Chapter 5

Chronic PYY$_{3-36}$ treatment ameliorates insulin resistance in C57BL6-mice on a high fat diet.

Anita M. van den Hoek1,2, Annemieke C. Heijboer1,2, Eleonora P.M. Corssmit2, Johannes A. Romijn2, Louis M. Havekes1,3,4 and Hanno Pijl2.

1 TNO-Prevention and Health, Gaubius Laboratory, Leiden, The Netherlands
2 Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
3 Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
4 Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands

Manuscript in preparation
Abstract

PYY3-36 is a gut-derived hormone, that acts on hypothalamic nuclei to modulate energy metabolism. We recently showed, that PYY3-36 acutely reinforces insulin action on glucose disposal in insulin resistant mice. Because the long-term effects of PYY3-36 on insulin sensitivity are still unknown, we examined the effects of chronic PYY3-36 administration (2.5 µg/day s.c. for 7 days) on glucose turnover during a hyperinsulinemic-euglycemic clamp in C57BL6 mice maintained on a high fat diet for 16 weeks before the experiment. In addition, metabolic efficacy of continuous vs. intermittent administration of PYY3-36 was evaluated. Under hyperinsulinemic conditions, glucose disposal was significantly increased in PYY3-36 treated mice vs. vehicle-treated mice (78.8 ± 13.3 vs. 63.4 ± 15.5 µmol/min/kg, respectively, P=0.012). Tissue specific glucose uptake was significantly increased in adipose tissue (0.5 ± 0.2 vs. 0.2 ± 0.1 µmol/ g tissue; P=0.006), but not in muscle (2.2 ± 1.4 vs. 1.6 ± 0.8 µmol/ g tissue for PYY3-36 and vehicle-treated animals, respectively, P=0.38) of PYY3-36 treated animals. In contrast, insulin action on endogenous glucose production was not significantly affected. Furthermore, none of these metabolic parameters were affected by the mode of PYY3-36 administration (continuous or intermittent).

In conclusion, chronic PYY3-36 administration enhances the ability of insulin to promote glucose disposal, whereas it does not significantly affect endogenous glucose production in C57BL6 mice maintained on a high fat diet for 16 weeks. In addition, this study shows that continuous and intermittent administration are equally effective in this respect.

Introduction

The metabolic syndrome comprises a cluster of anomalies that increase the risk of cardiovascular disease and type 2 diabetes mellitus: hyperglycemia, abdominal obesity, hypertriglyceridemia, hypertension and low levels of high-density lipoprotein (HDL) cholesterol 1-3. Insulin resistance may underlie the majority of these pathologies 4 and therapies that effectively reinforce insulin action may therefore ameliorate the risk profile of metabolic syndrome patients 5,6.

Diet-induced obese, insulin resistant C57BL6-mice have increased levels of neuropeptide Y (NPY) and decreased levels of pro-opiomelanocortin (POMC) in
hypothalamic nuclei. These features of hypothalamic neural circuits may be involved in the pathogenesis of the metabolic syndrome, as intracerebroventricular (icv) administration of NPY or antagonists of POMC induce insulin resistance. Therefore, antagonists of NPY and/or agonists of POMC signalling may be useful tools in the clinical management of this syndrome. Peptide YY\textsubscript{3-36} (PYY\textsubscript{3-36}) is released in response to food intake by L-cells in the distal gastrointestinal tract. It acts via Y2 receptors on NPY neurons in the arcuate nucleus to inhibit NPY neuronal activity and thereby activates adjacent POMC neurons. We recently found that PYY\textsubscript{3-36} administration acutely reinforces insulin action on glucose disposal through a mechanism that is independent of food intake and body weight. This finding suggests that PYY\textsubscript{3-36} may be used as a therapeutic tool in the clinical management of insulin resistance and the metabolic syndrome. However, the metabolic effects of long-term PYY\textsubscript{3-36} administration are currently unknown, and waning of early impact may occur during chronic treatment through down regulation of receptor expression or function. Therefore, the aim of this study was to investigate the long-term effects of PYY\textsubscript{3-36} on insulin action by administering PYY\textsubscript{3-36} subcutaneously for 7 days in mice fed a high-fat diet, and quantifying the effects on glucose production and disposal during a hyperinsulinemic euglycemic clamp study. As the physiology of PYY\textsubscript{3-36} entails intermittent release in response to food intake, we also examined whether continuous and intermittent administration of PYY\textsubscript{3-36} impact glucose metabolism differentially in this experimental context.

Research designs and methods

Animals. Male C57BL6 mice were housed in a temperature-controlled room on a 12-hour light-dark cycle and were fed a high fat diet (43 energy% fat derived from bovine lard) with free access to water for 16 weeks to induce insulin resistance. After 15 weeks of high fat diet, osmotic minipumps (Alzet minipump, model 2001, Charles River, Maastricht, The Netherlands) were placed subcutaneously in the back region under light isoflurane anesthesia. All mice received a saline (n = 15) or PYY\textsubscript{3-36} (2.5 \(\mu\)g/day, n = 5) infusion via the osmotic minipump at a rate of 0.5 \(\mu\)l/h for 7 days. In addition, daily subcutaneous injections (50 \(\mu\)l at 09.00 am) of saline or PYY\textsubscript{3-36} (2.5 \(\mu\)g) were given, where mice receiving continuous PYY\textsubscript{3-36} treatment were additionally injected with saline, and mice receiving saline by minipump were assigned to receive
either saline (n = 8) or PYY3-36 (n = 7) by injection. Thus, glucose kinetics were determined in 2 experimental groups: 1) receiving saline and 2) receiving PYY3-36, where PYY3-36 was administered continuously by minipump or intermittently by daily subcutaneous injection. All animal experiments were performed in accordance with the regulations of Dutch law on animal welfare and the institutional ethics committee for animal procedures approved the protocol.

Hyperinsulinemic euglycemic clamp. Mice were fasted overnight with food withdrawn at 05.00 pm the day prior to the study. The next day, hyperinsulinemic euglycemic clamps were performed as described earlier. First, basal rates of glucose turnover were measured by giving a primed (0.7 µCi) continuous (1.2 µCi/h) infusion of 14C-glucose (Amersham, Little Chalfont, U.K.) for 80 min. Subsequently, insulin was administered in a primed (4.1 mU) continuous (6.8 mU/h) i.v. infusion for 2 to 3 hours to attain steady state circulating insulin levels of ~3.5 ng/ml. A variable infusion of 12.5% D-glucose was used to maintain euglycemia (measured at 10 min intervals via tail bleeding, Freestyle, TheraSense, Disetronic Medical Systems BV, Vianen, The Netherlands). Blood samples (75 µl) were taken during the basal period (after 60 and 80 minutes) and during the clamp period (when glucose levels were stable and 20 and 40 minutes later) for determination of plasma glucose, FFA, insulin and PYY3-36 concentrations and 14C-glucose specific activities.

To assess insulin-mediated glucose uptake in individual tissues, 2-deoxy-D-[3H] glucose (2-[^3]H)DG; Amersham, Little Chalfont, UK) was administered as a bolus (1µCi), 40 minutes before the end of the clamp experiments. At the end of the clamp, mice were sacrificed and muscle and adipose tissue were isolated and frozen in liquid nitrogen for subsequent analysis.

Analytical procedures. Plasma levels of glucose and FFA were determined using commercially available kits (Instruchemie, Delfzijl, The Netherlands and Wako, Neuss, Germany). Plasma insulin and PYY3-36 concentrations were measured by a mouse insulin ELISA and PYY3-36 RIA (Mercodia, Uppsala, Sweden; Phoenix pharmaceuticals, Belmont, CA, USA; sensitivity of 1 pg/µl for the PYY3-36 RIA). Total plasma 14C-glucose was determined in 7.5 µl plasma and in supernatants after trichloroacetic acid (20%) precipitation and water evaporation to eliminate tritiated water.
Tissue analysis. For determination of tissue 2-DG uptake, the homogenate of muscle and adipose tissue was boiled and the supernatant was subjected to an ion-exchange column to separate 2-DG-6-P from 2-DG as described previously.19-21

Calculations. Turnover rates of glucose (µmol/min/kg) were calculated during the basal period and in steady-state clamp conditions as the rate of tracer infusion (dpm/min) divided by the plasma specific activity of 14C-glucose (dpm/µmol). The ratio was corrected for body weight. EGP was calculated as the difference between the tracer-derived rate of glucose appearance and the glucose infusion rate.

Tissue-specific glucose uptake in muscle and adipose tissue was calculated from tissue 2-DG content, corrected for plasma specific activity and expressed as µmol per gram of tissue.

Statistical analysis. Differences between groups were determined by Mann-Whitney non-parametric test for 2 independent samples. A P-value < 0.05 was considered statistically significant. All values shown represent means ± SD.

Results

Animals. Body weight did not differ between PYY\textsubscript{3-36} and vehicle-infused animals (after 7 days of PYY\textsubscript{3-36}/saline administration: 28.0 ± 3.7 gram in the PYY\textsubscript{3-36} group and 28.3 ± 1.5 gram in the control group, P=0.68). Overnight food intake was measured at day 2 and day 5 of PYY\textsubscript{3-36}/saline administration and was similar in both groups (day 2: 2.37 ± 0.68 vs. 2.32 ± 0.33 gram, P=0.96; day 5: 2.76 ± 0.54 vs. 2.75 ± 0.43 gram, P=0.97 in PYY\textsubscript{3-36} and vehicle-treated animals, respectively). Furthermore, body weight and overnight food intake was not different in groups receiving continuous or intermittent PYY\textsubscript{3-36} treatment (body weight: 29.5 ± 3.9 vs. 26.9 ± 3.4 gram, P=0.20; food intake day 2: 2.14 ± 0.98 vs. 2.48 ± 0.56 gram, P=0.38; day 5: 2.53 ± 0.69 vs. 2.92 ± 0.39 gram, P=0.27 for continuous and intermittent administration, respectively).

Plasma parameters. Plasma glucose, FFA, and insulin concentrations in basal and hyperinsulinemic conditions are shown in table 1. Plasma glucose and insulin concentrations did not differ between vehicle and PYY\textsubscript{3-36} treated animals under basal and steady state clamp conditions. Furthermore, continuous and intermittent PYY\textsubscript{3-36} administration had similar impact on these parameters, except for the plasma glucose levels under basal conditions, which were slightly but significantly higher in
the group that received continuous PYY$_{3-36}$ administration (basal glucose: 9.3 ± 0.9 vs. 7.7 ± 1.5 mmol/l, P=0.048; hyperinsulinemic glucose: 9.9 ± 0.8 vs. 9.1 ± 0.6 mmol/l, P=0.073; basal insulin: 0.9 ± 0.4 vs. 0.5 ± 0.3 ng/ml, P=0.073; hyperinsulinemic insulin: 3.9 ± 1.0 vs. 3.4 ± 0.6 ng/ml, P=0.43). Plasma FFA concentrations were slightly, but significantly, lower in PYY$_{3-36}$ treated mice in basal (P=0.025) and steady state clamp (P=0.031) conditions, where continuous and intermittent PYY$_{3-36}$ administration did not have differential effects (basal FFA: 0.9 ± 0.3 vs. 0.9 ± 0.1 mmol/l, respectively, P=0.76; hyperinsulinemic FFA: 0.5 ± 0.1 vs. 0.4 ± 0.1 mmol/l, respectively, P=0.073). Plasma PYY$_{3-36}$ concentrations in basal and hyperinsulinemic conditions were below the detection level in all groups (<1 pg/µl), except for the basal condition of the mice that received intermittent PYY$_{3-36}$ administration (3.7 ± 0.8 pg/µl).

Table 1. Plasma parameters under basal or hyperinsulinemic conditions in overnight fasted mice that received PYY$_{3-36}$ (n=12) or vehicle (n=8) for 7 days. Data are the means ± SD. * <0.05 vs. vehicle.

<table>
<thead>
<tr>
<th></th>
<th>Basal</th>
<th>Hyperinsulinemic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle</td>
<td>PYY$_{3-36}$</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>7.7 ± 1.3</td>
<td>8.4 ± 1.5</td>
</tr>
<tr>
<td>FFA (mmol/l)</td>
<td>1.1 ± 0.2</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td>0.7 ± 0.3</td>
<td>0.7 ± 0.4</td>
</tr>
</tbody>
</table>

Glucose turnover. In basal conditions, glucose disposal was similar in PYY$_{3-36}$ and vehicle-treated mice (52.0 ± 10.5 vs. 50.4 ± 10.4 µmol/min/kg, respectively, P=0.68). The rate of glucose infusion necessary to maintain euglycemia during insulin infusion was significantly higher in PYY$_{3-36}$ treated mice than in vehicle-treated animals (54.0 ± 11.4 vs. 33.4 ± 11.6 µmol/min/kg, P=0.000), indicating that chronic PYY$_{3-36}$ administration enhances whole body insulin sensitivity. Continuous and intermittent administration of PYY$_{3-36}$ had similar effects on the glucose infusion rate (54.7 ± 9.2 vs. 53.6 ± 10.2 µmol/min/kg, respectively, P=0.27). Hyperinsulinemia increased glucose disposal in both groups. However, the disposal rate was significantly higher
in PYY$_{3-36}$ treated animals compared with vehicle-treated controls (78.8 ± 13.3 vs. 63.4 ± 15.5 µmol/min/kg, respectively, $P=0.012$, Figure 1a) and was similar in animals treated by continuous and intermittent administration (81.2 ± 13.8 vs. 77.1 ± 13.7 µmol/min/kg, respectively, $P=0.64$).

Endogenous glucose production was similar in PYY$_{3-36}$ and vehicle-treated mice in basal conditions and was suppressed by insulin to the same extent in both groups (by 54 ± 18 vs. 40 ± 26% from basal in PYY$_{3-36}$ vs. vehicle treated groups, respectively; $P=0.27$, Figure 1b), where percent inhibition did not differ between animals receiving continuous or intermittent PYY$_{3-36}$ treatment. (52 ± 25 vs. 55 ± 12% from basal, respectively, $P=0.53$).

Figure 1. Insulin mediated glucose disposal (a) and inhibition of endogenous glucose production (EGP) by insulin (b) in overnight fasted mice before (basal) and during (hyperinsulinemic) a hyperinsulinemic euglycemic clamp study. Prior to the clamp experiment the animals received PYY$_{3-36}$ (n=12) or vehicle (n=8) for 7 days. Values represent the means ± SD. *$P<0.05$ vs. vehicle.

Tissue-specific glucose uptake. Insulin-mediated 2-deoxy-glucose uptake was measured in muscle and adipose tissue. In muscle, 2-deoxy-glucose was similar in both groups (2.2 ± 1.4 vs. 1.6 ± 0.8 µmol/g tissue for PYY$_{3-36}$ and vehicle-treated animals, respectively, $P=0.38$). In adipose tissue 2-deoxy-glucose uptake was significantly increased in PYY$_{3-36}$ treated animals compared with vehicle treated mice (0.5 ± 0.2 vs. 0.2 ± 0.1 µmol/g tissue; $P=0.006$, Figure 2).
Discussion

Here we show that chronic PYY3-36 administration improves whole body insulin sensitivity of glucose metabolism in C57BL6 mice maintained on a high fat diet for 16 weeks. In particular, PYY3-36 treatment enhances the ability of insulin to promote glucose disposal via mechanistic routes that are independent of food intake or body weight. In addition, this study documents that continuous and intermittent administration of PYY3-36 reinforce insulin action to a similar extent.

These data corroborate our previous findings, which unveil similar acute effects of PYY3-36 administration on insulin action, and support the emerging concept of neural circuits controlling fuel flux, independent of their impact on food intake and body weight. In addition, our data indicate that the effects of PYY3-36 on glucose metabolism do not wane during chronic treatment, which suggests that this peptide may be a novel asset in the battle against insulin resistance and the metabolic syndrome.

Although PYY3-36 enhanced insulin-induced glucose disposal, it did not significantly affect the ability of insulin to inhibit endogenous glucose production. Nonetheless, we cannot exclude the possibility that the experimental group size may have limited the statistical power necessary to detect a subtle influence of PYY3-36 on hepatic glucose metabolism. Alternatively, PYY3-36 exerts differential, tissue specific, effects on insulin action.
The mechanism by which PYY\textsubscript{3-36} affects insulin-mediated glucose metabolism remains to be elucidated. Perhaps, PYY\textsubscript{3-36} modulates insulin action via the hypothalamic Y2 receptor, in analogy with the mechanism guiding its effects on appetite. Y2-receptor mediated inhibition of NPY and stimulation of POMC neuronal activity by PYY\textsubscript{3-36} potentially reinforces insulin action on glucose metabolism indeed 10;11;13.

Circulating PYY\textsubscript{3-36} levels in fasting conditions remained below the level of detection (< 1 pg/µl) during continuous treatment, and rose to 3.7 ± 0.8 pg/µl approximately one hour after i.p injection. During hyperinsulinemia (3-3.5 hours after injection), PYY\textsubscript{3-36} levels were undetectable by our assay in all animals. Thus, in spite of the fact that continuous PYY\textsubscript{3-36} treatment did not produce measurable plasma concentrations and intermittent administration induced a merely transitory increase of circulating PYY\textsubscript{3-36}, both treatments significantly facilitated insulin mediated glucose disposal in high fat fed animals. Relatively few papers report plasma PYY\textsubscript{3-36} concentrations in rodents. Postprandial levels may be in the range of 112 pmol/L (0.4 pg/µl) and 0.18 pg/µl in freely feeding normal weight rats and mice respectively 14;22, whereas fasting levels are considerably lower, as PYY\textsubscript{3-36} is primarily released in response to food intake 14;23. Plasma PYY\textsubscript{3-36} concentrations in high fat fed mice are unknown, but may be significantly reduced, as obese humans have clearly diminished circulating PYY\textsubscript{3-36} levels 24. Taken together, our data suggest, that even a relatively low dose of PYY\textsubscript{3-36} (in view of the low circulating PYY\textsubscript{3-36} levels during treatment) can reinforce insulin action. Further dose-response experiments are warranted to evaluate the potential efficacy of PYY\textsubscript{3-36} in the treatment of the metabolic syndrome.

Food intake and body weight were not affected by PYY\textsubscript{3-36} administration in our study. These findings agree with data from Challis et al., indicating that 7 days of PYY\textsubscript{3-36} administration did not affect food intake and body weight in POMC-/- and wild type mice 25. In contrast, Batterham et al. reported that PYY\textsubscript{3-36} acutely inhibits food intake 14, an observation that could not be reproduced by Tschöp and coworkers 26;27. To take this issue further, we compared the acute effects of a single intraperitoneal (2.5 µg) injection of PYY\textsubscript{3-36} (n = 8) or vehicle (n = 8) at 09.00 am on food intake in our animals, and found that cumulative food intake in 4 hours after injection was significantly inhibited by 21% in overnight fasted mice (P=0.028), whereas
subsequent feeding over 24 hours was not affected by PYY\textsubscript{3-36}. These data suggest that this dose of PYY\textsubscript{3-36} has a short-term inhibitory impact on food intake in overnight fasted C57BL6 mice, whereas consumption over 24 hours is not affected, probably as a result of a rebound compensatory increase of appetite14,15.

In conclusion, the present study shows that chronic PYY\textsubscript{3-36} administration reinforces insulin action on glucose disposal in mice maintained on a high fat diet, whereas it also tends to enhance the ability of insulin to suppress endogenous glucose production. These observations suggest that PYY\textsubscript{3-36} or potential analogues may be a useful treatment for insulin resistance and the metabolic syndrome.

Acknowledgements

The research described in this paper is supported by the Dutch Scientific Research Council / Netherlands Heart foundation (projects 980-10-017, 907-00-002 and 903-39-291). This study is conducted in the framework of the “Leiden Center for Cardiovascular Research LUMC-TNO”.

Reference list

7. Huang XF, Han M, South T, Storlien L. Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Brain Res. 2003; 992: 9-19.

