The handle http://hdl.handle.net/1887/49720 holds various files of this Leiden University dissertation.

Author: Smiet, C.B.
Title: Knots in plasma
Issue Date: 2017-06-20
List of publications


Christopher Berg Smiet was born on the 4th of June 1987 in Tjele, Denmark. In 2010 Chris obtained his bachelor diploma in physics from Leiden University. His bachelor research was on the extraordinary optical transmission of metal hole arrays. He took part in the physics outreach activities by Stichting Rino during his studies, and was a member of the board from 2007-2008. In 2012 he graduated from the Casimir Pre-PhD program in experimental physics. His masters research was on triplet superconductivity in superconducting spin valves, and was performed at the Device Materials Group in Cambridge, UK.

Chris was awarded a Casimir PhD position on the basis of a research proposal. In January 2013 he started his PhD under Prof. Dr. Dirk Bouwmeester studying knotted magnetic structures in Plasma. During this research he built an experimental setup to measure laser-induced breakdown in atmospheric pressure gas using ICCD cameras. He also built and maintained the 3-node simulation cluster on which the simulations in this thesis were performed. Chris was a member of the Institute council and the Leiden PhD Platform during his graduate studies. During his PhD he spent time in Dundee, UK collaborating with the MHD group of Prof. Hornig, and has collaborated with the fusion theory group at the FOM DIFFER institute.

Chris will continue in research as long as he can find agencies willing to fund him in doing what he loves. He plans to apply the fundamental knowledge on self-organization acquired through his thesis research to problems in nuclear fusion and astrophysical plasma physics.
Acknowledgements

This thesis, as all important endeavors in life, is a labor of love. Such an effort can only be accomplished with the support of colleagues, friends and family. Foremost I want to thank my supervisor, Dirk Bouwmeester. His broad range of audacious research interests is a true inspiration to a starting researcher such as myself. I want to also thank Martin van Exter, Michiel de Dood, Wolfgang Loeffler, Gerard Nienhuis and Han Woerdman for their support during this project.

I would like to thank all my collaborators without whom the work in this thesis could not have been accomplished. I would especially like to thank Simon Candelaresi for getting me up to speed on the PENCIL-CODE, and Amy Thompson and Joe Swearngin for teaching me the ropes (pun intended) on fibrations and knots. I would also like to extend my thanks to Hugo de Blank and Marco de Baar from the FOM DIFFER institute. For his endless enthusiasm on everything knot related, I want to thank Roland van Veen, and I would like to thank Jan Willem Dalhuisen for all the advice, conversations, and missing minus signs he found. I am grateful for the support of Harmen van der Meer and Kier Heeck.

The colleagues with whom one shares the experience make all the difference. From my group I especially wish to thank Flavio Mariani, Morten Bakker, Frerik van Beijnum, Vasco Tenner and Vincent Kooij. From outside my group I would like to thank Benny van Zuiden, Kaveh Lahabi, Yasmine Sfendla, and Merlijn van Deen. I would like to thank my colleague, housemate, and best friend Daniël Geelen for his unrelenting support. I am thankful to all those who have been my friends since the first day of university: Ralph Lenssen, Benjamin Mosk, Anton den Hoed, Bas van Opheusden, Bas Crezee, Robert Ietswaart and Keesjan de Vries.

I would like to thank all the students who aided me in my research and contributed to this effort: David Doelman, Roel Burgwal, Vasco Ramalho, Steven Zwaan, Joost Opschoor, Bart de Klerk, David Kok and Tobias de Jong. I am grateful for the help of Odette Frijters in physical modelling of the topologically nontrivial structures.

I am eternally grateful to my parents for their loving support. I am thankful to and immensely proud of my twin sister Katrine whose dissertation in intersectional gender studies eclipses mine in both weight and social importance.