
K. Kapiteijn
M. Plaisier
P. Koolwijk
C. Fijten
R. Hanemaaijer
J.M. Grimbergen
A. Mulder-Stapel
P.H.A. Quax
F.M. Helmerhorst
V.W.M. van Hinsbergh

Journal of Clinical Endocrinology & Metabolism 2004; 89, 5828-5836
In the adult, angiogenesis plays a role in many pathological conditions, such as the growth of solid tumors, diabetic retinopathy, rheumatoid arthritis, and wound healing1,2. Physiological angiogenesis during adulthood is limited to the female reproductive tissue, namely in the ovary and endometrium. Endometrial angiogenesis plays a role in endometrial remodeling during the menstrual cycle and after conception during the implantation of the embryo3,4,5. Angiogenesis is initiated by a shift in the balance between pro-angiogenic and anti-angiogenic factors6,7. It involves the sprouting of new capillary-like structures from existing vasculature and may involve blood-born cells that intussuscepts in and around the new vascular structures2. These newly formed tubes are subsequently stabilized, often by interaction with pericytes. While the general mechanisms of angiogenesis are probably rather similar in various tissues, the individual players, such as growth factors, integrins and proteases, may vary in different tissues. Endothelial cells from different tissues and vessel types have specific properties8, many of which are conserved in vitro8,9,10. We previously observed that different types of human microvascular endothelial cells (hMVEC) have different requirements for proliferation and capillary tube formation in vitro. While endometrial MVEC (hEMVEC) are highly sensitive to VEGF-A and form capillary tubules after exposure to VEGF-A9, foreskin MVEC (hFMVEC) are more sensitive to bFGF and only form capillary tubes in a fibrin matrix after simultaneous exposure to bFGF or VEGF-A and the inflammatory cytokine TNF\textsubscript{a}11,12.

Among the various processes that regulate angiogenesis, the generation of proteolytic activity is thought to be pivotal in the regulation of cell migration and capillary tube formation13. Key regulators of pericellular proteolysis and capillary-like tubule formation by endothelial cells are cell-bound urokinase-type plasminogen activator (u-PA) and plasmin as well as matrix metalloproteinases (MMPs)5,11-20. Initial data on the formation of tubular structures by hEMVEC indicated that cell-bound u-PA and plasmin contribute to this process9. In addition to the u-PA/plasmin cascade, the rapidly expanding family of MMPs21 plays an important role in cell migration and invasion, and in angiogenesis in vivo19,22,23. MMPs are widely expressed in the endometrium and play a role in tissue degradation and menstrual bleeding24. Furthermore, a number of them are also detected during the proliferative and early secretory phase25, which suggests a role in endometrial remodeling and angiogenesis26,27. However, the exact role of MMPs in endometrial angiogenesis in vivo and tube formation by hEMVEC in vitro is unknown.

Membrane-type MMPs (MT-MMPs) have been suggested to play a key role in angiogenesis, in addition to the gelatinases MMP-2 and -917,28,29. The membrane-associated localization of membrane-type MMPs makes this group of MMPs particularly suited to...
function in pericellular proteolysis. Six MT-MMPs have been described: four transmembrane proteins and two GPI-anchored ones. Recently, MT1-MMP (MMP-14) received considerable attention as being involved in endothelial cell migration and invasion. MT1-MMP contributes to angiogenesis by its capacity to degrade ECM components, thereby promoting cell migration, invasion and possibly the bioavailability of growth factors. Furthermore, it activates pro-MMP-2 (via the TIMP-2-MT1-MMP complex), pro-MMP-13, and αvβ3-integrin, an important integrin in angiogenesis. MT1-MMP as well as MMP-2 are able to stimulate angiogenesis. MT1-MMP and MT2-MMP (MMP-15) and MT3-MMP (MMP-16) are also involved in cell migration and invasion, depending on the cell type. Their overexpression in endothelial cells can induce capillary-tube formation, similar to MT1-MMP. MT1-MMP and MT2-MMP are present in endometrial tissue during various stages of the menstrual cycle; MT3-MMP mRNA is increased during the proliferative phase of the endometrium. It is generally believed that these MMPs also play a role in endometrial angiogenesis, but except for the expression and immunolocalization of specific MMPs in endometrial tissue little information is available.

The activity of MMPs and MT-MMPs is regulated by activation of the pro-enzymes and by specific inhibitors, the tissue inhibitors of MMPs (TIMPs) and α-macroglobulins. The TIMP family consists of 4 members, which differ in expression patterns, regulation and ability to interact specifically with latent MMPs and members of the related metalloproteinases of the ADAMs and TACE group. TIMP-1 is secreted as a soluble protein and has a general inhibiting activity on many MMPs, but does not inhibit MT1-MMP. TIMP-3 is associated with the matrix components and has a similar inhibitory spectrum, but also inhibits MT1-MMP. Furthermore, TIMP-3 can induce apoptosis in various cell types.

In this study we report on the expression of MMPs and MT-MMPs by hEMVEC and the requirement of these proteases for capillary-like tube formation by these cells. By overexpressing TIMP-1 and TIMP-3 we could demonstrate that different MMPs act as key regulators for tube formation by hEMVEC.

Materials and methods

Materials
Penicillin/streptomycin, L-glutamine and tissue culture medium 199 (M199) with 20 mM HEPES with or without phenol red were obtained from BioWhittaker (Verviers, Belgium). Newborn calf serum (NBCS) was obtained from Life Technologies (Grand Is-
land, NY, USA). Human serum (HS), prepared from fresh blood from 10-20 healthy donors, was obtained from a local blood bank and was pooled and stored at 4°C. NBCS and HS were heat-inactivated before use. Pyrogen-free human serum albumin (HSA) was obtained from Sanquin (Amsterdam, The Netherlands). Tissue culture plastics and microtiter plates were obtained from Costar/Corning (Cambridge, MA, USA) and Falcon® (Becton Dickinson (BD) Biosciences, Bedford, MA, USA). A crude preparation of endothelial cell growth factor (ECGF) was prepared from bovine brain as described by Maciag et al.⁴². Heparin and thrombin were obtained from Leo Pharmaceuticals Products (Weesp, the Netherlands). Human fibrinogen was obtained from Chromogenics AB (Mölndal, Sweden). Dr. H. Metzner and Dr. G. Seeman (Aventis Behring GmbH, Marburg, Germany) generously provided factor XIII. Fibronectin was a gift from Dr. J. van Mourik (Sanquin, Amsterdam, The Netherlands). Rat tail collagen type-I was obtained from BD Biosciences. Human recombinant vascular endothelial growth factor-A (VEGF-A) was obtained from RELIATEch (Braunschweig, Germany) and tumor necrosis factor alpha (TNFα) was a gift from Dr. J. Travernier (Biogent, Gent, Belgium). Phorbol 12-myristate 13-acetate (PMA) was obtained from Sigma Chemical Co. (St. Louis, MO, USA). Adenoviral vectors containing LacZ, TIMP-1 and TIMP-3 were previously described.⁴³-⁴⁵. Aprotinin was purchased from Pentapharm Ltd (Basel, Switzerland). BB94 (Batimastat) was a kind gift from Dr. E.A. Bone (British Biotech, Oxford, UK). Rabbit-anti-human polyclonal antibodies against u-PA, MMP-9 and MT1-MMP were produced and characterized in our laboratory.¹², ¹³, ¹⁴, ¹⁵. Mouse-anti-human monoclonal antibody against MT3-MMP was obtained from Oncogene Research Products (IM50L, Boston, USA), biotinylated horse anti mouse antibody from Vector (BA-2000, Burlingame, UK), avidin-biotin complex from DakoCytomation (Glostrup, Denmark) and NovaRED from Vector (Burlingame, UK). Human recombinant MT1-MMP (pro-domain-catalytic domain-hemopexin domain) was purchased from Chemicon (Temecula, CA, USA) and recombinant pro-MMP-9 from Invitik (Berlin, Germany). PBS/T concentrate was obtained from Organon Teknika (Boxtel, Holland). GAPDH control reagents (VIC-labeled) were purchased from Applied Biosystems (Nieuwerkerk aan de IJssel, The Netherlands). For western blotting, protease inhibitors from Roche Diagnostics (Almere, The Netherlands), Immobilon-P polyvinylidene fluoride transfer membranes from Millipore (Bedford, USA), skim milk powder from Merck (Amsterdam, The Netherlands), goat anti-β-actin antibody (sc-1615) and horseradish peroxidase-conjugated secondary antibodies from Santa Cruz (Heerhugowaard, The Netherlands) were used. The Super Signal West Dura Extended Duration Substrate purchased from Pierce (St. Augustin, Germany) and the luminescent image workstation from Roche Diagnostics (Almere, The Netherlands) were used for visualization.
Cells

Human endometrial microvascular endothelial cells (hEMVEC) were isolated, cultured and characterized as previously described in detail. In short, endometrial tissue was obtained from pre-menopausal women who underwent uterus extirpation for benign pathology. The tissue was collected according to the guidelines of the Institutional Review Board and informed consent was obtained from each patient. Endometrial tissue was scraped from the uterus and stored overnight at 4°C. The following day, tissue was minced and cells extracted using 0.2% collagenase. The primary heterogeneous culture was purified by repeated selections using anti-CD31 and anti-IgG-coated Dynabeads. After purification of the culture, the endothelial cells were characterized as being positive for CD31 and von Willebrand factor and negative for cytokeratin-18 and α-smooth muscle actin. HEMVEC were maintained in hEMVEC culture medium: M199 without phenol red supplemented with 20 mM HEPES (pH 7.3), 20% HS, 10% NBCS, 150 μg/mL ECGF, 5 U/mL heparin, 100 IU/mL penicillin and 100 mg/mL streptomycin. The cells were cultured on fibronectin-coated dishes under humidified 5% CO₂ / 95% air atmosphere. VEGF-A (5 ng/mL) was added to the culture medium of the primary isolates to facilitate the initial growth of the endothelial cells. Endometrial tissues were obtained from all phases of the menstrual cycle, as determined by histological dating according to Noyes et al, and hEMVEC from different stages showed comparable functions in vitro.

Human foreskin microvascular endothelial cells (hFMVEC) were isolated, characterized and cultured as previously described. In vitro capillary-like tube formation assay

Human fibrin matrices were prepared as described before. For the collagen gels, 7 volumes of rat tail collagen type-I (3 mg/mL) were mixed with 1 volume of 10× M199 with phenol red and 2 volumes of 2% (w/v) Na₂CO₃ (final pH 7.4). 300 μl Aliquots were added to each well of a 48-wells plate and allowed to gelate at 37°C in the absence of CO₂.

Confluent hEMVEC were detached and seeded at a split ratio of 2:1 on top of the fibrin and/or collagen matrices and cultured for 24 h hEMVEC culture medium without ECGF and heparin. Subsequently, the endothelial cells were cultured with the mediators indicated for 2 - 5 days. Invading cells and the formation of capillary-like structures of endothelial cells in the three-dimensional fibrin and/or collagen matrix were analyzed by phase contrast microscopy. The total length of the structures formed was measured in 6 randomly chosen microscopic fields (7.3 mm²/field) by computer-equipped Optimas image analysis software (Bioscan, Demons, WA) connected to a monochrome CCD camera (MX5) and expressed as mm/cm².
Gelatin zymography
Gelatinolytic activities of MMPs secreted by hEMVEC were analyzed by zymography on gelatin-containing polyacrylamide gels as described\(^50\). Using this technique both active and latent species can be visualized. Samples were applied to a 10% (w/v) acrylamide gel co-polymerized with 0.2% (w/v) gelatin. After electrophoresis the gels were washed three times for 10 min in 50 mmol/L Tris/HCl, pH 8.0, containing 5 mmol/L CaCl\(_2\), 1 μmol/L ZnCl\(_2\) and 2.5% (w/v) Triton X-100 to remove the SDS, followed by three washes of 5 min in 50 mmol/L Tris/HCl, pH 8.0, containing 5 mmol/L CaCl\(_2\), 1 μmol/L ZnCl\(_2\) and incubated overnight at 37°C. The gels were stained with Coomassie Brilliant Blue R-250.

Immunohistochemistry
Immunohistochemical staining of MT3-MMP was performed in paraffin-embedded sections of human endometrium. Sections were deparaffinized and endogenous peroxidase was quenched with 3% H\(_2\)O\(_2\) in 100% methanol. To prevent aspecific binding, sections were incubated with 5% bovine serum albumin for 15 minutes. The primary monoclonal mouse anti-MT3-MMP antibody (1 μg/ml in 1% bovine serum albumin in phosphate buffered saline [BSA/PBS]) was applied overnight at 4°C, followed by a one hour incubation with a biotinylated secondary horse anti-mouse antibody (5 μg/ml in 1% BSA/PBS). Streptavidin-horseradish peroxidase conjugate was used to obtain red staining of the antigens. Specificity of the immunohistochemical reaction was verified by omission of the first antibody as well as using normal mouse serum in stead of the first antibody. Sections were counterstained with Mauer hematoxylin.

Western blotting
Total cellular extracts were prepared in the presence of protease inhibitors and applied to SDS-PAGE electrophoresis essentially as described\(^51\). After proteins were blotted onto Immobilon-P polyvinylidene fluoride transfer membranes, the blots were blocked with 5% (w/v) skim milk powder diluted in 20 mM Tris (pH 7.4), 55 mM NaCl, and 0.1% (v/v) Tween-20. Then, blots were incubated with a mouse anti-MT3-MMP antibody or a goat anti-β-actin antibody followed by horseradish peroxidase-conjugated secondary antibodies. All antibodies were diluted in 20 mM Tris (pH 7.4), 55 mM NaCl, 0.1% (v/v) Tween-20, and 5% (w/w) bovine serum. The Super Signal West Dura Extended Duration Substrate and the luminescent image workstation were used for visualization.
RNA Isolation and real-time RT-PCR
Total RNA from hEMVEC and hFMVEC was isolated as described by Chomczynski and Sacchi. RNA was quantified by measuring its absorbance using a spectrophotometer and considered of good quality when the OD$_{260}$/OD$_{280}$ ratio ranged between 1.8-2.0. Reverse transcription (RT) was carried out in 20 µl volumes using random primers and a cDNA synthesis kit purchased from Promega. MMP and MT-MMP expression was quantified using real-time PCR according to the Taqman method of Applied Biosystems (Perkin Elmer) using a forward and reverse primer combined with a specific (6-carboxy-fluorescein/6-carboxy-tetramethyl-rhodamine [FAM/TAMRA]) double-labeled probe. The following sequences were used for MT3-MMP (MMP-16): forward primer, 5'-GGC TCG TGT GGG AAA TGG TA-3'; reverse primer, 5'-AGA ACT CTT CCC CCT CAA GTG-3'; and probe, 5'-ACA GCT GGC TCT ACT TCC CCA TGG C-3'. Primers and probes for MT1-MMP were described previously (16). All data were controlled for quantity of RNA input by performing measurements on the endogenous reference gene GAPDH (VIC-labeled) as follows. For each RNA sample, a difference in Ct values (dCT) was calculated for each mRNA by taking the mean Ct of duplicate wells and subtracting the mean Ct of the duplicate wells for the reference RNA GAPDH measured in the same RT reaction. All RT reactions were carried out in quadruplicate. As positive controls were used: cDNA of human endometrial stromal cells for MMP-12, cDNA of HT1080 cells for MMP-13 and ds cDNA encoding for MMP-3, MMP-7 and MMP-8.

Adenoviral gene transfer of TIMP-1 and TIMP-3 to hEMVEC and hFMVEC
Replication-deficient adenoviral vectors (E1-deleted, transcriptional control via the CMV promoter) encoding human TIMP-1 (AdTIMP-1), human TIMP-3 (AdTIMP-3) and a β-galactosidase-encoding adenoviral vector (AdLacZ), as a control, were used for the experiments. Confluent hEMVEC and hFMVEC were washed twice with M199 supplemented with 0.1% HSA to remove human serum components, subsequently the hEMVEC were incubated with the adenoviral constructs in M199 containing 0.1% HSA for 2 hours. After transduction the medium was replaced with hEMVEC culture medium without VEGF-A. 24 h later the cells were seeded on top of a three-dimensional fibrin/fibrin-collagen matrix and stimulation was started 6 h after seeding.

TIMP-1 ELISA and MMP Bioactivity Assays
TIMP-1 antigen was assayed by enzyme-linked immunosorbent assay (ELISA; R&D Systems, Oxon, United Kingdom). MT1-MMP and MMP-9 activity were determined by MMP
Figure 1. Capillary-like tube formation by hEMVEC in a fibrin or collagen matrix depends on u-PA and MMP activities.

HEMVEC were cultured on top of a three-dimensional fibrin matrix (A,C,D) or 50-50% fibrin/collagen-type-1 matrix (B,E) and stimulated with VEGF-A (10 ng/mL). A and B: Micrographs taken after 4 days of culturing: insets in A and B show details of capillary-like structures. Bar = 300 μm, Bar insets = 100 μm. C: Cross section perpendicular to the matrix surface and stained with Hematoxylin-Phloxine-Safran (bar = 50 μm). D and E: hEMVEC were cultured with 10 ng/mL VEGF-A (control) in the absence or presence of polyclonal anti-u-PA (αuPA, 100 μg/mL), BB94 (5 μg/mL) or a combination of BB94 and anti-u-PA. After 3-5 days of culturing, mean tube length was measured by image analysis. The data in panel D are expressed as a percentage of VEGF-A-induced tube formation ±SEM of 6 independent experiments of duplicate wells performed with 3 different hEMVEC isolations. Panel E represents 3 experiments. *: p<0.05 vs. control, #: p<0.05 vs. αuPA. [See appendix: color figures]
MT3-MMP in endometrial angiogenesis

activity assays (Biotrak; Amersham, Biosciences, Buckingshamshire, UK) as previously indi-
dicated16,46. Selective TIMP-3 activity over that of TIMP-1 was assayed by determination
of active MT1-MMP in extracts of hEMVEC transduced with AdLacZ, AdTIMP-1, and AdT-
IMP-3. Inhibition of MMP-9 activity by TIMP-1 and TIMP-3 was determined by addition
of serial dilutions of 48-hour conditioned media of hEMVEC transduced with AdLacZ,
AdTIMP-1, and AdTIMP-3 to APMA activated recombinant pro-MMP-9.

Statistics
Experiments were performed with duplicate wells and expressed as mean ± SEM. For
statistical evaluation the analysis of variance (ANOVA) was used, followed by a modified
t-test according to Bonferroni. Statistical significance was accepted at $p < 0.05$.

Results

Capillary-like tube formation by hEMVEC is inhibited by collagen
type-I

Three-dimensional matrices were prepared consisting of pure fibrin, collagen or mix-
tures of fibrin and collagen. As previously reported9, hEMVEC form spontaneously cap-
illary-like tubular structures in a fibrin matrix, a process that is markedly enhanced by
VEGF-A (Fig. 1A, C). When hEMVEC were seeded on top of matrices containing 0-50%
type-I collagen homogeneously mixed with fibrin, a concentration-dependent decrease
in the extent of tube formation was seen. In a mixed collagen-fibrin matrix (50/50), the
decrease was 55±4\% under basal conditions ($n = 3$, not shown) and 53±2\% in the
presence of VEGF-A (Fig. 1B) as compared to the tube formation in a pure fibrin matrix
(Fig. 1A). In a pure collagen type-I matrix, capillary-like structure formation by hEMVEC
was hardly detectable, even after stimulation with VEGF-A (data not shown).

U-PA/plasmin and MMPs are involved in tube formation by hEM-
VEC in matrices composed of fibrin and/or collagen

To establish the involvement of u-PA/plasmin and MMPs in the formation of capillary-
like structures by hEMVEC, u-PA-blocking antibodies, the plasmin inhibitor aprotinin,
or the broadly acting metalloproteinase inhibitor BB94 were used (Fig. 1C and D). The
VEGF-A-enhanced tube formation in a fibrin matrix was reduced by 55±11\% by u-PA-
blocking antibodies (Fig. 1D), and by 54±7\% by the plasmin inhibitor aprotinin (data
not shown). In a matrix consisting of an equal mixture of fibrin and collagen anti-u-PA
Table 1. Analysis of MT-MMP mRNA expression in VEGF-A-stimulated hEMVEC and hFMVEC.

<table>
<thead>
<tr>
<th>MT-MMPs</th>
<th>Human Endometrial MVEC</th>
<th>Human Foreskin MVEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CT dCT</td>
<td>CT dCT</td>
</tr>
<tr>
<td>Transmembrane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>27.8 ± 0.4</td>
<td>27.3 ± 0.9</td>
</tr>
<tr>
<td>MT2-MMP</td>
<td>33.7 ± 1.2</td>
<td>35.9 ± 1.6</td>
</tr>
<tr>
<td>MT3-MMP</td>
<td>26.4 ± 0.2</td>
<td>27.8 ± 0.8</td>
</tr>
<tr>
<td>MT6-MMP</td>
<td>36.3 ± 1.0</td>
<td>34.5 ± 1.1</td>
</tr>
<tr>
<td>GPI-anchored</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT4-MMP</td>
<td>26.9 ± 0.2</td>
<td>30.2 ± 1.2</td>
</tr>
<tr>
<td>MT5-MMP</td>
<td>31.6 ± 0.3</td>
<td>33.8 ± 2.1</td>
</tr>
</tbody>
</table>

Confluent hEMVEC and hFMVEC were stimulated with 10 ng/ml VEGF-A for 24 hours. After stimulation, RNA was isolated and cDNA was synthesized as described. Real-time RT-PCR for MT-MMP/GAPDH pairs were performed as described and expressed as the number of cycles (CT ± SEM). The housekeeping gene GAPDH was used to correct for the total mRNA content of the samples. The dCT values were calculated as the difference in number of cycles required for the PCR reaction to enter logarithmic phase and expressed as dCT ± SEM. The gene expression of MT3-MMP and MT4-MMP mRNA was significantly higher in hEMVEC compared to the expression in hFMVEC (*: p<0.01). The gene expression of the other MT-MMPs was comparable between the two cell types.

Figure 2. HEMVEC express various MMPs and MT-MMPs.
HEMVEC were cultured for 24 h in M199 supplemented with 0.5% HSA (A) or 20% HS (B,C) and were not stimulated (control) or stimulated with TNFα (2.5 ng/mL), VEGF-A (10 ng/mL) or PMA (10⁻⁸ M), as indicated. A: Gelatin zymography of 24 h conditioned medium. (M = ladder) B: MT1-MMP activity in cell lysates (mean ± range of two experiments performed in duplicate wells with two different isolations; detection limit of the assay 0.2 ng/mL). C: Western blot of MT3-MMP in 24 h conditioned medium. D and E: Immunohistochemical analysis of MT3-MMP in endometrial tissue shows the presence of MT3-MMP in endothelial cells (D, arrows) and myometrium (E, stars). Similar results were obtained in the tissue of three other donors. [See appendix: color figures]
antibodies reduced tube formation only by 17±0% (Fig. 1E). The inhibiting effect of BB94 was increased by adding collagen, since tube formation in pure fibrin was inhibited by 31±5% and in collagen-fibrin matrices by 64±3%. An almost complete inhibition (84±6% and 82±2%, respectively) of capillary-like structure formation was seen after the simultaneous addition of BB94 and anti-u-PA antibodies (Fig. 1D and E).

HEMVEC express various MMPs and MT-MMPs
To study which MMPs are expressed by hEMVEC, real-time RT-PCR was used to assess the expression and regulation of MMP mRNA levels in hEMVEC. Real-time RT-PCR revealed that hEMVEC expressed considerable amounts of MMP-1, MMP-2, MT1-MMP, MT3-MMP and MT4-MMP mRNAs (i.e. less than 30 cycles and dCT< 9) under basal as well as VEGF-A-stimulated conditions. The data for the MT-MMPs are given in Table 1. HFMVEC had a similar expression pattern as hEMVEC, except for MMP-1, which was poorly expressed by hFMVEC under basal conditions (not shown), and MT3-MMP and MT4-MMP, which were expressed to a higher degree in hEMVEC (Table 1). Under basal and VEGF-A-stimulated conditions hEMVEC expressed relatively small amounts of MMP-9 (mean CT = 35.3 ± 1.5 cycles; mean dCT 14.4 ± 1.3 (± SEM)) and MT2-, MT5- and MT6-MMP (Table 1). The MMP-9 mRNA expression increased markedly when the cells were stimulated with 10⁻⁸ M phorbol ester PMA (mean CT 27.4 ± 1.0; dCT 8.4 ± 0.7 (± SEM)). No mRNA of MMP-3, MMP-7, MMP-8, MMP-12 and MMP-13 was detected in hEMVEC. Positive controls resulted in abundant signals: ds cDNA encoding for MMP-3, MMP-7 and MMP-8, cDNA of human endometrial stromal cells for MMP-12, and cDNA of HT1080 cells for MMP-13.

The expression of active MMPs was confirmed by gelatin zymography and activity assays. Gelatin zymography of serum-free hEMVEC-conditioned media (24 h) showed expression of latent MMP-2 (72 kDa) and a 55kDa band that represents MMP-1 or MMP-3. From the mRNA data we assume that the 55kDa band represents MMP-1 rather than MMP-3. Stimulation with 10⁻⁸ M PMA induced MMP-9 (92kDa) protein synthesis and activation of MMP-2 (64 kDa, Fig. 2A). The presence of MT1-MMP was demonstrated by activity assay (Fig. 2B). Both VEGF-A and TNFα exposure doubled the activity of MT1-MMP, while phorbol ester caused a dramatic increase in MT1-MMP activity in hEMVEC (Fig. 2B). The presence of MT3-MMP protein was confirmed by Western blotting. The production of MT3-MMP was not affected by TNFα and increased slightly after VEGF-A exposure (Fig. 2C). MT3-MMP was detectable in endothelial cells of proliferative human endometrial tissue, as well as in endometrial epithelial cells and myometrial cells (Fig. 2D and E).
Adenoviral gene transfer of both TIMP-1 and TIMP-3 impairs VEGF-A-induced tube formation by hEMVEC

As the general metalloproteinase inhibitor BB94 inhibited tube formation by hEMVEC, the effects of TIMP-1 and TIMP-3, two physiological tissue inhibitors of MMPs, on this process were studied. HEMVEC were infected for 2 h with replication-deficient adenoviruses expressing human TIMP-1 (AdTIMP-1), TIMP-3 (AdTIMP-3) or a control LacZ (AdLacZ). Transduction of hEMVEC with AdTIMP-1 caused a concentration-dependent increase in TIMP-1 antigen production, while AdLacZ or AdTIMP-3 did not affect TIMP-1 production (Fig. 3A). To verify whether the overexpressed TIMP-1 and TIMP-3 were functional and active, their effects on MT1-MMP and MMP-9 activity were analyzed. In contrast to cell extracts of AdLacZ- or AdTIMP-1-transduced hEMVEC, in which MT1-MMP remained active, MT1-MMP activity was completely inhibited in cell extracts of AdTIMP-3-transduced hEMVEC (Fig. 3B). AdTIMP-1- and AdTIMP-3-transduced hEMVEC inhibited exogenous active MMP-9 comparably (Fig. 3C).

Previous studies on HUVEC and hFMVEC have shown that TIMP-3 was a more potent inhibitor of capillary-tube formation than TIMP-1.15,16,53 Unexpectedly, in hEMVEC both TIMP-1 and TIMP-3 overexpression inhibited VEGF-A-induced tube formation, to an ex-
Figure 4. Both TIMP-1 and TIMP-3 inhibit capillary-like tube formation by hEMVEC. HEMVEC were transduced with 2.5×10^6 pfu/mL AdLacZ, AdTIMP-1 and AdTIMP-3 and were cultured on top of a three-dimensional fibrin matrix or a fibrin-10% collagen matrix and stimulated with VEGF-A (10 ng/mL) with or without BB94 (5 μg/mL). A: Phase contrast micrographs after 3 days of culturing showing tube formation in the fibrin matrix, Bar = 300 μm. B: Mean tube length was measured and expressed as a percentage of the tube formation by the AdLacZ-transduced cells ± SEM/range of 5 (fibrin matrix, black bars) and 2 (fibrin-collagen matrix, striped bars) independent experiments performed in duplicate wells. The mean tube length of the AdLacZ-transduced hEMVEC was 239±13 mm/cm2 on the fibrin-collagen matrix. * $p<0.03$ vs LacZ transduced cells.
A tent similar as BB94 (Fig. 4A and B). This was found both in fibrin and in fibrin-collagen matrices (Fig. 4B). No apparent cell death or morphological changes were observed either in the AdTIMP-1- or AdTIMP-3-transduced hEMVEC.

Comparison of the effect of TIMP-1 and TIMP-3 overexpression on tube formation by hEMVEC and hFMVEC

Because of the lack of effect of TIMP-1 on tube formation in our previous experiments with VEGF/TNFα-stimulated hFMVEC16, we compared the effects of TIMP-1 and TIMP-3 overexpression on capillary-like tube formation by hEMVEC and hFMVEC under identi-
MT3-MMP in endometrial angiogenesis

cal culture conditions. Both cells types were grown on a fibrin-10% collagen matrix and stimulated by the simultaneous addition of VEGF and TNFβ, which is required to induce tubules by hFMVEC. Like in VEGF-stimulated hEMVEC, both TIMP-1 and TIMP-3 reduced capillary-like tube formation in VEGF/TNFβ-stimulated hEMVEC to the same extent as BB94 (Fig. 5, striped bars). In contrast, only TIMP-3 inhibited tube formation by hFMVEC to a significant extent. Similar data were obtained with fibrin matrices (Fig. 5, black bars). No significant cell detachment was observed in the AdTIMP-1- or AdTIMP-3-transduced hFMVEC and hEMVEC grown on the fibrin matrix, neither under control conditions nor in cells stimulated with VEGF/TNFβ or TNFβ alone (data not shown). This indicates that the overexpression of TIMP-1 or TIMP-3 did not induce a visible degree of apoptosis or cell death under our experimental conditions.

Inhibition of MT3-MMP reduces tube formation by hEMVEC

The inhibition of tube formation by both TIMP-1 and TIMP-3 overexpression indicates that MMPs other than MT1-MMP play a role in the regulation of tube formation by hEMVEC. To obtain evidence for the involvement of MT3-MMP in the regulation of this process, tube formation by hEMVEC was induced in the presence of anti-MT3-MMP IgG. Inhibition of MT3-MMP significantly reduced the VEGF-A-enhanced capillary-like tube formation by hEMVEC, while non-specific anti-FITC IgG had no effect (Fig. 6). The inhibition of VEGF-enhanced tube formation by MT3-MMP IgG was 48.8% of the inhibition achieved by BB94, suggesting that other metalloproteinases may contribute additionally.

Discussion

The present study demonstrates that both the u-PA/plasmin system and MMPs contribute to the invasion and tubular structure formation by endothelial cells in a 3D-fibrin-collagen matrix. Since TIMP-1 and TIMP-3 overexpression reduced capillary-like tube formation by hEMVEC to the same extent, not primarily MT1-MMP, but other MMPs play a regulatory role in this process in hEMVEC. Major MMPs expressed by hEMVEC were MMP-1, MMP-2, MT1-MMP (MMP-14) MT3-MMP (MMP-16) and MT4-MMP (MMP-17) under basal and VEGF-A-stimulated conditions. Our data suggest that MT3-MMP is involved in the regulation of tube formation by hEMVEC, because tube formation by hEMVEC was inhibited by anti-MT3-MMP IgG in vitro (Fig. 6), and MT3-MMP was encountered in endothelial cells of proliferative endometrium in vivo (Fig. 2).

Our data on the expression of MMPs by hEMVEC in vitro are in agreement with observations reported from immunohistochemical studies in endometrial tissue sections.
Freitas et al.54 found MMP-1, MMP-2, MMP-3 and MMP-9 in endometrial vascular structures, which might include endothelial cells. MMP-2 was demonstrated in newly formed capillary strands54. Skinner et al.55 only found MMP-9 on endometrial endothelial cells after exposure to high progestagen levels. MT1-MMP was detected at low levels on endothelial cells in proliferative and secretory endometrium36,37. MT2-MMP was observed at a constant low level throughout the menstrual cycle35,36. In addition, TIMP-1, -2, and -3 were demonstrated in endometrial endothelial cells by in situ hybridization26,37,56.

Recently Goffin et al.35 also reported the presence of MMP-19 mRNA in endometrial tissue throughout the cycle and the mRNAs of MMP-7, MMP-26 and MT3-MMP in this tissue during the proliferative phase of the cycle35. However, no information on their expression by specific cells is currently available.

Within the large group of MMPs the MT-MMPs attract specific attention, because of their membrane localization that enables them to regulate localized proteolytic activities directly at the cell-matrix interaction sites. Hotary et al showed that overexpression of the transmembrane MT1-MMP, MT2-MMP or MT3-MMP induced endothelial invasion and tube formation in fibrin, while the GPI-anchored MT4-MMP was unable to do so28. MT1-MMP and MT3-MMP are involved in the migration and invasion of various mesen-

Figure 6. Inhibition of MT3-MMP reduces tube formation by hEMVEC.

HEMVEC were cultured on top of a three-dimensional fibrin matrix in M199 supplemented with 10% HS and 10% NBSC. Cells were cultured under control conditions in the presence of 0.5 ng/ml VEGF or stimulated with VEGF-A (10 ng/mL), VEGF-A (10 ng/mL) and anti-FITC IgG (25 μg/ml), VEGF-A (10 ng/mL) and anti MT3-MMP IgG (25 μg/ml) or VEGF-A (10 ng/mL) and BB94 (5 μg/mL). Mean tube length was measured and expressed as the mean tube length ± SEM/range of 2 experiments performed in duplicate wells. * $p<0.02$ vs VEGF stimulated hEMVEC; $p<0.05$ vs VEGF/anti FITC IgG treated hEMVEC.
chymal cells, such as fibroblasts and smooth muscle cells, while other cells, such as leukocytes and trophoblasts, use MT2-MMP. Our data indicate that human endometrial endothelial cells in vitro largely express MT1-MMP, MT3-MMP and MT4-MMP while only tiny amounts of MT2- and MT5-MMP mRNA are present. Previous studies on HUVEC and hFMVEC indicated that invasion and tube formation of endothelial cells was inhibited by TIMP-3 and not by TIMP-1, suggesting that MT1-MMP has a dominant role among the MMPs in regulating endothelial migration and invasion. The present data confirm our previous data for hFMVEC, but also show consistently that both TIMP-1 and TIMP-3 inhibited tube formation by endometrial endothelial cells. Although these data do not exclude the involvement of MT1-MMP, they strongly suggest that other MMPs than MT1-MMP may contribute more dominantly to endometrial angiogenesis.

The expression of MMP-1 differed markedly between hEMVEC and hFMVEC, however a role for MMP-1 is less likely since MMP-1 is only upregulated in the secretory phase of the menstrual cycle and not in the proliferative phase. However, data on cell-specific expression are required before definitive conclusions can be drawn. A second possible explanation of the comparable inhibition by TIMP-1 and TIMP-3 might be that MT1-MMP acts in concert with other MMPs, in particular MMP-2, and that inhibition of the other MMPs is rate-limiting. However, the comparable expressions of MMP-2 and MT1-MMP in hEMVEC and hFMVEC do not favor this suggestion. Finally, a more likely candidate may be MT3-MMP, which like MT1-MMP can contribute potently to angiogenesis in a fibrinous matrix. The recent finding that the expression of MT3-MMP mRNA is elevated in endometrial tissue during the proliferative phase of the menstrual cycle suggests such a role. Furthermore, our data on the relative expressions of MT3-MMP mRNAs in hEMVEC and hFMVEC, the presence of MT3-MMP protein on endometrial endothelial cells and the inhibition of capillary tube formation by inhibiting MT3-MMP are strongly in favor of a contribution of MT3-MMP in capillary-like tube formation by hEMVEC.

To summarize, MMPs contribute to in vitro capillary tube formation by human endometrial endothelial cells. Whereas capillary tube formation by hFMVEC depends largely on MT1-MMP, the described data for hEMVEC suggest that other MMPs than MT1–MMP, in particular MT3-MMP, play an important role in tube formation by human endometrial endothelial cells.

Acknowledgements

We would like to thank Dr. R. M. F. van der Weiden (St. Franciscus Gasthuis, Rotterdam, The Netherlands) and Dr. R.A. Verwey and colleagues (Bronovo Hospital, The Hague, The Netherlands), who provided us with endometrial tissue. We would like to thank Dr. R. Kleemann for his advice and help regarding Western blotting.
References

MT3-MMP in endometrial angiogenesis

