The handle http://hdl.handle.net/1887/54944 holds various files of this Leiden University dissertation.

Author: Djukanovic, M.
Title: Split Jacobians and Lower Bounds on Heights
Issue Date: 2017-11-01
Let $n \geq 2$ be an integer and let K be a number field. In the following statements, all varieties and morphisms are defined over K.

1) Let C be a smooth curve of genus two with Jacobian $\text{Jac}(C)$, let E_1 be an elliptic curve, and let $\varphi_1: C \to E_1$ be a covering of degree n that is optimal, i.e. a covering that does not factor through an isogeny. Then, possibly after extending K, there exist another elliptic curve E_2, an optimal covering $\varphi_2: C \to E_2$ of degree n, and an isogeny $\text{Jac}(C) \to E_1 \times E_2$ whose kernel is $\varepsilon_1(E_1[n]) = \varepsilon_2(E_2[n]) \subset \text{Jac}(C)[n]$, where $\varepsilon_i: E_i \hookrightarrow \text{Jac}(C)$ are the embeddings induced by φ_i.

2) Let (E_1, O_1) and (E_2, O_2) be elliptic curves and let $\alpha: E_1[n] \to E_2[n]$ be an isomorphism (of finite K-group schemes) that is anti-symplectic with respect to the Weil pairing and denote its graph by Γ_α. Let Θ denote the divisor $E_1 \times \{O_2\} + \{O_1\} \times E_2$, that induces a principal polarization on $E_1 \times E_2$. Finally, let $\varphi: E_1 \times E_2 \to J$ denote the isogeny such that $\text{Ker}(\varphi) = \Gamma_\alpha$. Then there exists a divisor C on J with arithmetic genus two that induces a principal polarization on J and satisfies $\varphi^*(C) \sim n\Theta$. If C is irreducible then it is a curve of genus two and $J \cong \text{Jac}(C)$. If C is reducible then it is a sum $F_1 + F_2$ of two elliptic curves that meet in a rational 2-torsion point, such that $J \cong F_1 \times F_2$. Moreover, the curves E_1, E_2, F_1, F_2 are all isogenous.

We say that the curves E_1 and E_2 are glued along their n-torsion. If C is irreducible, we say that $\text{Jac}(C)$ is (n,n)-split.

3) With assumptions as in 1), if $n = 3$ and both φ_1 and φ_2 have a point of ramification index three, then E_1 and E_2 are isomorphic and their modular invariants are either 1728 or $-873722816/59049$.

4) With assumptions as in 2), if E_1 and E_2 are such that the product of their (minimal) discriminants is a square in K or such that they both have a rational point of order two, then they can be glued along their 2-torsion via a K-rational isomorphism $\alpha: E_1[2] \to E_2[2]$.
5) With assumptions and notations as in 2), suppose that \(n \) is odd. Then the principally polarized abelian surface \(J \) is isomorphic to \(F_1 \times F_2 \) if and only if the divisor \(\varphi^*(C) \) contains a (necessarily \(K \)-rational) point of \((E_1 \times E_2)[2]\) that is not a point of order two on \(E_1 \times \{O_2\} \) or \(\{O_1\} \times E_2 \). If \(n = 3 \) and \(J \cong F_1 \times F_2 \), this point is not \((O_1, O_2) \).

6) With notations as above, the Lang-Silverman conjecture holds for \((n, n)\)-split Jacobians \(\text{Jac}(C) \) if and only if it holds for elliptic curves that can be glued along their \(n \)-torsion with another elliptic curve to form \(\text{Jac}(C) \).

7) Let \(\text{Tr}_\infty \) denote the archimedean trace and let \(\Delta \) denote the minimal discriminant. The Lang-Silverman conjecture holds for Jacobians that are \((n, n)\)-isogenous to a product \(E_1 \times E_2 \) of elliptic curves such that at least one of the following is satisfied for \(i = 1, 2 \):

 i) \(\text{Tr}_\infty(E_i) > \frac{1}{7} \log N_{K/Q}(\Delta_{E_i}) \);

 ii) The Szpiro ratio \(\sigma_{E_i} \) is uniformly bounded.

8) Let \(n \geq 2 \) be an integer, let \(S \) be a finite set of \(m \geq 3 \) elements, and let \(\mathcal{T}(S) \) denote the set of total orderings of \(S \). Suppose that \(f : \mathcal{T}(S)^n \to \mathcal{T}(S) \) is a function that satisfies:

 i) For all \(a, b \in S \) and for all \(\mathcal{O} = (O_1, \ldots, O_n) \in \mathcal{T}(S)^n \), if \(a < b \) is in \(\cap_{i=1}^n O_i \) then \(a < b \) is in \(f(\mathcal{O}) \);

 ii) For all \(a, b \in S \), if \(a < b \) is in \(f(\mathcal{O}) \) for some \(\mathcal{O} = (O_1, \ldots, O_n) \) then \(a < b \) is in \(f(\mathcal{O}) \) for all \(\tilde{O} = (\tilde{O}_1, \ldots, \tilde{O}_n) \) such that \(\{a < b, b < a\} \cap O_i \cap \tilde{O}_i \neq \emptyset \) for all \(i \in \{1, \ldots, n\} \).

Then \(f \) is a projection \((O_1, \ldots, O_n) \mapsto O_i \) for some \(i \in \{1, \ldots, n\} \). This statement is known as Arrow’s theorem. It is not a statement about all possible functions with codomain \(\mathcal{T}(S) \).

9) There exist reasonably well behaved functions \(f : I^{m \times n} \to \mathcal{T}(S) \), with \(S, m, n \) as in 8) and \(I = [0, 1] \) or \(I = \{0, 1\} \).

10) There are good practical reasons to introduce a notation other than \(2\pi \) for the real number that is the length of the unit circle. The set of non-horrible choices has measure zero and it contains the symbol \(\pi \).

11) It is difficult, and perhaps foolish, to get rid of a notation established by Euler.

12) Theorems of the form “If \(A \) then \(B \)” have a very limited practical use if \(A \) happens to be false.