The handle http://hdl.handle.net/1887/45620 holds various files of this Leiden University dissertation

Author: Nobakht, Behrooz
Title: Actors at work
Issue Date: 2016-12-15
Bibliography

List of Figures

1.1 General Architecture ... 8
2.1 Crisp Architecture: Structural Overview 20
2.2 New MethodInvocation ... 20
2.3 Policy-based selection of a MethodInvocation 21
2.4 Execution of a MethodInvocation 23
2.5 Increasing parallelism in Crisp for Prime Sieve 25
2.6 Utilizing both CPUs with Prime Sieve in Crisp 25
3.1 A kernel version of the real-time programming language 31
3.2 Life cycle for remote data processing 33
4.1 Architecture of Actor API in Java 8 58
4.2 Benchmarking comparison of ABS API and Akka 62
5.1 JMSeq Execution Architecture 68
5.2 Examples of Method Call Sequence Specification 71
5.3 Method Sequence Specification Grammar 71
5.4 Overview of JMSeq’s process to verify a program 78
5.5 Software Architecture for Method Sequence Specification 80
5.6 Life cycle for data processing requests from customers 86
5.7 Comparison of measurements using JMSeq at Fredhopper 87
5.8 Comparison of different techniques with JMSeq 91
6.1 Task Automata for $\alpha(s,\tau,t_c)$ and $\beta(s,\tau)$ 105
6.2 Task automata to execute $verify_\alpha$ and $verify_\beta$ 106
6.3 M_{A_s}: Timed Automaton to execute task type allocate in MP 106
6.4 M_{D_s}: Timed Automaton to execute task type deallocate in MP ... 106
6.5 An example behavior for M_E 107
6.6 Evolving $\alpha(s,\tau,t_c)$ with different τ 110
List of Tables

1.1 Actor Model Support in Programming Languages 9
1.2 Actor programming libraries in Java 9
1.3 Actors at Work – Thesis Organization 10
1.4 Actors at Work – Conference and Journal Publications 11

2.1 Thread stack allocated for different executions 25
2.2 Number of live threads and total threads created for different runs of parallel prime sieve .. 26
2.3 Overview of evaluation of challenges 28

3.1 Evaluation Results ... 42
Colophon

This thesis was typeset with \LaTeX2. It uses the *Clean Thesis* style developed by Ricardo Langner. The design of the *Clean Thesis* style is inspired by user guide documents from Apple Inc.
