The handle http://hdl.handle.net/1887/43926 holds various files of this Leiden University dissertation

Author: Schats, Rachel
Title: Life in transition: an osteoarchaeological perspective of the consequences of medieval socioeconomic developments in Holland and Zeeland (AD 1000-1600)
Issue Date: 2016-11-03
LIFE IN TRANSITION

An osteoarchaeological perspective of the consequences of medieval socioeconomic developments in Holland and Zeeland (AD 1000-1600)
Promotoren:
Prof. dr. Menno L.P. Hoogland
Prof. dr. Peter C.M. Hoppenbrouwers

Co-promotor:
Dr. Andrea L. Waters-Rist

Overige leden:
Prof. dr. David R. Fontijn
Prof. dr. Thijs van Kolfschoten
Prof. dr. George J.R. Maat (Leids Universitair Medisch Centrum)
Prof. dr. Petra J.E.M. van Dam (Vrije Universiteit Amsterdam)
Dr. Mary E. Lewis (University of Reading)

De totstandkoming van dit proefschrift is financieel ondersteund door de Stichting Nederlands Museum voor Anthropologie en Praehistorie (SNMAP) en Universiteit Leiden
Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors Menno Hoogland, Andrea Waters-Rist, and Peter Hoppenbrouwers for their input, advice, and undying support throughout my years as a PhD candidate. Menno has been fundamental since the beginning of this project, without him I would not be where I am today. Andrea, who took me under her wing when she came to Leiden in 2011, I cannot thank her enough for her persistence and patience, especially during the writing phase of this dissertation. Her willingness to read and re-read my work and to provide constructive feedback was of vital importance in bringing the dissertation up to the level where it needed to be. Peter helped me tremendously with the historical aspects of this PhD. He directed me to the appropriate literature and guided me towards a solid and meaningful historical context.

This research would not have been possible without the help of several institutions. Thanks are due to Peter Bitter, municipal archaeologist from Alkmaar, who granted me access to the material as well as provided detailed historical information on the town. I would also like to thank Robert van Dierendonck and Henk Hendrikse van Stichting Cultureel Erfgoed Zeeland for the permission to analyse the skeletal remains from Klaaskinderkerke in the context of this research. Thanks to Martin Veen of the provincial depot North-Holland Huis van Hilde for allowing me to study the collection of Blokhuizen. I am very grateful for the support of George Maat, who inspired me and helped me to further develop my palaeopathological skills. Many thanks to Aad Boomert for proofreading the complete manuscript and fixing my occasionally subpar English. Laurens van Maren I want to thank for the very professional layout and design of this manuscript. I sincerely apologise to him for the number of tables.

I owe an immense amount of gratitude to my colleagues and dear friends Anne van Duijvenbode, Lisette Kootker, Barbara Veselka, Simone Lemmers, Jessica Palmer, Esther de Kok-‘t Gilde, and Sarah Inskip for their help, emergency sushi and wine, and support during my research. Their friendship and willingness to put up with my spells of insecurity were of crucial importance. Ayelet Mokasay and Rianne Vlaming-Zwijsen I would like to thank for always being there for me and taking my mind off the PhD with fabulous home-cooked pasta.
dinars. I cannot thank them enough for their support throughout this process with major ups and downs.

Lastly, I would like to thank my family for all their love and encouragement. My parents have always supported me in every aspect of my life and inspired me to do more. My sisters Tamar, Mirjam, and Naomi have been essential in the completion of this PhD, thank you for keeping me sane and in touch with non-academic reality; I am very proud of all of you. Thanks to my nephew Jace, the twinkle in his eyes when walking around the osteolab made me realise once again the true power and beauty of this research field. My wonderful family-in-law, Gerrie, Wim, Simone, Herbert, Linde and Isis, I would like to thank for their sincere interest in my research and their support during this lengthy process. I am very lucky to have you in my life.

And finally, I want to thank Sander Müskens. You have made my life better in so many ways. We have faced some tough times together, but we always pull each other through. You were there for me when I needed you. Thank you for loving me and being in my life. I look forward to the future with you.
Contents

List of figures v
List of tables ix

1 Introduction 1
 1.1 Medieval developments and their impact 1
 1.2 Historical context 3
 1.2.1 Holland and Zeeland in development (AD 1000-1200) 3
 1.2.2 Urbanisation and commercialisation (AD 1200-1600) 8
 1.3 Research questions: impact of medieval developments 13
 1.4 Osteoarchaeology and the impact of socioeconomic developments 14
 1.4.1 Previous osteoarchaeological research into medieval developments 14
 1.4.2 Current research 15
 1.5 Dissertation structure 17

2 Materials 19
 2.1 Introduction 19
 2.2 Blokhuizen 20
 2.2.1 Site context 20
 2.1.2 Excavation history 22
 2.3 Klaaskinderkerke 24
 2.3.1 Site context 24
 2.3.2 Excavation history 26
 2.4 Paardenmarkt, Alkmaar 27
 2.4.1 Site context 27
 2.4.3 Excavation history 30
 2.5 Comparative human skeletal material from The Netherlands 32
 2.5.1 Introduction 32

3 Skeletal indicators 35
 3.1 Introduction 35
 3.2 The osteological paradox 35
 3.3 Indicators of disease 38
 3.3.1 Introduction 38
 3.3.2 Tuberculosis 39
 3.3.3 Brucellosis 41
3.4 Indicators of activity 42
 3.4.1 Introduction 42
 3.4.2 Osteoarthritis 42
 3.4.3 Bone morphology 44
3.5 Indicators of diet 46
 3.5.1 Introduction 46
 3.5.2 Dental caries 46
 3.5.3 Nutritional deficiencies 48
3.6 Indicators of non-specific stress 50
 3.6.1 The concept of stress and adaptation 50
 3.6.2 Stature 52
 3.6.3 Dental enamel hypoplasia 54
 3.6.4 Porotic hyperostosis and cribra orbitalia 55
4 Methods 59
 4.1 Introduction 59
 4.2 Completeness and preservation 59
 4.3 Estimation of sex 60
 4.3.1 Introduction 60
 4.3.2 Estimating sex from the cranium 61
 4.3.3 Estimating sex from the mandible 63
 4.3.4 Estimating sex from the pelvis 63
 4.3.5 Metric sex estimation 65
 4.3.6 Final sex estimation 66
 4.4 Estimation of age-at-death 66
 4.4.1 Introduction 66
 4.4.2 Estimating non-adult age-at-death 68
 4.4.3 Estimating adult age-at-death 69
 4.5 Indicators of disease 72
 4.5.1 Infectious diseases 72
 4.5.2 Comparative analysis of disease indicators 72
 4.6 Indicators of activity 73
 4.6.1 Osteoarthritis 73
 4.6.2 Bone morphology 74
 4.6.3 Comparative analysis of activity indicators 75
 4.7 Indicators of diet 76
 4.7.1 Dental caries 76
 4.7.2 Metabolic diseases 76
 4.7.3 Comparative analysis of diet indicators 77
 4.8 Indicators of non-specific stress 78
 4.8.1 Stature 78
 4.8.2 Dental enamel hypoplasia 79
 4.8.3 Cribra orbitalia and porotic hyperostosis 79
 4.8.4 Comparative analysis of stress indicators 80
List of figures

1 Introduction

Figure 1.1: Map of the current Netherlands with the study area (Holland and Zeeland) indicated.

Figure 1.2: Palaeogeological map of The Netherlands in AD 800 (after Vos and Weerts 2011, p. 67).

Figure 1.3: Floor plan of the Oostpolder farmhouse, 1:150 (after Kok 1999, figure 23, p. 46).

Figure 1.4: Spatial layout of Oostpolder farmhouse and surroundings (stal=stable, werk=work, woon=living, larger numbers indicate excavation trenches, smaller numbers: 1=fence, 2=small wooden posts, 3=bone pit (animal), 4=horse burial) (after Kok 1999, figure 32, p. 57).

Figure 1.5: Population density in Amsterdam, Delft, and Dordrecht at three moments in time (AD 1300, AD 1400, and AD 1560) (after Visser 1985, figure 5, p. 16).

Figure 1.6: Map of the current Netherlands with the study area and site locations indicated.

2 Materials

Figure 2.1: Map of The Netherlands with the province of North-Holland and location of Blokhuizen indicated.

Figure 2.2: Drawing of layer 2 of the excavation unit in Blokhuizen (adapted from drawing G. Alders, 1983).

Figure 2.3: Human skeletal remains encountered during the excavation of the Blokhuizen site (photo: F. Diederik, 1983).

Figure 2.4: Map of The Netherlands with the province of Zeeland and location of Klaaskinderkerke indicated.

Figure 2.5: Reconstruction map ‘Zeeland in 1300’ by A.A. Beekman (1921) (after Beekman 2012: 192). Klaaskinderkerke is indicated by the red circle.

Figure 2.6: Map of The Netherlands with the province of North-Holland and location of Alkmaar indicated.

Figure 2.7: Expansion of the city of Alkmaar. A) AD 1325, B) Expansion in AD 1400 (36 hectares), C) Expansion in 16th century (59 hectares) (after van Oosten 2014).

Figure 2.8: The church of the Franciscan monastery, directly behind the town wall. Pen drawing by C.W. Bruinvis, c. 1860, after the situation around AD 1570 (Regional Archives Alkmaar).
Figure 2.9: Map of the Paardenmarkt excavation (Hollandia Archeologen).

Figure 2.10: Four coffin burials in the Alkmaar cemetery. Note that the coffin outlines are still visible in the ground (photo: Laboratory for Human Osteoarchaeology, Leiden University, 2010).

Figure 2.11: Map of The Netherlands with the provinces of Holland and Zeeland and the locations of the sites analysed by the author (black) and those used for comparison (gray) indicated.

3 Skeletal indicators

Figure 3.1: A model of functional adaptation of bone (adapted from Ruff 2008, figure 6.1, p. 184).

Figure 3.2: Biocultural model of stress and adaption adopted for use with skeletal populations (after Goodman et al. 1988, figure 2, p. 172).

4 Methods

Figure 4.1: Sexually dimorphic cranial features: (1) Female, (2) Probable female, (3) Indeterminate, (4) Probable male, (5) Male (after Buikstra and Ubelaker 1994, figure 4, p. 20).

Figure 4.2: Greater sciatic notch scoring: (1) Female, (2) Probable female, (3) Indeterminate, (4) Probable male, (5) Male (after Buikstra and Ubelaker 1994, figure 2, p. 18).

Figure 4.3: Phenice traits: top row, female expression; bottom row, male expression (after Phenice 1969, figure 1, p. 299).

Figure 4.4: Age ranges of epiphyseal fusion (after WEA 1980, figure 6, p. 531).

Figure 4.5: Development of the male pubic symphysis with age. The youngest is on the left and the oldest symphysis is located on the right (after Buikstra and Ubelaker 1994, figure 8, p. 24).

Figure 4.6: Dental attrition in relation to age (after Maat 2001, figure 3, p. 20).

Figure 4.7: Development of the sternal rib ends (Osteoware, Smithsonian Institute, Washington DC).

Figure 4.8: FDI-system for recording deciduous and permanent teeth.

5 Results

Figure 5.1: Sex distribution (%) in the collections of Alkmaar (n=165), Blokhuizen (n=84), and Klaaskinderkerke (n=50). Only adult individuals are included in this graph.

Figure 5.2: Age-at-death distribution of the individuals in the Blokhuizen collection (n=65).

Figure 5.3: Combined age-at-death and sex distribution of the Blokhuizen collection. The graph only includes the adult individuals for whom both sex and age-at-death could be estimated (n=29: F=14, M=15).

Figure 5.4: Age-at-death distribution of the individuals in the Klaaskinderkerke collection (n=51).

Figure 5.5: Combined age-at-death and sex distribution of the Klaaskinderkerke collection. The graph only includes the adult individuals for whom both sex and age-at-death could be estimated (n=47: F=17, M=30).
Figure 5.6: Age-at-death distribution of the individuals in the Alkmaar collection (n=154).

Figure 5.7: Combined age-at-death and sex distribution of the Alkmaar collection. The graph only includes the adult individuals for whom both sex and age-at-death could be estimated (n=125: F=71, M=54).

Figure 5.8: Non-adult age distribution in Blokhuizen (n=35), Klaaskinderkerke (n=4), and Alkmaar (n=24).

Figure 5.9: Adult male age distribution in Alkmaar (n=54), Blokhuizen (n=15), and Klaaskinderkerke (n=30). Only individuals for whom both sex and age could be estimated are included.

Figure 5.10: Adult female age distribution in Alkmaar (n=71), Blokhuizen (n=14), and Klaaskinderkerke (n=17). Only individuals for whom both sex and age could be estimated are included.

Figure 5.11: Skeletal tuberculosis in Alkmaar individual S290V812. Left: right side of the body of thoracic vertebra eight, affected by multiple lytic lesions. Right: Inferior side of the right clavicle, showing multiple lytic lesions on the acromial end.

Figure 5.12: Rib lesions in Alkmaar individual S418V949. Patches of periosteal new bone on the visceral surface of the right ribs (five to seven).

Figure 5.13: The prevalence of osteoarthritis in relation to age-at-death in the Blokhuizen collection.

Figure 5.14: The prevalence of osteoarthritis in relation to age-at-death in the Klaaskinderkerke collection.

Figure 5.15: The prevalence of osteoarthritis in relation to age-at-death in the Alkmaar collection.

Figure 5.16: Percentages of individuals with caries in the studied sites.

Figure 5.17: Caries frequency in the Alkmaar, Blokhuizen and Klaaskinderkerke collections. Adults and non-adults are displayed separately.

Figure 5.18: Residual rickets in individual K927V9A. Image shows bending deformity of the right tibia. The proximal end is visible on the left and the anterior surface of the bone shown.

Figure 5.19: Correlation of stature with age-at-death of the adult male individuals from Blokhuizen (n=14; younger adults (<35 years): n=6, older adults (>35 years): n=8). Only individuals for whom sex, age, and stature could be estimated are included in this graph.

Figure 5.20: Correlation of stature with age-at-death of the adult female individuals from Blokhuizen (n=7; younger adults (<35 years): n=4, older adults (>35 years): n=3). Only individuals for whom sex, age and stature could be estimated are included in this graph.

Figure 5.21: Correlation of stature with age-at-death of the adult male individuals from Klaaskinderkerke (n=30; younger adults (<35 years): n=15, older adults (>35 years): n=15). Only individuals for whom sex, age and stature could be estimated are included in this graph.
Figure 5.22: Correlation of stature with age-at-death of the adult female individuals from Klaaskinderkerke (n=15; younger adults (<35 years): n=11, older adults (>35 years): n=4). Only individuals for whom sex, age and stature could be estimated are included in this graph.

Figure 5.23: Correlation of stature with age-at-death of the adult male individuals from Alkmaar (n=45; younger adults (<35 years): n=21, older adults (>35 years): n=24). Only individuals for whom sex, age and stature could be estimated are included in this graph.

Figure 5.24: Correlation of stature with age-at-death of the adult female individuals from Alkmaar (n=61; younger adults (<35 years): n=33, older adults (>35 years): n=28). Only individuals for whom sex, age and stature could be estimated are included in this graph.

Figure 5.25: Enamel hypoplasia in an adolescent individual from Alkmaar (S442V1039). Note the multiple horizontal lines on the incisors and canines (red arrows), and the partial destruction of the top part of the crowns (yellow arrows).

Figure 5.26: Healed cribra orbitalia in an adult female (S278V802) and healing porotic hyperostosis on the parietal bone of a child (S045V534). (Photo: R. Schats, Laboratory for Human Osteoarchaeology).

6 Discussion

Figure 6.1: Approximate stable isotope ratios when consuming pure C3, C4, and marine diets (after Mays 2010, figure 10.2, p. 270).

Figure 6.2: Stable carbon and nitrogen isotope ratios of the individuals from Blokhuizen and Alkmaar compared to the average stable isotope ratios from fauna specimens from Alkmaar and the stable carbon and nitrogen isotope ratios from fish samples from Oldenzaal. Error bars are one standard deviation (after van Hattum 2014, figure 10, p. 109).
List of tables

1 Introduction
 Table 1.1: Population numbers for the largest urban centres in Holland in AD 1514.

2 Materials
 Table 2.1: Human skeletal collections used in this research.
 Table 2.2: Human skeletal remains used in this research for comparative analysis

4 Methods
 Table 4.1: Cranial features scored by the WEA method with associated weights (1980:523).
 Table 4.2: Mandibular features scored by the WEA method with associated weights (1980).
 Table 4.3: Pelvic features scored by the WEA method with associated weights (1980).
 Table 4.4: Description of the measurements used for the estimation of sex.
 Table 4.5: The studied infectious diseases with associated diagnostic features employed in this research.
 Table 4.6: Platymetric index (Bass 1987).
 Table 4.7: Platycnemic index (Bass 1987).
 Table 4.8: The studied metabolic diseases with associated diagnostic features employed in this research.
 Table 4.9: Type of analysis, sample size, and the appropriate parametric and non-parametric tests (McDonald 2009; Sokal and Rohlf 2012).

5 Results
 Table 5.1: Overview of the completeness and preservation of the skeletal remains from the Blokhuisen, Klaaskinderkerke, and Alkmaar collections.
 Table 5.2: Statistical comparison of the male-female ratios across the sites.
 Table 5.3: Overview of the demographic data for all individuals in the three sites.
 Table 5.4: Number and percentages of younger adults (19-35 years) and number and percentages of older adults (36-46+ years) in the different sites.
 Table 5.5: Statistical comparison of the number of males and females in the two age groups between the sites.
 Table 5.6: Demographic information of the individual with possible infectious disease in the Klaaskinderkerke collection.
 Table 5.7: Demographic information of the individuals with possible and definitive infectious diseases in the Alkmaar collection.
Table 5.8: Number of individuals affected by osteoarthritis per joint type in the Blokhuizen collection.
Table 5.9: Number of joints affected by osteoarthritis per joint type in the Blokhuizen collection.
Table 5.10: Number of joints affected by osteoarthritis per joint group in the Blokhuizen collection.
Table 5.11: Number of individuals affected by osteoarthritis per joint type in the Klaaskinderkerke collection.
Table 5.12: Number of joints affected by osteoarthritis per joint type in the Klaaskinderkerke collection.
Table 5.13: Number of joints affected by osteoarthritis per joint group in the Klaaskinderkerke collection.
Table 5.14: Number of individuals affected by osteoarthritis per joint type in the Alkmaar collection.
Table 5.15: Number of joints affected by osteoarthritis per joint type in the Alkmaar collection.
Table 5.16: Number of joints affected by osteoarthritis per joint group in the Alkmaar collection.
Table 5.17: Number of individuals affected by osteoarthritis in the three collections.
Table 5.18: Statistical comparison of the number of individuals affected by osteoarthritis in the three collections.
Table 5.19: Number of individuals affected by osteoarthritis per joint type in the three collections.
Table 5.20: Number of joints affected by osteoarthritis in the three collections.
Table 5.21: Statistical comparison of number of joints affected by osteoarthritis in the three collections.
Table 5.22: Number of joints affected by osteoarthritis per joint type in the three collections.
Table 5.23: Number of joints affected by osteoarthritis per joint group in the three collections.
Table 5.24: Statistical comparison of the number of joints affected by osteoarthritis per joint group in the three collections.
Table 5.25: Platymeric and platycnemic indices in the Blokhuizen collection.
Table 5.26: Statistical comparison of left and right leg means in the Blokhuizen assemblage.
Table 5.27: Statistical comparison of male and female means in the Blokhuizen assemblage.
Table 5.28: Platymeric and platycnemic indices in the Klaaskinderkerke collection.
Table 5.29: Statistical comparison of left and right leg means in the Klaaskinderkerke assemblage.
Table 5.30: Statistical comparison of femoral and tibial shapes between males and females from the Klaaskinderkerke collection.
Table 5.31: Platymeric and platycnemic indices in the Alkmaar collection.
Table 5.32: Statistical comparison of femoral and tibial shapes between left and right legs of the Alkmaar collection.
Table 5.33: Statistical comparison of femoral and tibial shapes between males and females in the Alkmaar collection.

Table 5.34: Overview of the indices means for males (M) and females (F) in the Blokhuizen, Klaaskinderkerke, and Alkmaar collections.

Table 5.35: Statistical comparison of the shapes of the femora and tibiae of males (M) and females (F) across the studied sites.

Table 5.36: Statistical comparison of the caries prevalence the across studied sites.

Table 5.37: Non-adult caries percentage and frequency across the sites.

Table 5.38: Statistical comparison of the adult caries frequency across the sites.

Table 5.39: Adult caries percentage and frequency across the sites.

Table 5.40: Statistical comparison of the adult caries percentage and frequency across the sites.

Table 5.41: Adult caries percentage and frequency across the sites.

Table 5.42: Statistical comparison of the adult caries percentage and frequency across the sites.

Table 5.43: Adult caries percentage and frequency divided by age and sex across the sites.

Table 5.44: Statistical comparison of the adult caries percentage and frequency divided by age and sex across the sites.

Table 5.45: Demographic information on the individuals with possible and definitive metabolic diseases in the Klaaskinderkerke collection.

Table 5.46: Overview of the stature means for the males and females of the three sites.

Table 5.47: Statistical comparison of the male and female stature means between sites.

Table 5.48: Overview of the stature means per age group for the individuals from the Alkmaar, Blokhuizen, and Klaaskinderkerke collections.

Table 5.49: Statistical comparison of the mean male and female statures in a specific age group between the three different sites.

Table 5.50: Number of studied teeth per tooth type for enamel hypoplasia from Blokhuizen.

Table 5.51: Number of individuals with enamel hypoplasia in the different age groups in relation to total number of individuals in the specific age groups in the Blokhuizen collection.

Table 5.52: Number of studied teeth per tooth type for enamel hypoplasia from Klaaskinderkerke.

Table 5.53: Number of individuals with enamel hypoplasia in the different age groups in relation to total number of individuals in the specific age groups in the Klaaskinderkerke collection.

Table 5.54: Number of studied teeth per tooth type for enamel hypoplasia from Alkmaar.

Table 5.55: Number of individuals with enamel hypoplasia in the different age groups in relation to total number of individuals in the age groups in the Alkmaar collection.

Table 5.56: Total number of studied teeth per tooth type for enamel hypoplasia from the three sites.

Table 5.57: Statistical comparison of the percentages of teeth per tooth type across the three sites.
Table 5.58: Number and percentage of individuals (adults and non-adults) with enamel hypoplasia in the three sites.

Table 5.59: Statistical comparison of the adult prevalence of enamel hypoplasia across the studied sites.

Table 5.60: Numbers and percentages of expected teeth versus observed number of teeth separated by sex across the three sites.

Table 5.61: Statistical comparison of the percentages of anterior teeth and percentages of all teeth combined separated by sex across the three sites.

Table 5.62: Number and percentage of males and females with enamel hypoplasia in the three sites.

Table 5.63: Statistical comparison of male and female prevalence of enamel hypoplasia across the studied sites.

Table 5.64: Numbers and percentages of expected teeth versus observed number of teeth separated by age across the three sites.

Table 5.65: Statistical comparison of the percentages of anterior teeth and percentages of all teeth combined per age group across the three sites.

Table 5.66: Numbers and percentages of younger and older adults with enamel hypoplasia in the three sites.

Table 5.67: Statistical comparison of enamel hypoplasia prevalence between younger and older adults across the sites.

Table 5.68: Numbers and percentages of individuals with enamel hypoplasia separated by sex and age-at-death in the Alkmaar, Blokhuizen and Klaaskinderkerke collections.

Table 5.69: Number of individuals with cribra orbitalia in the different age groups in relation to total number of individuals in the specific age groups in the Blokhuizen collection.

Table 5.70: Number of individuals with cribra orbitalia in the different age groups in relation to total number of individuals in the specific age groups in the Klaaskinderkerke collection.

Table 5.71: Number of individuals with cribra orbitalia in the different age groups in relation to total number of individuals in the specific age groups in the Alkmaar collection.

Table 5.72: Numbers and percentages of individuals with cribra orbitalia in the studied collections.

Table 5.73: Statistical comparison of the prevalence of cribra orbitalia across the sites.

Table 5.74: Numbers and percentages of adult individuals with cribra orbitalia in the different age groups in the three sites.

Table 5.75: Numbers and percentages of individuals with porotic hyperostosis at the three sites.

6 Discussion