Folate, homocysteine levels, methylenetetrahydrofolate reductase (MTHFR) 677C → T variant, and the risk of myocardial infarction in young women: effect of female hormones on homocysteine levels

B. C. Tanis,* H. J. BLOM,† D. G. M. BLOEMENKAMP,‡ M. A. A. J. van den BOSCH,§ A. ALGRA,†§ Y. van der GRAAF† and F. R. ROSENDAAL*†

*Department of Hematology, Leiden University Medical Center, Leiden; †Laboratory of Pediatrics and Neurology, University Medical Center Nijmegen-St Radboud, Nijmegen; ‡Julius Center for Health Sciences and Primary Care and §Department of Neurology, University Medical Center Utrecht, Utrecht; and *Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands

To cite this article: Tanis BC, Blom HJ, Bloemenkamp DGM, van den Bosch MAJ, Algra A, van der Graaf Y, Rosendaal FR. Folate, homocysteine levels, methylenetetrahydrofolate reductase (MTHFR) 677C → T variant, and the risk of myocardial infarction in young women: effect of female hormones on homocysteine levels. J Thromb Haemost 2004; 2: 35–41.

Summary. In young women data are limited about the association between myocardial infarction (MI) and hyperhomocysteinemia, low folate or methylenetetrahydrofolate reductase (MTHFR) genotypes. The effect of oral contraceptive (OC) use on plasma homocysteine levels is not clear. We assessed the association between hyperhomocysteinemia, low folate, MTHFR 677TT mutation and risk of MI, and we investigated the effect of OC use on homocysteine levels in controls. In 181 patients with a first MI and 601 controls 18–49 years of age from a population-based case–control study, non-fasting blood samples were available. The homozygote mutant allele (TT) was detected in 12% of the patients and in 10% of controls. The odds ratio (OR) for MI in TT patients compared with the wild-type (CC) controls was 1.3 [95% confidence interval (CI) 0.8, 2.3]. For all MTHFR genotypes combined, the OR for MI in the lowest quartile of folate (<5.4 nmol L⁻¹) compared with the highest quartile (>10.4 nmol L⁻¹) was 3.0 (95% CI 1.7, 5.1). A 2-fold increased risk of MI was found in women with the TT genotype who had folate levels below the median of 7.4 nmol L⁻¹ compared with CC genotype and folate levels above the median (OR = 2.0; 95% CI 1.0, 3.7). Mean homocysteine levels were 12.2 μmol L⁻¹ in OC users and 12.3 μmol L⁻¹ in non-users. Only at the 97.5 percentile (cut-off 21.0 μmol L⁻¹) was the adjusted OR for higher vs. lower homocysteine levels increased by 2.8-fold (95% CI 1.2, 6.8).

Low folate is a risk factor for MI, particularly in women with the MTHFR 677TT genotype. Homocysteine levels were not influenced by OC use.

Keywords: folate, homocysteine, methylenetetrahydrofolate reductase (MTHFR) gene, myocardial infarction.

Introduction

The most common enzyme defect associated with moderate hyperhomocysteinemia is a point mutation, C→T substitution at nucleotide 677 (677C→T), in the coding region of the gene for methylenetetrahydrofolate reductase (MTHFR), resulting in a thermolabile MTHFR variant with about 50% residual enzyme activity [1]. Among homogeneous populations positive associations were found between homozygous MTHFR genotype and cardiovascular disease [2–4], but the MTHFR 677TT mutation did not increase cardiovascular risk significantly in the meta-analysis from Brattström [5]. Surprisingly, a negative association was found between the homozygous genotype and cardiovascular disease in postmenopausal women [6].

Elevated plasma homocysteine levels have been associated with a modestly increased risk of cardiovascular disease [7–9], and may be a predictor of mortality in patients with coronary artery disease [10,11]. The latter is suggestive of a prothrombotic effect of hyperhomocysteinemia, which was also found among patients with venous thrombosis [12]. The association between first myocardial infarction (MI) in young women and hyperhomocysteinemia, low folate or vitamin B12 and MTHFR mutation is less clear.

Data on the effect of female hormones on homocysteine levels are limited to reports on hormone replacement therapy without clinical outcome events [13,14], but studies in young women are sparse. Earlier studies that examined the risk of MI

In this study we investigated whether the MTHFR 677TT genotype, hyperhomocysteinemia, low folate or vitamin B₁₂ levels are risk factors for MI in young women. In addition, we compared homocysteine levels in healthy OC users, hormone replacement therapy users and non-users.

Patients and methods

Study design

The Risk of Arterial Thrombosis In relation to Oral contraceptive use (RATIO) study is a nationwide population-based case–control study of the association between OC use and MI. Details of the study have been described before [16]. The study protocol was approved by the ethics committees of the participating hospitals and informed consent was obtained from all participants.

Subjects

We included consecutive patients 18–49 years of age who were hospitalized with a first MI to one of the 16 participating centers (see Appendix) in the Netherlands between January 1990 and October 1995. The patients were selected through a search of the hospital database for acute MI. Medical records and discharge letters were reviewed for confirmation of the diagnostic criteria for MI, which was defined by the presence of symptoms, elevated cardiac enzyme levels, and electrocardiographic changes indicative of MI. Healthy control women were drawn from the general population, by means of random digit dialing in the same geographic areas from which the patients originated. Control women were stratified for age (5 years categories) and index year of MI. There were two phases of data collection. In the first phase, 248 patients and 925 control women filled out a standardized postal questionnaire concerning classical risk factors for MI. In the second phase of the study blood samples were drawn or buccal swabs collected for DNA analysis of MTHFR genotypes. Samples of venous blood (203 patients, 638 controls) or buccal swabs (15 patients, 126 controls) were obtained from 218 (88%) patients and 764 (83%) controls for DNA analysis. We asked the women about their use of medication and vitamin supplements such as folic acid, vitamin B₁₂, and vitamin B₆. After excluding vitamin users (21 patients, 13 controls), two control women with severe hyperhomocysteinemia (>100 µmol L⁻¹), and subjects (one patient, 22 controls) for whom not all measurements could be performed, plasma samples for both homocysteine, folate, and vitamin B₁₂ determinations were available in 181 patients and 601 control women.

Blood collection and laboratory analyses

Non-fasting blood samples were collected with a mean interval of 5 years after the index date and drawn from the antecubital vein. Biopool® Stabilyte™ tubes (Biopool, Umea, Sweden), containing 0.5 mol L⁻¹ acidic citrate for homocysteine measurement, were immediately placed on ice and centrifuged within 4 h. Blood samples were centrifuged at 1440 g for 15 min. The plasma was separated and stored at −70 °C until analysis. Plasma total homocysteine concentration was determined by automated high-performance liquid chromatography in the Laboratory of Pediatrics and Neurology of the University Medical Center Nijmegen after derivatization with monobromobimane as described previously [17]. The intra-assay coefficient of variation was <3.3% and the interassay coefficient was <5%. EDTA blood was collected for vitamin measurements. Folate and vitamin B₁₂ concentrations were simultaneously measured using a Dualcount® Radioassay (Diagnostic Product Corp., Los Angeles, CA, USA). Serum creatinine was measured on a clinical analyzer (Roche/Hitachi® 747, Roche Diagnostics, Mannheim, Germany). DNA was obtained by means of venous blood samples or buccal swabs. The MTHFR 677C→T mutation was investigated by polymerase chain reaction using the primers used described by Frosst et al. [1]

Major cardiovascular risk factors

Subjects were categorized as current smokers when they reported smoking in the year before the index date, or as non-smokers. Women were considered as hypertensive, hypercholesterolemic or diabetic at the time of MI or the index date in control women when they reported a physician’s diagnosis or were taking medication for these conditions. Body mass index (BMI) was calculated as body weight (kg) divided by height squared (m²). A family history of cardiovascular disease was defined as the presence of MI, stroke or peripheral arterial disease under 60 years of age in first-degree relatives. Current OC use was defined as using OCs in the month prior to MI for patients and analogously in the month before the index date for controls.

Statistical analysis

Univariate odds ratios (ORs) were calculated for the association between the MTHFR genotypes and MI by logistic regression analysis with 95% confidence intervals (95% CI) as a measure of relative risk. Homocysteine, folate and vitamin B₁₂ concentrations of both cases and controls were stratified into quartiles, based on the distribution of these compounds among control women. We calculated the ORs for MI for the three higher levels relative to the lowest reference level for homocysteine and for the three lower levels relative to the highest reference level for folate and vitamin B₁₂ [18]. We also investigated a possible dose–response relation for homocysteine by calculating ORs for homocysteine concentrations above 90, 95, and 97.5 percentiles compared with below this cut-off level in a logistic model. In multivariate analyses we adjusted for the stratification variables (age, index year, and area of residence) and putative confounders. ORs were calculated for the MTHFR genotypes according to folate status, defined as above or below the median folate level in the control group, and compared with the reference group (CC genotype and folate ≥7.4 mmol L⁻¹).
Table 1 Clinical and laboratory characteristics of women with first myocardial infarction (MI) and control women

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MI patients (n = 181)</th>
<th>Control women (n = 601)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>42.9 ± 6.0</td>
<td>38.8 ± 7.9</td>
<td><0.001</td>
</tr>
<tr>
<td>History of hypertension (%)†</td>
<td>51 (28)</td>
<td>37 (6)</td>
<td><0.01</td>
</tr>
<tr>
<td>History of hypercholesterolemia (%)†</td>
<td>20 (11)</td>
<td>19 (3)</td>
<td><0.01</td>
</tr>
<tr>
<td>History of diabetes (%)†</td>
<td>8 (4)</td>
<td>9 (1.5)</td>
<td><0.05</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>25.8 ± 5.0</td>
<td>23.4 ± 3.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Cigarette smoking (%)†</td>
<td>147 (81)</td>
<td>259 (43)</td>
<td><0.01</td>
</tr>
<tr>
<td>Family history of cardiovascular disease (%)†</td>
<td>115 (65)</td>
<td>211 (37)</td>
<td><0.01</td>
</tr>
<tr>
<td>Oral contraceptive use (%)†</td>
<td>68 (38)</td>
<td>206 (35)</td>
<td>ns</td>
</tr>
<tr>
<td>Systolic/diastolic blood pressure (mmHg)</td>
<td>135.9/85.4</td>
<td>129.3/82.0</td>
<td><0.01</td>
</tr>
<tr>
<td>Creatinine (µmol/L⁻¹)</td>
<td>76.1 ± 12</td>
<td>76.1 ± 11</td>
<td>ns</td>
</tr>
<tr>
<td>Homocysteine (µmol/L⁻¹)</td>
<td>12.7 ± 4.1</td>
<td>12.3 ± 3.4</td>
<td>ns</td>
</tr>
<tr>
<td>Folate (nmol/L⁻¹)</td>
<td>7.3 ± 4.2</td>
<td>8.5 ± 4.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Vitamin B₁₂ (pmol/L⁻¹)</td>
<td>405 ± 191</td>
<td>383 ± 183</td>
<td>ns</td>
</tr>
</tbody>
</table>

Plus-minus values are means ± SD. *Analysis of variance was used to compare differences between means and a χ² test was used to compare dichotomous variables. | Data on oral contraceptive use were missing in two patients and eight controls, on family history of cardiovascular disease in five patients and 37 controls, on smoking in four controls, on hypercholesterolemia in three controls and on hypertension and diabetes in two controls.

Results

Descriptive characteristics

Clinical and laboratory characteristics of the patients and control women are shown in Table 1. The mean age of patients was 42.9 (range 24–49) years compared with 38.8 years (range 18–49) in control women. Control women had lower frequencies of classical risk factors for MI, including smoking, hypertension, hypercholesterolemia, diabetes, and family history of cardiovascular disease. Mean homocysteine, creatinine and vitamin B₁₂ levels in patients did not differ from control women: homocysteine 12.7 µmol/L⁻¹ in patients vs. 12.3 µmol/L⁻¹ in controls, mean difference 0.4 µmol/L⁻¹ (95% CI 0.2, 1.0); creatinine 76 µmol/L⁻¹ in patients and 76 µmol/L⁻¹ in controls; vitamin B₁₂ levels 405 pmol/L⁻¹ in patients vs. 383 pmol/L⁻¹ in controls, mean difference 23.7 pmol/L⁻¹ (95% CI −6.9, 54.3); while folate levels were significantly lower in patients than in controls: 7.3 nmol/L⁻¹ vs. 8.5 nmol/L⁻¹, mean difference 1.2 nmol/L⁻¹ (95% CI 0.5, 1.9).

MTHFR genotypes and homocysteine, folate and vitamin B₁₂ levels

The homozygote mutant allele (TT) was detected in 12% of the patients with MI and in 10% of controls (Table 2). The OR for MI for the homozygote TT genotype was 1.3 (95% CI 0.8, 2.3) compared with the CC wild type. The OR for the combination of the homozygote and heterozygote genotypes vs. the wild type was 1.2 (95% CI 0.9, 1.6).

Table 3 shows a gradual increase in mean plasma homocysteine levels according to the MTHFR genotypes in control women, with a difference in the mean homocysteine concentration of 3.3 µmol/L⁻¹ between the wild-type CC and the mutant TT genotype (P < 0.001). An inverse association was found for folate levels with a difference of 1.8 mmol/L⁻¹ between CC and TT genotype, while no association was apparent for vitamin B₁₂ levels and these genotypes.

The ORs for MI adjusted for the stratification variables (age, area of residence and index year) were not significantly increased for the highest homocysteine quartiles compared with the reference category (Table 4). We found a positive association of homocysteine levels with hypertension and smoking (both P < 0.01) and with creatinine levels (P = 0.01). In the case group mean homocysteine was 13.0 µmol/L⁻¹ in smokers vs. 11.3 µmol/L⁻¹ in non-smokers (95% CI for difference −3.23, −0.16). In the control group mean homocysteine was 12.8 µmol/L⁻¹ in smokers vs. 11.9 µmol/L⁻¹ in non-smokers (95% CI for difference −1.47, −0.38). Folate levels were not significantly different between smokers and non-smokers.

Table 2 Odds ratios for myocardial infarction in relation with MTHFR genotypes

<table>
<thead>
<tr>
<th>MTHFR genotype</th>
<th>Patients (n = 181) N (%)</th>
<th>Control women (n = 601) N (%)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>78 (43)</td>
<td>280 (47)</td>
<td>1*</td>
</tr>
<tr>
<td>CT</td>
<td>81 (45)</td>
<td>262 (44)</td>
<td>1.1 (0.8, 1.6)</td>
</tr>
<tr>
<td>TT</td>
<td>22 (12)</td>
<td>59 (10)</td>
<td>1.3 (0.8, 2.3)</td>
</tr>
</tbody>
</table>

*Reference category. CC, Wild-type genotype; CT, heterozygote genotype; TT, homozygote genotype.

Table 3 Homocysteine, folate levels and vitamin B₁₂ levels [mean (SD)] among control women according to MTHFR genotypes

<table>
<thead>
<tr>
<th>MTHFR genotype</th>
<th>Homocysteine (SD)*, µmol/L⁻¹</th>
<th>Folate (SD)*, nmol/L⁻¹</th>
<th>Vitamin B₁₂ (SD), pmol/L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>11.6 (2.7)</td>
<td>8.9 (4.5)</td>
<td>391 (192)</td>
</tr>
<tr>
<td>CT</td>
<td>12.4 (3.2)</td>
<td>8.3 (4.1)</td>
<td>373 (173)</td>
</tr>
<tr>
<td>TT</td>
<td>14.9 (5.3)</td>
<td>7.1 (4.1)</td>
<td>388 (185)</td>
</tr>
</tbody>
</table>

CC, Wild-type genotype; CT, heterozygote genotype; TT, homozygote genotype. *P for trend <0.01.
Table 5 Odds ratios (95% CI) for myocardial infarction by strata of MTHFR 677C→T variant and plasma folate status

<table>
<thead>
<tr>
<th>MTHFR 677C→T</th>
<th>CC</th>
<th>CT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients/control women (n)</td>
<td>78/280</td>
<td>81/262</td>
<td>22/59</td>
</tr>
<tr>
<td>High folate status</td>
<td>1</td>
<td>0.9 (0.5, 1.6)</td>
<td>0.6 (0.2, 2.3)</td>
</tr>
<tr>
<td>Low folate status</td>
<td>1.3 (0.8, 2.2)</td>
<td>1.6 (1.0, 2.6)</td>
<td>2.0 (1.0, 3.7)</td>
</tr>
</tbody>
</table>

Folate status was defined as above or below the median folate level (7.4 nmol L⁻¹) in control women. *Adjusted for stratification variables (age, index year and area of residence). †Reference category. ‡P < 0.05.

At the 90, 95 and 97.5 percentiles (cut-off points 16.1 μmol L⁻¹, 18.6 μmol L⁻¹ and 21.0 μmol L⁻¹), the adjusted ORs for higher vs. lower values of homocysteine levels were 1.4 (95% CI 0.9, 2.3); 1.8 (95% CI 0.9, 3.5) and 2.8 (95% CI 1.2, 6.8), respectively, indicating a graded dose–effect relationship. Additional adjustment for currently smoking cigarettes, hypertension, and creatinine attenuated the ORs for hyperhomocysteinemia to 1.2, 1.4 and 1.8, respectively (all ns).

The adjusted ORs for MI increased with decreasing quartiles of folate levels, the OR for the lowest quartile of folate levels <5.4 nmol L⁻¹ was 3.0 (95% CI 1.7, 5.1). Further adjustment for putative confounders (smoking, hypertension, diabetes, hypercholesterolemia and BMI) did not change the OR significantly. There was no association between vitamin B₁₂ levels and the risk of MI.

Table 6 Mean plasma homocysteine, folate and vitamin B₁₂ levels in patients and control women according to oral contraceptive use and hormone replacement therapy

<table>
<thead>
<tr>
<th></th>
<th>Oral contraceptive use</th>
<th></th>
<th>No oral contraceptive use</th>
<th></th>
<th>Hormone replacement therapy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients n = 24</td>
<td>Controls n = 128</td>
<td></td>
<td>Patients n = 133</td>
<td>Controls n = 419</td>
<td>Patients n = 22</td>
</tr>
<tr>
<td>Homocysteine (SD), μmol L⁻¹</td>
<td>11.6 (2.5)</td>
<td>12.2 (3.2)</td>
<td></td>
<td>12.9 (4.4)</td>
<td>12.3 (3.5)</td>
<td>12.9 (4.1)</td>
</tr>
<tr>
<td>Folate (SD), mmol L⁻¹</td>
<td>8.1 (5.1)</td>
<td>7.9 (4.3)</td>
<td></td>
<td>6.9 (3.6)</td>
<td>8.5 (4.3)</td>
<td>9.0 (6.2)</td>
</tr>
<tr>
<td>Vitamin B₁₂ (SD), pmol L⁻¹</td>
<td>322 (135)</td>
<td>293 (159)</td>
<td></td>
<td>421 (200)</td>
<td>411 (188)</td>
<td>404 (171)</td>
</tr>
</tbody>
</table>

*Data on oral contraceptive or hormone replacement use at the time of blood collection were missing in two patients and six control women. †P < 0.001 for oral contraceptive users vs. no oral contraceptive users within control women. ‡P = 0.001 for oral contraceptive users vs. hormone replacement therapy users within control women.

The risk of MI for the MTHFR genotypes stratified for high and low folate levels according to the median value is shown in Table 5. Patients with low folate status and the CT heterozygote genotype had a 1.6 (95% CI 1.0, 2.6)-fold increased risk of MI compared with women with the CC wild type and high folate status. In patients with low folate status and the homozygous TT genotype the OR for MI was 2.0 (95% CI 1.0,3.7)-fold increased compared with carriers of the CC wild type and high folate status. Further adjustment for putative confounders (smoking, hypertension, diabetes, hypercholesterolemia and BMI) did not change the ORs materially. The results show that the TT genotype is associated with an increased risk of MI only when folate status is low.

Effect of exogenous female hormones on homocysteine and vitamin levels in healthy controls

Mean homocysteine levels and folate levels did not differ between control women who used OCs and those who did not (Table 6). However, mean vitamin B₁₂ levels were significantly lower in OC users compared with non-users. Among the small group of hormone replacement therapy users (48 controls) we saw no different values of homocysteine and folate from those in non-users.

Discussion

In this population-based case–control study the MTHFR 677TT mutation was associated with elevated plasma homocysteine
concentrations. Homocysteine increased the risk of MI only significantly at very high levels exceeding the 97.5th percentile in the control group. Low plasma folate levels were associated with a 2–3-fold increased risk of MI compared with the highest quartile, and the effect of low folate status was most pronounced in patients with the TT genotype. Homocysteine levels did not differ between OC users, hormone replacement users and non-users.

Vitamins are important cofactors in the enzymatic pathway of homocysteine metabolism, and earlier studies provided data that plasma folate levels and to a lesser extent plasma vitamin B12 were inversely related to plasma homocysteine levels [19]. We confirmed these inverse associations between homocysteine and folate levels, as well as vitamin B12 levels, but did not find an increased risk of MI among women in the lowest quartile of vitamin B12 levels. Folate deficiency in young women may precede hyperhomocysteinemia, especially in women with the MTHFR 677TT mutation, and therefore low folate may be the most relevant risk factor for MI. This observation was also found in young women from the USA [15].

The frequency of the 677TT genotype was slightly higher in patients compared with controls, in line with the distributions found in different homogeneous populations in Europe [2,3,20]. In the control group of young women we found a strong dose–response relation between the MTHFR mutation and homocysteine levels, in accordance with earlier studies [21]. There is debate on the causality of both the MTHFR 677TT genotype and hyperhomocysteinemia in their association with MI. The most recent meta-analysis of retrospective and prospective case–control studies, on the risk of cardiovascular disease and the MTHFR genotypes, showed heterogeneity in the results between European and American populations, probably explained by a different folate status [22]. The young age of the patients and the absence of previous cardiovascular events could have contributed to the absence of a difference in homocysteine levels between patients and controls. Risk-modifying factors after MI, such as dietary intake and medication, could have influenced homocysteine levels in patients, and this could have theoretically led to an underestimation of homocysteine as a risk factor.

We found no difference in the levels of homocysteine and folate between women who used OCs and those who did not, demonstrating that the increased risk of MI due to OCs is not mediated by homocysteine or folate levels. Increased levels of homocysteine during OC use was reported from one study, which, however, included measurements during one cycle of OC use [23], and which could not be confirmed by others [24]. The lower vitamin B12 levels in OC users compared with non-users is in agreement with the literature [25,26].

There are some potential limitations in this study. Our study size was too small to draw definite conclusions on all determinants that were studied. However, this is the largest study performed among young women and the results are consistent with those from other recent investigations. Even in the largest meta-analysis the MTHFR TT genotype was a weak risk factor for coronary heart disease, with an OR of 1.16 (95% CI 1.05, 1.28), and elevated homocysteine levels were at most a modest predictor of cardiovascular disease [9,22]. We cannot exclude completely an effect of including only non-fatal cases. If folate levels or homocysteine levels are related to case fatality, the selection of survivors of MI may have led to a small underestimation of the odds ratios. Folate, vitamin B12 and homocysteine levels were measured after the event, and we do not know whether nutritional intake of folate or other lifestyle habits have been changed in patients after MI. In addition, we can not exclude the influence of risk-modifying medication on homocysteine and folate levels. However, the inverse association between folate levels and homocysteine was also clearly prominent in the control group. We did not measure homocysteine levels after oral methionine loading, which may be determined to a greater extent by the transsulfuration pathway in which vitamin B6 is a cofactor [27]. Neither did we assess pyridoxine levels; although a few studies showed a protective effect of higher pyridoxine levels on coronary heart disease [28,29], in most studies pyridoxine has not been proven an important risk factor for MI. Homocysteine levels were measured under non-fasting conditions. However, it is unlikely that the risk estimates in this study would be influenced by the blood sampling procedure, which was equal for patients and controls.

In the present study we found an increased risk of MI for low plasma folate concentrations in accordance with the study in young women from Schwartz [15]. As hyperhomocysteinemia is easily corrected by vitamin supplementation as well as folic acid fortification of meals, and vitamin supplementation in subjects with normal vitamin levels lead to further decreases of homocysteine levels [30], this offers an important perspective for prevention of premature cardiovascular disease [31,32]. Recently, beneficial effects of folic acid have been reported which are largely independent of homocysteine lowering [33]. It seems reasonable await data from randomized controlled trials before implementing active screening or treatment programs, although treatment of low vitamin levels may be defensible today.

Acknowledgements

The RATIO project was supported by a grant from the Netherlands Heart Foundation (grant 97-063). C. Krommenhoek-van Es performed the DNA analyses, D. van Oppenraaij performed analyses of the homocysteine concentrations. H.J.B. is established investigator of the Netherlands Heart Foundation (D97.021). Finally, we thank all women who participated in the study.

References

Appendix: participating centers

Sint Antonius Hospital Nieuwegein, Professor Dr N. M. van Hemel
University Medical Center Amsterdam, Dr R. J. G. Peters
Leiden University Medical Center, Dr V. Manger Cats
Rijnstate Hospital, Arnhem, Dr H. A. Bosker

© 2004 International Society on Thrombosis and Haemostasis
Medical Center Haaglanden, Westeinde Hospital, Dr J. Kolf
University Medical Centrum Nijmegen-Sint Radboud, Professor Dr F. W. A. Verheugt
Leyenburg Hospital, The Hague, Dr B. J. M. Delemarre
Erasmus Medical Center Rotterdam, Dr F. A. M. Jonkman
University Medical Center Maastricht, Dr F. Vermeer
Rijnland Hospital, Leiderdorp, Dr C. van Rees
Medical Center Free University, Amsterdam, Dr O. Kamp
University Medical Center Utrecht, Professor Dr E. O. Robles de Medina
University Medical Center Groningen, Dr M. van den Berg
Bronovo Hospital, The Hague, Dr P. R. M. van Dijkman
Sint Franciscus Gasthuis Rotterdam, Dr A. Schelling
Diaconessenhuis Leiden, Dr S. A. G. J. Witteveen