The handle http://hdl.handle.net/1887/56260 holds various files of this Leiden University dissertation

Author: Antonov, Pavel
Title: Towards thermo- and superlubricity on the macroscopic scale: from nanostructures to graphene and graphite lubrication
Date: 2017-10-18
Towards thermo- and superlubricity on the macroscopic scale: from nanostructures to graphene and graphite lubrication

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 18 oktober 2017
klokke 16.15 uur

door

Pavlo Volodymyrovych Antonov

geboren te Kharkov, Oekraïne
in 1990
Promotor: prof. dr. J.W.M. Frenken

Promotiecommissie:
prof. dr. D. Bonn (Universiteit van Amsterdam)
prof. dr. A. Fasolino (Radboud Universiteit, Nijmegen)
prof. dr. ir. T.H. Oosterkamp
prof. dr. E.R. Eliel

Casimir PhD series, Delft-Leiden 2017-28 ISBN 978.90.8593.312.0. An electronic version of this thesis can be found at openaccess.leidenuniv.nl

The work described in this thesis was performed at the Huygens-Kamerlingh Onnes Laboratory, Leiden University and at the Advanced Research Center for Nanolithography (ARCNL), Amsterdam, The Netherlands.

This research has been supported by the ERC-AG project Science F(r)iction of the European Research Council and the Program Fundamental Aspects of Friction of the Netherlands Organisation for Scientific Research (NWO).

Cover: Henk-Jan Boluijt
Chapter 1	Introduction	1
Chapter 2	Towards superlubricity at the macroscopic scale	7
2.1	Introduction	8
2.2	Design of nanopillar array	13
2.3	Experimental setup	19
2.4	Experimental results and discussion	19
2.5	Sliding flat surfaces over nanopillar arrays	33
2.6	Summary	42
2.7	Bibliography	43
Chapter 3	Fabrication of high-aspect ratio silicon nanopillars for tribological experiments	47
3.1	Introduction	48
3.1.1	Overview of relevant nanomanufacturing techniques	48
3.2	Nanopillars fabrication	49
3.3	Removal of resist residues	52
3.4	Summary	55
3.5	Bibliography	56
Chapter 4	Microscopic investigations of the lubrication mechanism of Diamond-Like Carbon	59
4.1	Introduction	60
4.2	Experimental	61
4.3	Results and discussion	69
Chapter 5
Dynamic and static tribological properties of micropatterned Diamod-Like Carbon under different humidities

5.1 Introduction 98
5.2 Experimental 100
5.3 Experimental results 100
5.4 Discussion 105
5.5 Conclusions 115
5.6 Bibliography 117

Chapter 6
Towards superlubricity of graphene on the macroscopic scale 125

6.1 Introduction 126
6.2 Experimental 129
6.3 Experimental results 131
6.4 Discussion 145
 6.4.1 Graphene as the thinnest lubricant 145
 6.4.2 Towards superlubricity on the macroscale 147
 6.4.3 Effect of substrate oxidation on nanoscale friction of graphene 149
6.5 Summary 154
6.6 Bibliography 155

Summary 161
Samenvatting 165
List of publications 169
Acknowledgements 170
Curriculum Vitae 172