The handle http://hdl.handle.net/1887/44549 holds various files of this Leiden University dissertation.

Author: Zhao, Y.
Title: Deformations of nodal surfaces
Issue Date: 2016-12-01
We define a variety to be the analytification of an irreducible reduced separated scheme over \(\mathbb{C} \). For any variety \(X \), we defined, in Section 5.2 (p. 97), the complexes \(\tilde{\Omega}^p_X \) of sheaves of differential \(p \)-forms.

1. Let \(X \) be a projective variety of dimension \(n \) with singular locus of codimension \(d \) and \(\pi : \tilde{X} \to X \) a log-resolution of \(X \) with normal crossing exceptional divisor \(E \). Then, the weight-\(k \) part of the mixed Hodge structure on \(H^k(X, \mathbb{Q}) \) is given by

\[
\text{Gr}_W^k H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X) \quad \text{where} \quad H^{p,q}(X) := \mathbb{H}^q(X, \tilde{\Omega}^p_X)
\]

and there are isomorphisms

\[
\tilde{\Omega}^p_X = \begin{cases}
R\pi_* \Omega^p_X (\log E), & p \leq d, \\
R\pi_* \Omega^p_X (\log E)(-E), & p \geq n - d,
\end{cases}
\]

where \(\Omega^p_X (\log E) \) is the sheaf of differential \(p \)-forms with logarithmic pole along \(E \).

A nodal surface \(F \) is a projective variety of dimension 2 with only ordinary double points as singularities. We say that \(F \) is even if there exists a double cover \(f : S \to F \) branched exactly on its set of nodes.

2. The complex \(\tilde{\Omega}^p_F \) is concentrated in degree 0 and coincides with the sheaf defined in [Steenbrink, 1977].

3. Let \(F \subset \mathbb{P}^3 \) be a nodal surface of degree \(d \geq 4 \). Then \(F \) satisfies the infinitesimal Torelli property, that is, the infinitesimal period map

\[
dP^k : H^1(F, \tilde{T}_F) \to \text{Hom}(H^{1,1}(F), H^{0,2}(F)),
\]

where \(\tilde{T}_F = \text{Hom}(\tilde{\Omega}^1_F, \mathcal{O}_F) \), is injective.
4. For each non-hyperelliptic curve C of genus 3, the Jacobian $J(C)$ is principally polarized by a symmetric divisor Θ and we can choose a curve $B \in |2K_{\Theta}|$ on Θ. Each general such pair (C, B) determines a unique even 56-nodal sextic surface. Conversely, a general even 56-nodal sextic surface $F \subset \mathbb{P}^3$ whose double cover S satisfies $h^{1,0}(S) = 3$ lies in the 12-dimensional family parametrized by the set of all such pairs (C, B).

5. The family of even 40-nodal sextic surfaces is 28-dimensional. A general such surface $F \subset \mathbb{P}^3$ is tangent to a unique Kummer surface K (an even 16-nodal quartic surface) along a curve C. The curve C has arithmetic genus 15 and contains all the nodes of F and K.

6. For any even 40-nodal surface F with double cover S, the covering involution on S induces a decomposition of $H^2(S, \mathbb{Q})$ into eigenspaces, one of which is of Hodge type $(1, 26, 1)$. This eigenspace contains a sub-Hodge structure of type $(1, 20, 1)$, which is in turn isomorphic to a deformation of a sub-Hodge structure of $H^2(Z[2], \mathbb{Q})$ where $Z[2]$ is the Hilbert scheme of two points on a K3 surface Z.

7. The set Σ of nodes on an even 40-nodal or 56-nodal sextic surface is independent in degree 6, that is, for any subset $\Sigma' \subset \Sigma$, there exists a sextic surface Y such that $Y \cap \Sigma = \Sigma'$.

8. Let (A, Θ) be a principally polarized abelian surface, C a curve in the linear system $|2\Theta|$, and $\pi: S \to A$ a double cover of A branched along C. Then S satisfies the infinitesimal Torelli property.

9. There is no variety X with $h^{2,0}(X) = 1$ whose cohomology group $H^2(X, \mathbb{Q})$ is known to contain a simple sub-Hodge structure of type $(1, r, 1)$ with $r > 20$.

10. Let (X, \mathcal{O}_X) be a ringed space over a field k and $D^b(X)$ the bounded derived category of \mathcal{O}_X-modules. Cones of “geometric” morphisms in $D^b(X)$, that is, those induced by Grothendieck’s six functors, are functorial.

11. Provability is a weaker notion than truth.

— D.R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid.