Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-like Receptor Ligand-Peptide Conjugates in Dendritic Cells*

Selina Khan¹, Martijn S. Bijker²,¹, Jimmy J. Weterings³,¹, Hans J. Tanke¹, Gosse J. Adema¹, Thorbald van Hall⁴,* Jan W. Drijfhout³, Cornelis J. M. Melief⁴, Hermen S. Overkleeft³, Gijsbert A. van der Marel⁵, Dmitri V. Filippov⁶, Sjoerd H. van der Burg⁷,* and Ferry Ossendorp¹,²

From the ¹Departments of Immunohematology and Blood Transfusion, ²Molecular Cell Biology, and ³Clinical Oncology, Leiden University Medical Centre, P. O. Box 9600, 2300 RC Leiden, The Netherlands, ⁴Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands, and ⁵Immunology Laboratory, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands

Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well-defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam₃CysSK₄ (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG₉ conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam—conjugated peptides were likewise internalized independently of the expression of cell-surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-independent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG₉-conjugates was independent of clathrin-coated pits but partly dependent on caveola formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8⁺ T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen presentation and T-cell priming.

Toll-like receptors (TLR)³ are germ line-encoded receptors expressed mainly on cells of the innate immune system, such as granulocytes, macrophages, and dendritic cells (DCs). These receptors are important in sensing infectious agents through recognition of pathogen-associated molecules and act as a communicator between innate and adaptive immune responses. The receptors are expressed either on the cell surface or in the endosomal organelles. This compartmentalization of the TLR correlates with the type of ligands with which they interact. The TLRs expressed on the cell surface bind to extracellular components of the microorganisms (such as bacterial LPS to TLR4, bacterial lipopeptide to TLR2). In contrast, the TLRs found in the endosomes bind to ligands derived from intracellular molecules of the pathogen, such as unmethylated CpG DNA sequences to TLR9 and single-stranded RNA to TLR7 (1). Studies have shown that ligands interacting with the latter type of TLRs are internalized independently of the TLRs (2). Upon engagement of the ligand to its receptor, a cascade of intracellular signaling events is initiated that involves docking of different adapter molecules such as MyD88 and TRAM to the TLR receptors and recruitment of proteins belonging to the IRAK family, which ultimately culminate in the activation of the NFκB transcription factor and gene transcription leading to production of proinflammatory cytokines (3).

DCs are both initiators and regulators of T cell responses (4). Dendritic cells constantly screen the environment for potential foreign antigens by a variety of mechanisms such as phagocytosis, macropinocytosis, caveolin-mediated, or clathrin-dependent endocytosis. The manner of uptake is dependent on the size and nature of material to be internalized (5, 6). As specialized antigen-presenting cells, DCs have the capacity to

* This work has been funded by Netherlands Organization for Scientific Research as a part of the From Molecule to Cell program (to S. H. v B., D. V. F., G. A. M., and F. O.) and by the KWF Kankerbestrijding UL 2003-2817 (to S. H. v B.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† These authors contributed equally.

‡ To whom correspondence should be addressed. Tel.: 31-71-5263843; Fax: 31-71-5265267; E-mail: f.a.ossendorp@lumc.nl.

³ The abbreviations used are: TLR, Toll-like receptor; TLR-L, TLR ligand; DC, dendritic cell; BMDC, bone marrow-derived DC; CTL, cytotoxic T-cell lymphocyte; MDC, monodansylcadaverine; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; ODN, oligonucleotide; Pam, Pam₃CysSK₄; s.c., subcutaneous; TM, tetramer; MALDI, matrix-assisted laser desorption ionization; LPS, lipopolysaccharide; Fmoc, N-(9-fluorenyl)mesoxy carbonyl; HPLC, high-performance liquid chromatography; ACN, acetonitrile; IL, interleukin; WT, wild type; TAP, transporter associated with antigen processing; HCTU, 1-[bis(dimethylamino)methyl]ene]-5-chloro-1H-benzo[d]imidazole 3-oxide hexafluorophosphate; DMT, 4,4′-dimethoxytrityl; NMP, N-methylpyrrolidone; FACS, fluorescence-activated cell sorter; TAC, tert-butylphenoxacyethyl.
Internalization and Routing of TLR Ligand-Peptide Conjugates

efficiently process exogenous proteins and present the peptides in major histocompatibility complex (MHC) class I molecules, a process known as cross-presentation. In this scenario exogenously derived antigens are internalized and translocate from the endosomal route into the cytosol, where the proteasome complex processes the antigen. The generated peptides are transported from the cytosol into the endoplasmic reticulum via the peptide transporter TAP (7), after which the peptides undergo further trimming and are finally loaded onto MHC class I molecules, which translocate to the cell surface, where the peptide is presented to CD8+ T-cells.

The ability of DCs to cross-present peptides on MHC class I to CD8+ T-cells together with the capacity of TLR ligands to deliver maturation signals has inspired efforts to explore the use of DCs as a vaccine vehicle in the fight against infectious diseases and cancer (8, 9). Covalent linkage of immunogenic peptides to the TLR9 ligand, CpG DNA, or TLR2 ligands, like Pam3CysSK4, both types of TLR-L conjugates was independent of TLR expression, whereas uptake and requires endosomal acidification, TAP translocation, and proteasomal processing. Importantly, whereas the uptake of internalization mechanisms. Down-stream processing route up independently of TLR expression albeit through two distinct internalization mechanisms. Down-stream processing route for MHC class I antigen presentation, however, were similar and requires endosomal acidification, TAP translocation, and proteasomal processing. Importantly, whereas the uptake of both types of TLR-L conjugates was independent of TLR expression, priming of specific CD8+ T-cell response required TLR signaling in dendritic cells.

EXPERIMENTAL PROCEDURES

Mouse Strains and Chemicals

C57BL/6 (B6; H-2b) were obtained from Charles River Laboratories. TLR2-deficient mice were purchased from Jackson Laboratories, whereas the TLR9-deficient mice were obtained from S. Akira Osaka University, Osaka, Japan. Bone marrow from TAP-deficient mice and TAP/β2-microglobulin-deficient mice strains was kindly provided by Prof. H. G. Ljunggren, Karolinska Institutet, Sweden. LPS of *Escherichia coli* (serotype026:B6), Monodansylcadaverine (MDC), and filipin were purchased from Sigma-Aldrich. Epoxomicin and chlorophenol from IRIS Biotech GmbH (Germany), and Pam3Cys-OH was from Bachem. PyBOP (benzotriazole-1-yloxysuccinimidylhexafluorophosphate) was purchased from MultiSynTech GmbH. Reactive fluorescent dyes BODIPY-FL N-(2-aminoethyl) maleimide, Alexa Fluor 488 C5, maleimide, and Alexa Fluor 488 carboxylic acid succinimidyl ester were purchased from Invitrogen. Fmoc amino acids were from SENN Chemicals or from MultiSynTech GmbH. Tentagel-based resins were purchased at Rapp Polymere GmbH. All chemicals and solvents used in the solid phase peptide synthesis were from Biosolve. Chemicals, resins, and solvents used in the solid phase DNA synthesis except Beaucage reagent and Control Pore Glass support used to introduce 3'-thiol modification were from Proligo and were used as received. 3’-Thiol modifier C3 S-S Control Pore Glass and Beaucage reagent were purchased at Glen Research. All chemicals were used as received.

General Methods

Mass spectra were recorded on a PE SCIEX API 165 (PerkinElmer Life Sciences) mass spectrometer. Analytical liquid chromatography/mass spectroscopy was conducted on a Jasco system using an Alltima C18 analytical column (4.6 × 150 mm, 5-μm particle size, flow 1.0 ml/min) with detection at 214 and 254 nm. The solvent system was 100% water (A), 100% acetonitrile (B), and 1% trifluoroacetic acid (C). Gradients of A to B were applied over 15 min, keeping C isocratic at 10%. Purifications of the synthetic peptides were conducted on a BioCAD Vision automated HPLC system (PerSeptive Biosystems, Inc.) supplied with an Alltima C18 column (10 × 250 mm, 5-μm particle size, running at 4 ml/min). A Varian DMS 200 UV-visible spectrophotometer was used to measure UV absorption MALDI-time-of-flight spectra were recorded on a Voyager-DE PRO mass spectrometer (Perseptive Biosystems, Inc.).

Peptide Synthesis

Fmoc-based solid-phase peptide synthesis was performed on a CS Bio 336 automated instrument (CS Bio Co.) starting from either preloaded Fmoc-Leu-PHB-Tentagel resin or from Tentagel -RAM resin. The synthesis was performed on a 50- or 250-μmol scale according to established methods (21). HCTU was used as coupling reagent. All peptides (see Table 1) were cleaved from the resin using trifluoroacetic acid/trisopropylsilane/h2O (95/2.5/2.5) for 2 h at room temperature, precipitated from diethyl ether, redissolved in 20% aqueous 1,1,1,3,3,3-hexaofluoro-2-propanol, and purified by reverse phase HPLC and characterized using liquid chromatography/mass spectroscopy and MALDI mass spectroscopy (see “General Methods”).
DMT-based solid-phase phosphorothioate oligonucleotide (ODN) synthesis was performed on an Expedite automated instrument (Perceptive Biosystems) starting from Control Pore Glass support with the 3'-thiol modifier. The syntheses were performed on a 10-μmol scale according to established methods (22). Elongation was performed using 3'-phosphoramidite derivatives of DMT-protected nucleosides 5'-DMT-A(TAC)-OH, 5'-DMT-C(TAC)-OH, 5'-DMT-G(TAC)-OH, and 5'-DMT-T-OH under the agency of dicyanoimidazole. After each coupling, remaining free 5'-hydroxyls were blocked using 5'-DMT-T-OH under the agency of dicyanoimidazole. After final DMT removal the DNA oligomer was removed by trichloroacetic acid, after which elongation was continued. After final DMT removal the DNA oligomer was cleaved from the resin by 25% ammonium hydroxide solution to give a 3'-disulfide modified ODN (ODN-SS). ODNs were purified on a Q-Sepharose column to give a 3'-disulfide modified ODN (ODN-SS).

A 10-μmol scale according to established methods (22). Elongation was performed using 3'-phosphoramidite derivatives of DMT-protected nucleosides 5'-DMT-A(TAC)-OH, 5'-DMT-C(TAC)-OH, 5'-DMT-G(TAC)-OH, and 5'-DMT-T-OH under the agency of dicyanoimidazole. After each coupling, remaining free 5'-hydroxyls were blocked using 5'-DMT-T-OH under the agency of dicyanoimidazole. After final DMT removal the DNA oligomer was removed by trichloroacetic acid, after which elongation was continued. After final DMT removal the DNA oligomer was cleaved from the resin by 25% ammonium hydroxide solution to give a 3'-disulfide modified ODN (ODN-SS).

Fmoc-deprotected peptide resin (200 mg, 30 μmol) was suspended in 2 ml of NMP, and 3-maleimidopropionic acid (5 eq, 250 μmol, 42.2 μg), HCTU (5 eq, 250 μmol, 103.2 μg), and N,N'-diisopropylethylamine (5 eq, 250 μmol, 42 μl) were added subsequently. The mixture was shaken for 2 h after which the resin was filtered, washed with NMP, dichloromethane, and dried. A 2,4,6-trinitrobenzenesulfonic acid test indicated complete coupling. The products were processed as described under “Peptide Synthesis.”

ODN-Peptide Conjugates

For CpG-OVA247–264, 3'-disulfide modified CpG-SS-propyl-OH (266 nmol) was converted to 3'-SH-modified CpG-SH overnight with dithiothreitol (DTT)-containing buffer (35 mg of DTT, 26 mg of NaOAc-3H2O, 1 ml of water). Dithiothreitol was removed from the mixture using a PD-10 desalting column (Amersham Biosciences) that was pre-equilibrated with 25 ml of a 50 mM phosphate buffer (25 mM NaH2PO4, 25 mM Na2HPO4, 1 mM EDTA in water, continuously degassed with helium. Filtrate (3.25 ml) was directly transferred to a tube containing 5 mg of maleimidopropionyl peptide Mal-OVA247–264. The resulting solution was sonicated and placed under blanket of argon. The tube was sealed and shaken for 2 days at room temperature. The mixture was purified over a Superdex 75 gel filtration column using isocratic elution with 0.15 M triethylammonium acetate. Fractions containing the product were collected and lyophilized. Excess triethylammonium acetate was removed by lyophilization from water (3 times). Quantification was performed by UV absorbance (260 nm). CpG-OVA247–264A5K and GpC-OVA247–264 were prepared as described for CpG-OVA247–264 starting from the corresponding ODNs and maleimidopropionyl peptides.

Lipopeptides

For PamCysSK4-OVA247–264, Fmoc-deprotected peptide resin (300 mg, 45 μmol) was suspended in 1.4 ml or 1:1 NMP/dichloromethane. PamCys-OH (91 mg, 2 eq, 100 μmol) and PyBOP (benzotriazole-1-yl-oxytrispyrrolidinophosphonium hexafluorophosphate; 80 mg, 3 eq, 150 μmol) were added. N,N'-Diisopropylethylamine (30 μl, 175 μmol) was added in two portions of 15 μl with an interval of 15 min, and the mixture was shaken for 4 h. The resin was washed with NMP and dichloromethane and dried. A 2,4,6-trinitrobenzenesulfonic acid test indicated complete coupling. The product was cleaved from the resin as described under “Peptide Synthesis,” dissolved in t-butyl alcohol/ACN/H2O (1:1:1), and purified on an Alltima CN column (10 × 250 mm, 5-μm particle size) with a gradient of A to B; C was kept isocratic at 10% (A, 1:1 CH3OH/H2O; B, ACN; C, 1% trifluoroacetic acid in 9:1 CH3OH/H2O). PamCysSK4-OVA247–264A5K and PamCysSK4-C-OVA247–264 were prepared and purified as described above for PamCysSK4-OVA247–264 and GpC-OVA247–264 starting from the corresponding peptide resin.

Fluorescently Labeled Peptides and Conjugates

[Alexa488]OVA247–264—Fmoc-deprotected peptide resin (100 mg, 15 μmol) was treated twice with 2 ml of a capping reagent (0.5 M Ac2O, 0.125 M N,N'-diisopropylethylamine in NMP). A 2,4,6-trinitrobenzenesulfonic acid test indicated complete acetylation. The cleaved and purified peptide (1 mg) was dissolved into 50 mM phosphate buffer (250 mM NaHCO3, 30% ACN in H2O), and Alexa Fluor 488 carboxylic acid succidinimidyl ester (0.3 mg) was added. Another 50 μl of buffer was added, and the mixture was shaken overnight. The product was purified by reverse phase HPLC (see “General Methods”). CpG-[Alexa488]OVA247–264 and GpC-[Alexa488]OVA247–264—Conjugate CpG-OVA247–264 (296 nmol) or GpC-[Alexa488]OVA247–264 (296 nmol) was dissolved in 50 μl of buffer (300 mM NaHCO3 in 30% acetonitrile/water), and Alexa Fluor 488 carboxylic acid succinimidyl ester (1.0 mg) was added. The bright green mixture was shaken overnight. The mixture was diluted 5 times with H2O before being subjected to reverse phase HPLC purification (Alltima C18, gradient of A to B; C was kept isocratic at 10%; A, H2O; B, ACN; C, 10% aqueous NH4OAc).

PamCysSK4-C[BDP-FL]OVA247–264—Lipopeptide PamCysSK4-C-OVA247–264 (0.46 μmol, 1.69 mg) and BODIPY-FL-N-(2-aminoethyl)maleimide were transferred to a vial containing 0.5 ml of 50 mM phosphate buffer (25 mM NaH2PO4, 25 mM Na2HPO4, 1 mM EDTA in 2:1:1 H2O/CH3OH/ACN). The mixture was sonicated and shaken for 60 h under Argon.

4 The use of a large excess of N,N'-diisopropylethylamine (4 eq relative to PamCys-OH) proved to be detrimental for the purity of the product as judged by liquid chromatography/mass spectroscopy analysis.

Internalization and Routing of TLR Ligand-Peptide Conjugates

DMT-based solid-phase phosphorothioate oligonucleotide (ODN) synthesis was performed on an Expedite automated instrument (Perceptive Biosystems) starting from Control Pore Glass support with the 3'-thiol modifier. The syntheses were performed on a 10-μmol scale according to established methods (22). Elongation was performed using 3'-phosphoramidite derivatives of DMT-protected nucleosides 5'-DMT-A(TAC)-OH, 5'-DMT-C(TAC)-OH, 5'-DMT-G(TAC)-OH, and 5'-DMT-T-OH under the agency of dicyanoimidazole. After each coupling, remaining free 5'-hydroxyls were blocked using 5'-DMT-T-OH under the agency of dicyanoimidazole. After final DMT removal the DNA oligomer was removed by trichloroacetic acid, after which elongation was continued. After final DMT removal the DNA oligomer was cleaved from the resin by 25% ammonium hydroxide solution to give a 3'-disulfide modified ODN (ODN-SS). ODNs were purified on a Q-Sepharose column to give a 3'-disulfide modified ODN (ODN-SS).
mixture was diluted 5 times with 40:30:30 H₂O/ACN/t-butyl alcohol, 1% trifluoroacetic acid before being subjected to reverse phase HPLC purification as described for Pam₃CysSK₄-C-OVA247–264.

SK₄-C[BDP-FL]-OVA247–264 was synthesized as described for Pam₃CysSK₄-C[BDP-FL]-OVA247–264 using 50 mM phosphate in 3:2 H₂O/ACN as a ligation buffer and SK₄-C-OVA247–264 as the peptide substrate. Pam₃CysSK₄-C[Alexa488]OVA247–264 was synthesized as described for Pam₃CysSK₄-C[BDP-FL]OVA247–264 using Alexa Fluor 488 C₅ maleimide as the reactive dye.

IL-12p40 Enzyme-linked Immunosorbent Assay—DCs (4 × 10⁶) were plated into a 96-well round bottom plate and incubated for 24–48 h with the compounds indicated in the legend to Fig. 1. Supernatants were harvested and tested for IL-12p40 content using a standard sandwich enzyme-linked immunosorbent assay as previously described (23).

Intracellular Cytokine Staining

An aliquot of spleen cells after re-stimulation and Ficoll purification (see above) were subjected to stimulation in vitro with or without 1 μg/ml OVA257–264 peptide (H₂-Kb restricted SIINFEKL) overnight in the presence of GolgiPlug (BD Pharmingen). Cells were then washed twice with fluorescence-activated cell sorter buffer and stained with phycoerythrin-conjugated monoclonal rat anti-mouse CD8b2 antibody. Cells were subjected to intracellular cytokine staining using the Cytotox/Cytoperm kit according to the manufacturer’s instructions (BD Pharmingen). Intracellular interferon-γ was stained with allophycocyanin-conjugated rat anti-mouse interferon-γ. All antibodies were purchased from BD Pharmingen. Flow cytometry analysis was performed using FACS-Calibur with CELLQuest software (BD Biosciences). Splenocytes without peptide stimulation were used as a negative control.

In Vivo Uptake Studies

To monitor the uptake of the TLR-L-conjugated peptides and the free peptide in vivo, mice were injected s.c. either with 5 nmol of Alexa488 Fluor-labeled CpG~conjugated peptide, 5 nmol of BODIPY-FL Pam~conjugated peptide, CpG mixed with Alexa488 Fluor-labeled peptide, or Pam mixed with BODIPY-FL-labeled peptide. Three days later mice were sacrificed, and a single cell suspension of the draining lymph nodes was stained for CD11c (clone HL3) before being subjected to flow cytometry analysis.

RESULTS

To study the uptake, trafficking, and processing of two distinct TLR-ligand peptide conjugates in dendritic cells for MHC
class I presentation to CD8\(^+\) cytotoxic T-lymphocytes, we selected the TLR9 ligand CpG and the TLR2 ligand Pam\(_3\)CysSK\(_4\) (Pam) based on the fact that these two ligands interact with two distinct receptors located either in the endosomal compartment (TLR9) or on the plasma membrane (TLR2). As a model antigen we made use of peptides containing the CTL epitope (SIINFEKL, designated OVA\(_{257–264}\)) derived from the ovalbumin protein. Two different peptide length variants were synthesized, an extended peptide that required proteasome-dependent processing on both the N and C terminus to release the CTL epitope (DEVSGLEQLESIINFEKLAAAAAK) designated OVA\(_{247–264}\)A\(_{5\text{K}}\), and a shorter peptide, of which C-terminal processing by the pro-

cessome is not required (DEVSGLEQLESIINFEKL), designated OVA\(_{247–264}\)A\(_{5\text{K}}\).

Crucially, all of our compounds (listed in Table 1) are produced synthetically and are, therefore, chemically well defined, of high purity, and of constant quality, avoiding potential contamination with other TLR ligands such as LPS, which commonly occur in purified TLR ligand preparations.

Robust Induction of Naive CD8-specific T-cells Mediated by the Conjugates—To establish the quality of our generated TLR-L-peptide conjugates, we first investigated the induction of an endogenous T-cell response following s.c. injection of either TLR-L-conjugated peptide or free peptide into naïve C57BL/6 mice. After 10 days, the induction of OVA\(_{247–264}\)-specific T-cells was analyzed. As is shown in Fig. 1A, the magnitude of the OVA\(_{257–264}\)-specific T-cell response induction by either CpG–OVA\(_{247–264}\)A\(_{5\text{K}}\) or Pam–OVA\(_{247–264}\)A\(_{5\text{K}}\) was significantly higher than that in mice injected with non-conjugated OVA\(_{247–264}\)A\(_{5\text{K}}\) peptide mixed together with either free CpG or free Pam. To address whether the induction of specific T-cells depended on activation of the DCs, we injected GpC–OVA\(_{247–264}\) conjugate, which is a non-stimulatory oligonucleotide, as shown by its lack of capacity to induce IL-12 production by DCs (Fig. 1C). Injection of the GpC–peptide conjugate into naïve mice led to a significantly lower induction of specific CD8\(^+\) T-cells than of CpG–conjugated peptide but was still as high as the response obtained after mixing of peptide with the CpG (Fig. 1A). Importantly, only when a stimulatory TLR-L conjugate was given, were the majority of CD8\(^+\) T-cells able to produce interferon-\(\gamma\) (Fig. 1B), indicating that signaling via the TLR is essential for the generation of large numbers of functional T-cells in vivo. These results suggest that the enhanced induction of specific T-cells is primarily the result of efficient delivery of the TLR-L-conjugated peptide into the antigen-presenting cell.

TLR Conjugates Activate Dendritic Cells—Next we analyzed the ability of the different conjugates to induce maturation of DCs. As evident from Table 2, increased surface marker expression of CD40, CD86, MHC I, and MHC II was observed in dendritic cells after treatment with the different TLR-L conjugates to a similar extent as the free TLR-Ls. To confirm the involvement of the TLRs in DC activation, we isolated bone marrow–derived dendritic cells (BMDCs) from wild type (WT) mice, TLR2-deficient mice, and TLR9-deficient mice and stimulated these cells with the different conjugates followed by phenotypic characterization by staining for different surface markers associated with DC maturation (25). No up-regulation of the cell surface markers CD86 and MHC class II was detected when BMDCs from TLR2-deficient mice or TLR9-deficient mice were stimulated with Pam–conjugated peptide or CpG–conjugated peptide, respectively (Fig. 2). This impaired up-regulation was not due to a general defect in the maturation signaling pathway, because stimulation with LPS could induce up-regulation of CD86 and MHC II in BMDCs derived from both TLR2- and TLR9-deficient mice to a similar extent as observed for BMDCs derived from wild type mice. Taken together, these results demonstrate that the conjugates are as effective as free TLR ligand in activating the DCs and show that the expression of the cognate TLR is required for activation of DCs by the TLR-L-peptide conjugates.

Efficient Uptake of CpG- and Pam-conjugated Antigen Peptides by Dendritic Cells—Having demonstrated that TLR signaling was important for DC activation and priming of T-cells, we decided to compare the downstream cellular mechanism used by the two types of TLR-L with respect to uptake, routing, and cellular processing. Therefore, the efficiency of antigen uptake of conjugated versus non-conjugated peptide by DCs was determined. DCs were incubated with either Pam–conjugated peptide or free peptide. Both compounds were labeled with a fluorophore (attached on the peptide backbone), which allowed us to monitor the internalization of these compounds by confocal microscopy analysis. Introduction of the fluorophore (either

Table 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>TLR ligand</th>
<th>Peptide</th>
<th>Fluorophore</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVA(_{357–264})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVA(_{247–264})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVA({247–264})A({5\text{K}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CpG–OVA(_{247–264})</td>
<td>CpG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CpG–OVA({247–264})A({5\text{K}})</td>
<td>CpG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pam–CysSK(4)–OVA({247–264})</td>
<td>Pam–CysSK(_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pam–CysSK(4)–OVA({247–264})A(_{5\text{K}})</td>
<td>Pam–CysSK(_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Alexa488]OVA(_{357–264})</td>
<td>Alexa488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Alexa488]OVA(_{247–264})</td>
<td>Alexa488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Alexa488]OVA({247–264})A({5\text{K}})</td>
<td>Alexa488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK(4)–[BDP–FL]–OVA({247–264})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC–[Alexa488]OVA(_{247–264})</td>
<td>GpC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC–[Alexa488]OVA({247–264})A({5\text{K}})</td>
<td>GpC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Alexa488]OVA({247–264})A({5\text{K}})</td>
<td>Alexa488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Alexa488]OVA({247–264})A({5\text{K}})</td>
<td>Alexa488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDP–FL–OVA(_{247–264})</td>
<td>BDP–FL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alexa488 or BODIPY-FL) into the conjugates did not alter the ability of the conjugates to activate DCs as comparable levels of the IL-12 cytokine were produced by the fluorescent conjugates and the dark conjugates. As indicated by the increased intensity of fluorescence inside the cells, the Pam\textsubscript{H}11011 conjugated peptides were taken up far more efficiently than the non-conjugated peptide (Fig. 3A). Interestingly, the Pam\textsubscript{H}11011 conjugated peptide was found to accumulate in hot spots (indicated by arrows in Fig. 3A), whereas a more diffuse pattern was observed in DCs incubated with the peptide alone. Quantification of the mean fluorescence intensity (MFI) revealed a more than 4-fold higher fluorescence in DCs incubated with the Pam\textsubscript{H}11011 conjugate compared with DCs incubated with the peptide (Fig. 3B). Similarly, the non-stimulatory GpC\textsubscript{H}11011 conjugate (MFI 63 ± 7.3) was internalized more efficiently than the unconjugated peptide by DCs (Fig. 3C). In addition, the Pam\textsubscript{H}11011 conjugate was internalized more efficiently than the non-conjugated peptide by DCs (Fig. 3C). In addition, the non-stimulatory GpC\textsubscript{H}11011 conjugate (MFI 63 ± 7.3) was inter-

nalized to a similar extent as the stimulatory CpG~conjugate (MFI 72 ± 9.1) (Fig. 3D).

These comparisons indicate that the fluorescent TLR-L conjugates are taken up much more efficiently by DCs than unconjugated peptides in vitro. To examine the uptake efficiency in vivo, mice were injected with either Alexa488 Fluor-labeled CpG~conjugate or peptide labeled with Alexa488 Fluor mixed with dark CpG. Three days later draining lymph node cells were stained for the DC surface marker CD11c. In line with the in vitro results, a significantly higher proportion of CD11c~vivo stained for the DC surface marker CD11c. In line with the

Conjugates Translocate to the Endosomal/Lysosomal Compartment Independently of TLR Expression—Our antigen uptake studies revealed that also the TLR9-L conjugate was taken up more efficient despite that TLR9 is not surface-expressed. Therefore, to evaluate the relevance of TLR expression for the enhanced uptake, BMDCs purified from WT, TLR2~−/−, and TLR9~−/− mice were incubated with Alexa488 Fluor-labeled TLR-L conjugates. As shown in Fig. 4, A and C, BMDCs from TLR9~−/− mice internalized CpG~conjugates to a similar extent as BMDCs from wild type mice, as reported previously (2).

Surprisingly, similar experiment carried out with Pam~conjugate and BMDCs from WT mice and TLR2~−/− mice showed that also the Pam conjugate, despite the fact that the receptor for Pam (TLR2) is located on the cell surface (1, 26), were internalized equally well by both types of DCs (Fig. 4, B and D).

To monitor the intracellular localization of the conjugates, we performed a co-localization study between the conjugates (green) and the endosomes (red). As seen in Fig. 4E, both the CpG~ and Pam~conjugates are co-localized partially with an endosomal tracker (Lysotracker) in a pattern characteristic for the endosomal vehicles. Moreover, no overall difference in the uptake kinetic or in the trafficking of the compounds could be detected when comparing BMDCs from wild type mice to mice deficient for either TLR9 or TLR2 expression.5 These results indicate that TLR expression is not required for uptake and that the conjugate re-locates to the endosomal compartment.

Conjugation of Peptide Leads to Pronounced Enhancement in Antigen Presentation in Vitro—Having established that the conjugates were taken up much more efficiently than the free peptide harboring the OVA CTL epitope SIINFEKL, we next addressed the effect of conjugation of peptide to TLR-L on antigen presentation. DCs were loaded with either the CpG~conjugated peptide, Pam~conjugated peptide, the CpG

TABLE 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD86</td>
</tr>
<tr>
<td>Untreated</td>
<td>8</td>
</tr>
<tr>
<td>Peptide</td>
<td>8</td>
</tr>
<tr>
<td>CpG</td>
<td>59</td>
</tr>
<tr>
<td>CpG mixed with peptide</td>
<td>48</td>
</tr>
<tr>
<td>CpG~conjugate</td>
<td>71</td>
</tr>
<tr>
<td>Pam</td>
<td>16</td>
</tr>
<tr>
<td>Pam~conjugate</td>
<td>18</td>
</tr>
<tr>
<td>Pam~conjugate</td>
<td>14</td>
</tr>
<tr>
<td>LPS</td>
<td>46</td>
</tr>
</tbody>
</table>

FIGURE 2. TLR-dependent DC activation. A, BMDCs from either WT or TLR9-deficient mice (TLR9 KO) were incubated either with 1 μM CpG~OVA247–264A5K or E. coli LPS (10 μg/ml) for 48 h. Cells were stained with CD86 or MHC II antibodies as described under “Experimental Procedures” and subjected to flow cytometry analysis. B, BMDCs from either WT or TLR2-deficient mice (TLR2 KO) were incubated either with 1 μM Pam~OVA247–264A5K or E. coli LPS (10 μg/ml) for 48 h, and cells were treated as stated under A.
FIGURE 3. Efficient antigen uptake mediated by the TLR-L conjugates. A, confocal images of the dendritic cell line D1 incubated for 15 min with either BODIPY-FL labeled Pam– OVA247–264 (Pam– conjugate) or BODIPY-FL-labeled peptide OVA247–264 (Peptide) at different concentrations. Arrows indicate accumulation of Pam– conjugates. B, quantification of MFI of fluorescence inside numbered cells selected from A. C, DCs were incubated with either Alexa488 Fluor-labeled CpG– OVA247–264 (CpG– conjugate), Pam– OVA247–264 (Pam– conjugate), or OVA247–264 peptide for 30 min; all compounds were used at 2.5 µM. D, DCs were incubated with either Alexa488 Fluor-labeled CpG– OVA247–264 (CpG– conjugate) or GpC– OVA247–264 (GpC– conjugate) for 30 min at a final concentration of 5 µM. All scale bars in A–D are 20 µm. E, mice were injected s.c. with either Alexa488 Fluor-labeled peptide OVA247–264 mixed with CpG or Alexa488 Fluor-labeled CpG– OVA247–264 for 72 h later mice were sacrificed and drained lymph node cells were stained for CD11c. The y axis displays the percentages of Alexa488-positive cells out of total CD11c+ cells. F, mice were injected s.c. with either BODIPY-FL-labeled peptide OVA247–264 mixed with Pam or BODIPY-FL-labeled Pam– OVA247–264 for 72 h later mice were sacrificed, and drained lymph node cells were stained for CD11c. The y axis displays the percentages of BODIPY-FL-positive cells out of total CD11c+ cells. Experiments were conducted twice with similar results.
or Pam mixed with the peptide, or the peptide alone (Fig. 5, A and B) before incubation with the peptide-specific T-cell hybridoma B3Z cells that recognize the H-2Kb, SIINFEKL CTL epitope (27). As the concentration of the compounds decreased, antigen recognition was rapidly lost when DCs were incubated either with the peptide alone or with the peptide mixed with CpG but not when the CpG/PE-conjugated peptide was used. This indicates that the conjugation of peptides to TLR-L enhances antigen presentation (Fig. 5A). Likewise, an increased antigen presentation was observed for the Pam/PE-conjugated peptide (Fig. 5B). In this case the difference in antigen presentation between conjugate and non-conjugate was even more prominent. Incubation with a mixture of free TLR-L (Pam or CpG) and the peptides resulted in a decreased antigen presentation by DCs when compared with loading with peptide alone or with conjugated peptide. This might be related to decreased uptake, since it has previously been reported that the endocytotic capacity of DCs declines upon encountering maturation signals (28, 29).

To gain insight in the kinetics of antigen presentation, DCs were incubated for various time periods with either TLR-L-conjugated peptide, peptide mixed with TLR-L, or peptide alone. As shown in Fig. 5, C and D, it required 24–48 h of continuous presence of peptide mixed with CpG or Pam or of peptide alone to reach the level of antigen presentation acquired already after 2 h of incubation with the conjugated peptide, as measured by an equal ability to stimulate the peptide-specific B3Z hybridoma T-cells. Thus, conjugation greatly improves the swiftness of presentation of antigen by DCs for stimulation of T-cells.

The confocal microscopy results indicated that uptake of the conjugates occurred independently from the expression of the respective TLRs. Therefore, we next evaluated the impact of TLR expression upon antigen presentation. To this end BMDCs from WT, TLR2−/−, and TLR9−/− mice loaded with the conjugates were incubated in vitro together and subsequently incubated with the peptide-specific T-cell hybridoma
B3Z cell line. In line with the confocal uptake studies, BMDCs derived from WT or the TLR2- or TLR9-deficient mice strains were recognized to the same extent (Fig. 6, A and B).

Disruption of Clathrin Formation and Caveolae Clustering Blocks Antigen Presentation of TLR-L Conjugates—DCs can take up exogenous antigens via different mechanisms such as clathrin-mediated endocytosis, fluid phase endocytosis, and macropinocytosis (30). To define the pathways by which the TLR-L-peptide conjugates were internalized, DCs were pre-treated with different inhibitors before loading with the TLR-L conjugates. Macropinocytosis inhibitor 5-(N,N-dimethyl)amiloride (29) had no effect on antigen presentation. On the other hand pretreatment with filipin, a sterol binding agent that disrupt caveolae structures (31) and thereby lipid-raft formation, reduced antigen presentation of both Pam−conjugates as well as CpG−conjugates in a dose-dependent manner, whereas antigen presentation of the CTL epitope OVA257–264 was only marginal affected (Fig. 6C). Because lipid raft formation is involved both in clathrin-dependent endocytosis as well as caveolae-dependent internalization (32), we analyzed the impact of MDC, a specific inhibitor of clathrin formation (33, 34), upon antigen presentation. Interestingly, whereas antigen presentation of CpG−conjugated peptides was not affected by MDC, antigen presentation of Pam−conjugated peptides was abrogated in a dose-dependent fashion (Fig. 6D). To further explore the distinct uptake mechanisms used by the two types

FIGURE 5. TLR-L conjugates strongly enhance antigen presentation. A, the dendritic cell line, D1, was incubated with either the OVA247–264 peptide (gray bars), the OVA247–264 peptide mixed with CpG (white bars), or CpG−conjugated to OVA247–264 (black bars). After 2 h cells were washed, and B3Z cells were added and co-cultured for 24 h before their activation was measured. B, D1 cells were incubated under the same conditions as indicated under A but in the presence of either the OVA247–264 peptide (gray bars), OVA247–264 peptide mixed with Pam (white bars), or Pam-conjugated OVA247–264 peptide (black bars). Results are the means of triplicates ± S.E. BMDCs were incubated for various time periods with either OVA247–264A5K (gray bars) or CpG mixed with OVA247–264A5K peptide (white bars) or CpG−OVA247–264A5K (black bars) (C) or with OVA247–264A5K peptide (gray bars), Pam mixed with OVA247–264A5K (white bars), or Pam−OVA247–264A5K (black bars) (D) before co-culturing with B3Z T-cell hybridoma as outlined under “Experimental Procedures.”
Internalization and Routing of TLR Ligand-Peptide Conjugates

Antigen Presentation Depends upon Endosomal Acidification, Proteasome Activity, and TAP Translocation—Next, we examined the impact of different proteases upon antigen presentation. To address this issue, we made use of the C-terminal extended peptides (OVA_{247–264A5K}), which require both N- and C-terminal processing to release the SIINFEKL CTL peptide epitope. DCs were pretreated either with epoxomicin, which inhibits the proteasome, or NH₄Cl, which increases the pH in the acidic endosome/lysosome environment and thereby inhibits the proteases that depend on acidification (35–38) before incubation with either of the conjugates. As evident from Fig. 8, A and B, when DCs were pretreated with the lysosomotropic agent, NH₄Cl, a decrease in antigen presentation was seen ranging from 45% inhibition for the Pam−conjugates to 70% for the CpG−conjugated peptide. Similarly, inhibition of the proteasome activity resulted in an overall decrease in antigen presentation of both the CpG−conjugated and Pam−conjugated peptide (up to 50% inhibition) in a dose-dependent manner (Fig. 8C). To ascertain that the inhibitory effect observed was not due to an overall decrease in the surface expression of MHC class I, DCs that had been pretreated with either epoxomicin or NH₄Cl were incubated with the minimal CTL epitope OVA_{257–264}. As expected, the inhibitors did not cause a major affect upon antigen presentation of exogenous loaded OVA_{257–264} peptide (Fig. 8, B and C).

After proteasomal processing, CTL peptide epitopes need to be translocated into the luminal side of the endoplasmic reticulum via the transporter complex TAP to be loaded onto MHC class I molecules. To address the involvement of TAP for cross presentation of the TLR-L conjugates, BMDCs from either wild type mice or TAP-deficient mice were loaded with the TLR-L conjugates or the minimal CTL epitope OVA_{257–264}. As evident in Fig. 8D, antigen presentation of both the TLR2L and TLR9L conjugates depended upon TAP activity, as the presentation was abrogated in TAP-deficient mice. Importantly, antigen presentation of the minimal CTL epitope OVA_{257–264} was not affected in the TAP-deficient DCs, showing that the observed TAP dependence of the conjugates was not due to an overall reduced surface expression of MHC class I in the TAP-deficient DCs. In contrast, when using BMDCs from mice deficient in both TAP and β2-microglobulin expression (TAP^{−/−} β2m^{−/−}) completely lacking MHC class I surface expression (39), antigen presentation was completely lost for all peptides (Fig. 8D).
Collectively, these results indicate that endosomal acidification, proteasomal activity, and TAP translocation are required for antigen presentation of the TLR-L peptide conjugates and suggest that the peptide (conjugate) translocates via the endosomal compartment into the cytosol where the peptide undergoes proteasomal processing before being loaded onto MHC class I molecules in the endoplasmic reticulum.

DISCUSSION

In this study we analyzed the cellular uptake and trafficking of two distinct TLR ligand-antigen conjugates that ultimately lead to the induction of an efficient CTL response. Strikingly, one single s.c. immunization with conjugate in saline induced an impressive systemic expansion of antigen-specific CD8 T-cells (Fig. 1). Thus, conjugation resulted in a stronger systemic response than what was observed for the mixed vaccines.

Our immunofluorescence analysis revealed that conjugates of both types of TLR ligands were taken up very efficiently compared with unconjugated peptides (Fig. 3). Internalization was a very rapid process since uptake studies showed that already within 15–30 min, the major part of the conjugates could be found in endosome/lysosome compartments (Fig. 4). For this we have used fluorescent conjugates; these may have slightly different properties from those of the unmodified conjugates, which could influence the uptake and function. However, the fluorescent conjugates induced DC maturation to a similar extent as the unmodified conjugates. In line with our findings, CpG linked to fluorescein isothiocyanate-labeled ovalbumin protein was recently shown to translocate to LAMP-1-positive endosomal-lysosomal compartments (10). Further support of enhanced uptake mediated by the conjugates was provided from our in vivo uptake analysis, which revealed a 6–8-fold increase in uptake of the CpG-conjugated peptide by CD11c+ cells and a 2-fold increase in uptake of the Pam-conjugated peptide by CD11c+ cells compared with uptake of non-conjugated peptide (Fig. 3, E and F). We found that CpG−conjugated peptides were internalized independently from the expression
of TLR9 and could also support antigen presentation in vitro independently of TLR9 expression (Fig. 4. Accordingly, Wagner and co-workers (2) showed that cross-presentation of OVA-linked CpG occurred independently from TLR9 expression but that TLR9 expression nevertheless was essential for activation of the DCs. At first sight these findings might seem paradoxical; however, TLR9 are mainly expressed in the endoplasmic reticulum followed by recruitment to the endosomes upon dendritic cell maturation (40).

Unexpectedly, considering the cell surface expression of TLR2, we found that internalization of the Pam−conjugate was taken up independently from the expression of TLR2. BMDCs isolated from TLR2-deficient mice internalized the Pam−conjugate to a comparable level as BMDCs from wild type mice, and antigen recognition was unaffected in BMDCs from TLR2-deficient mice. This could not be attributed to a side effect mediated by the peptide part, since TLR2-independent internalization was also observed when incubating the cells with free Pam. Importantly, inhibition of clathrin-dependent endocytosis or caveolae formation abrogated both uptake and antigen presentation of Pam conjugates (Figs. 6 and 7), whereas internalization of CpG conjugates was independent of clathrin-coated pits but dependent on caveolae formation. These results indicate that other (distinct) receptors than the TLRs are involved in the uptake of the TLR conjugates, although the exact nature of these receptors remains to be established. Other TLR2 ligands have been reported to be internalized independently from the expression of TLR2. Outer membrane protein A, a conserved major component of the outer membrane of Enterobacteriaceae family that triggers cytokine production in macrophages and DCs (41), was recently shown to be internalized by the scavenger receptor LOX-1 independently from the expression of TLR2 (42). Moreover, lipoteichoic acid has also been reported to be internalized independently from TLR2 expression (43), although the receptor involved in the uptake of lipoteichoic acid still remains to be identified. Therefore, the contribution of TLR2 and other receptors expressed on the cell surface to the uptake of Pam and other TLR ligands remains to be established.

Optimal presentation of the peptide antigen cargo in the conjugates required endosomal acidification (Fig. 8), although it cannot be ruled out that the fusion of early endosomal vesicles with late endosomal vesicles is hampered by the lysosomotropic agent NH₄Cl (37, 44–46). These results imply that endosomal proteases, such as cathepsins (45, 47), might be involved in the processing of the TLR-L-peptide conjugate. Furthermore, proteasomal cleavage was required because proteasome inhibition greatly decreased antigen presentation of the TLR-L conjugates (Fig. 8C). Because proteasomes are mainly located in the cytosol (48, 49), our results indicate that the peptide/conjugate, after being released in the endosomal compartment, translocate to the cytosol to undergo proteasomal processing (45). In this regard it was recently reported that the translocon complex SEC61 could be involved in facilitating the translocation of peptide from the endosomes to the cytosol (50). Moreover, abrogation of translocation of
Internalization and Routing of TLR Ligand-Peptide Conjugates

peptides from the cytosol to the endoplasmic reticulum completely abrogated antigen presentation of both types of TLR-L-peptide conjugates (Fig. 8D). Aside from being internalized efficiently, we found that all of the TLR-L conjugates retained their capacity to activate DCs to a comparable level as the free TLR-L both in terms of production of the Th1-favoring cytokine, IL-12,5 and up-regulation of DC maturation surface markers (Table 2). Importantly, TLR expression was required for DC activation, since BMDCs lacking TLR2 or TLR9 were not able to up-regulate co-stimulatory molecules upon stimulation with either Pam~conjugate or CpG~conjugate, respectively (Fig. 2). In addition, conjugation of the non-stimulatory GpC oligonucleotide to the peptide antigen resulted in inefficient CTL priming (Fig. 1), showing that the DC activation of TLR-L-peptide conjugates is essential. Therefore, intracellular signaling of TLR is crucially important for effective CTL priming by the conjugates.

In summary, we demonstrate that well defined synthetic TLR-L-peptide conjugates induce a robust and systemic response of specific T-cells due to the combined action of enhanced antigen uptake, improved MHC class I antigen presentation, and dendritic cell maturation. Our data show that targeting to two different TLRs requires a distinct uptake mechanism independent of TLR expression but follows similar trafficking and intracellular processing pathways leading to optimal antigen presentation and T-cell priming. The chemical properties of these conjugates, which ensure that the same DCs that take up the antigen receives simultaneously a proper maturation signal, is likely to be the mechanism behind the superior activity of the peptide conjugates. Accordingly, Medzhitov and Blander (51) recently reported that synchronous entrance of antigen and TLR-L was delivered on B cells. Accordingly, Medzhitov and Blander (51) recently reported that synchronous entrance of antigen and TLR-L was delivered on BMDCs lacking TLR2 or TLR9 were not able to up-regulate co-stimulatory molecules upon stimulation with either Pam~conjugate or CpG~conjugate, respectively (Fig. 8). Schuurhuis, D. H., Laban, S., Toes, R. E., Ricciardi-Castagnoli, P., Klei- derberg, P. L., and Plebanski, M. (2006) Annu. Rev. Immunol. 15, 529–541.

REFERENCES

Acknowledgments—We thank Dr. M. Haks for critical reading the manuscript and Dr. R. Satmuller for assistance with generation of TLR9~−/− bone marrow-derived dendritic cells.

Internalization and Routing of TLR Ligand-Peptide Conjugates
Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-like Receptor Ligand-Peptide Conjugates in Dendritic Cells

Selina Khan, Martijn S. Bijker, Jimmy J. Weterings, Hans J. Tanke, Gosse J. Adema, Thorbald van Hall, Jan W. Drijfhout, Cornelis J. M. Melief, Hermen S. Overkleeft, Gijsbert A. van der Marel, Dmitri V. Filippov, Sjoerd H. van der Burg and Ferry Ossendorp

Access the most updated version of this article at doi: 10.1074/jbc.M701705200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 49 references, 20 of which can be accessed free at http://www.jbc.org/content/282/29/21145.full.html#ref-list-1