlook 64
3.5 Appendices .. 67
 3.5.1 Scalars, vectors and tensors from basic structures 67
4 Universality of anomalous conductivities in theories with higher-
 derivative holographic duals 69
 4.1 More background materials and motivations 69
 4.2 The holographic setup 78
 4.3 Proof of universality 83
 4.3.1 Anomalous conductivities and the membrane paradigm 84
 4.3.2 Universality ... 88
 4.4 Examples and counter-examples 93
 4.4.1 Einstein-Maxwell-dilaton theory at finite temperature 94
 4.4.2 Four-derivative Einstein-Maxwell theory 95
 4.4.3 Theories without horizons and theories with scaling ge-
 metrics at zero temperature 97
 4.4.4 Bulk theories with massive vector fields 100
 4.5 Discussion .. 101
 4.6 Appendices ... 103
 4.6.1 Anomaly polynomials and the replacement rule 103
5 Magnetohydrodynamic waves in a strongly interacting holographic plasma 104
5.1 Introduction ... 104
5.2 Matter coupled to electromagnetic interactions 110
 5.2.1 Quantum electrodynamics 110
 5.2.2 Strongly interacting holographic matter coupled to dyna-
 mical electromagnetism 112
5.3 Holographic analysis: equation of state and transport coefficients 118
 5.3.1 Holographic action and the magnetic brane 119
 5.3.2 Holographic renormalisation and the bulk/boundary dic-
 tionary .. 121
 5.3.3 Equation of state .. 127
 5.3.4 Transport coefficients 131
5.4 Magnetohydrodynamic waves in a strongly coupled plasma .. 137
 5.4.1 Speeds and attenuations of MHD waves 143
 5.4.2 MHD modes on a complex frequency plane 146
 5.4.3 Electric charge dependence 148
5.5 Discussion .. 152
5.6 Appendices .. 155
 5.6.1 Kubo formulae for first-order transport coefficients 155
5.7 Further details regarding the derivation of the transport coeffi-
 cients ... 157
5.8 Dispersion relations of magnetosonic waves 163

6 Conclusion and outlook 167

Samenvatting .. 173

Bibliography .. 175

Curriculum Vitæ .. 200

List of Publications ... 202