Bibliography


[18] A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen, “Automatic Construction of Multiple-Object Three-Dimensional Statistical Shape Models: Application to Cardiac Modeling,” *IEEE Transactions on Medical Imaging*, vol. 21, no. 9, pp. 1151–1166, 2002. 1.2.2, 4.1, 4.2.1, 4.3.1, 5.1, 5.5, 6.1, 6.2.2, 7.1.2, 7.2.1, 7.2.2, 8.2.2, 9.2, 10.2

[19] T. F. Cootes, D. Cooper, C. J. Taylor, and J. Graham, “Active Shape Models - Their Training and Application,” *Computer Vision and Image Understanding*, vol. 61, no. 1, pp. 38–59, 1995. 1.2.2, 1.2.2, 2.1, 3.1, 3.2.3, 4.1, 4.2.1, 4.2.2, 4.3.3, 5.1, 6.1, 7.1.2, 7.2, 7.2.1, 8.1, 8.2.1


[59] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” *IEEE Transaction on Pattern Analysis and Machine Intelligence*, vol. 14, no. 2, pp. 239–256, 1992. 2.2.1, 6, 3.2.1, 3.2.2, 4.3.1, 4.3.2, 5.1.4, 7.2.3


[64] A. F. Frangi, D. Rueckert, and J. S. Duncan, “Three-Dimensional Cardiovascular Image Analysis,” *IEEE Transactions on Medical Imaging*, vol. 21, no. 9, pp. 1005–1010, september 2002. 4.1


[67] C. Brechbühler, G. Gerig, and O. Kübler, “Parameterization of Closed Surfaces for 3-D Shape Description,” *Computer Vision and Image Understanding*, vol. 61, no. 2, pp. 154–170, 1995. 4.2.1


[74] H. C. van Assen, M. G. Danilouchkine, M. S. Dirksen, J. H. C. Reiber, and B. P. F. Lelieveldt, “A 3D-Active Shape Model driven by Fuzzy Inference: Application to Cardiac CT and MR,” submitted. 5.1, 5.1.2, 7.1.2, 7.5.3


