
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/43186 holds various files of this Leiden University 
dissertation. 
 
Author: Derickx, M. 
Title: Torsion points on elliptic curves over number fields of small degree 
Issue Date: 2016-09-21 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43186
https://openaccess.leidenuniv.nl/handle/1887/1�


CHAPTER 1

Modular curves and modular forms
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1. Elliptic curves

There are two ways in which one can look at modular curves, one is the standpoint
of complex geometry and the other is the standpoint of algebraic geometry. These
two standpoints meet at the place where one starts to do algebraic geometry over
C. In this section the theory of both sides is discussed in parallel.

A complex elliptic curve is pair (E, 0)
of a compact Riemann surface E of genus
1 together with a base point 0 ∈ C. In
both the complex and the algebraic set-
ting we will just write E instead of (E, 0)
in the rest of this text.

Let S be a scheme, an algebraic elliptic
curve over S is a pair (E, 0) where E is a
scheme that is smooth of relative dimen-
sion 1 and proper over S such that all its
geometric fibers are irreducible genus one
curves and 0 ∈ E(S).

Let Λ ⊂ C be a lattice, i.e. a discrete
subgroup of maximal rank, meaning rank
2 in this case. Then

EΛ := C/Λ
together with the equivalence class of
0 ∈ C is an elliptic curve. The holomor-
phic one form dz on C is invariant under
translation by Λ and hence descends to a
nonzero holomorphic one form on C/Λ.

Let R be a commutative Z[1
6
]-algebra,

and a4, a6 ∈ R such that

−16(4a3
4 + 27a2

6) ∈ R∗,
then the projective curve Ea4,a6 given by

y2 = x3 + a4x+ a6

together with ∞ is an elliptic curve and

ωa4,a6 := (3x2 + a4)−1dy = (2y)−1dx

is a global one form.

Conversely if ω ∈ Ω1(E) is a nonzero
holomorphic one form, then there exists
a unique lattice ΛE,ω ⊂ C and a unique
isomorphism

f : E
∼−→ C/ΛE,ω

such that f ∗(dz) = ω.

Suppose SpecR ⊂ S is an affine open
with 6 ∈ R∗ such that there exist a
nowhere vanishing 1 form ω ∈ Ω1

E/R(E)
then there are unique a4, a6 ∈ R and a
unique

f : E
∼−→ Ea4,a6

such that f ∗ωa4,a6 = ω

Using the isomorphism f , the elliptic
curve E gets a group law, the group law
is independent of the choice of dz since
scalar multiplication C → C is a group
homomorphism.

One can put a group scheme structure
on E by dentifying E with Pic0

E/S by
sending P ∈ E(T ) to the line bundle T
OET (P − 0T ) for all S schemes T .

The story on the algebraic side can be generalized to the case of Z-algebras with
a little bit more effort. Also one can mimic the definition of the group structure in
the complex case by first putting a group scheme structure on Ea4,a6 using explicit
equations, and use f to give E a group scheme structure as well. So we have seen that
both complex and algebraic elliptic curves, although defined by abstract properties
can always be written down explicitly, and that they automatically inherit a group
(scheme) structure.
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If Ea is an algebraic elliptic curve over C then Ea(C) is a complex elliptic curve
and if Ec is a complex elliptic curve then one write Ec ∼= C/Λ. Define

℘Λ : C \ Λ→ C (1)

z 7→ 1

z2
+

∑

λ∈Λ\{0}

(
1

(z − λ)2
− 1

(−λ)2

)

G2k(Λ) :=
∑

λ∈Λ\{0}

1

λ2k
, for k ∈ Z≥2 (2)

g2(Λ) := 60G4(Λ), g3(Λ) := 140G6(Λ). (3)

The function ℘Λ is called the Weierstrass P-function. The function ℘Λ and its
derivative satisfy the following equation

(1
2
℘′Λ(z))2 = ℘Λ(z)3 − 1

4
g2(Λ)℘Λ(z)− 1

4
g3(Λ).

The functions ℘Λ and ℘′Λ are invariant under translation by Λ so they induce a map

fΛ : C/Λ→ E 1
4
g2,

1
4
g3

(C) (4)

z 7→ ℘Λ(z), 1
2
℘′Λ(z),

where the equivalence class 0 + Λ is sent to ∞. The map fΛ is an isomorphism of
elliptic curves, and it is even compatible with the choice of one forms since

f ∗Λ(
dx

2y
) =

d℘(z)

℘′(z)
= dz. (5)

Two elliptic curves C/Λ1 and C/Λ2 are
isomorphic if an only if there exists a u
in C∗ such that Λ2 = uΛ1. Define the
j-invariant of C/Λ by

j(Λ) := 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
.

Using the fact that g2(uΛ) = u−4g2(Λ)
and g3(uΛ) = u−6g3(Λ) it follows that j
only depends on the isomorphism class of
C/Λ and one can even show that j deter-
mines the isomorphism class uniquely.

Let R be a Z[1
6
] algebra and

a4, a6, a
′
4, a
′
6 ∈ R such that Ea4,a6

and Ea′4,a′6 are elliptic curves. These
curves are isomorphic over R if and
only if there exists an u ∈ R∗ such that
a′4 = u−4a4 and a′6 = u−6a6. Define

j(a4, a6) := 1728
4a3

4

4a3
4 + 27a2

6

.

Then j(a4, a6) only depends on the iso-
morphism class of Ea4,a6 and if R is an
algebraically closed field then j even de-
termines it uniquely.

This shows that both the complex and the algebraic way of looking at elliptic
curves agree, if in the algebraic world one restricts to elliptic curves over C.

1.1. Some q-expansions. Two elliptic curves C/Λ and C/Λ′ are isomorphic if and
only if there exists a c ∈ C such that cΛ = Λ′. Now chose two generators λ1, λ2

of Λ. By scaling with λ−1
2 one sees that C/Λ is isomorphic to C/(λ1/λ2Z + Z). In
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particular, by replacing λ1/λ2 by −λ1/λ2 if necessary, one sees that there is always
a τ ∈ H := {z ∈ C | Im z > 0} such that C/Λ ∼= C/τZ + Z. For τ ∈ H define
Λτ := τZ + Z. By additionally defining ℘(z, τ) := ℘Λτ (z), G2k(τ) := G2k(Λτ ) and
gi(τ) = gi(Λ) for i = 2, 3 one can view ℘ as a meromorphic function on C × H
and G2k and gi as holomorphic functions on H. All these functions are invariant
under translation by 1 on the τ coordinate since Λτ and Λτ+1 are the same lattice.
Also z and z + 1 define the same point in C/Λτ showing that ℘ is also invariant
under translation by 1 in the z coordinate. This means that all these functions
can be written as power series in q := e2πiτ whose coefficients are Laurent series in
u := e2πiz. See for example [Silverman(1994), I §6,§7]. The resulting power series
are

℘(z, τ) = (2πi)2

(∑

n∈Z

qnu

(1− qnu)2
+

1

12
− 2

∞∑

n=1

qn

(1− qn)2

)
(6)

G2k(τ) = (2πi)2k

(
−B2k

(2k)!
+

2

(2k − 1)!

∞∑

n=1

n2k−1qn

1− qn

)
, (7)

where Bk ∈ Q are the Bernoulli numbers, which are defined as the coefficients of

the Taylor series t
et−1

=
∑∞

k=1Bk
tk

k!
. Applying ∂

∂z
= 2πiu ∂

∂u
to ℘ one obtains the

formula1

∂℘(z, τ)

∂z
:= −(2πi)3

∑

n∈Z

qnu(1 + qnu)

(1− qnu)3
(8)

The formula’s for G2k(τ) and gi(τ) are often rewritten using the auxiliary functions

σk(n) :=
∑

d|n,d>0

dk, sk(q) :=
∞∑

n=1

nkqn

1− qn =
∞∑

n=1

σk(n)qn. (9)

One has B4 = − 1
30

and B6 = 1
42

so that the q-expansion of 1
4
g2(τ) and 1

4
g3(τ) are

1

4
g2(τ) := (2πi)4(

1

48
+ 5s3(q)) and

1

4
g3(τ) := (2πi)6(− 1

864
+

7

12
s5(q)). (10)

1.2. Tate Curve. Let τ be in the upper half plane, then the elliptic curve y2 =
x3− 1

4
g2(τ)x− 1

4
g3(τ) has j-invariant j(τ) := j(Λτ ) and discriminant ∆(τ) : g2(τ)3−

27g3(τ)2. Using the above formulas for q-expansion one can show that

j(τ) =
1

q
+
∞∑

n=0

c(n)qn, c(n) ∈ Z, and (11)

∆(τ) = (2πi)12q
∞∏

n=1

(1− qn)24 (12)

1This differs by a minus sign from the formula in [Silverman(1994), I Thm 6.2], where there is
a sign mistake.
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Define g̃2 = (2πi)−4g2, g̃3 := (2πi)−6g3, ℘̃ := (2πi)−2℘, and ∆̃ := (2πi)−12∆. With
these definitions the elliptic curve y2 = x3 − 1

4
g̃2(τ)x − 1

4
g̃3(τ) is isomorphic to

C/Λτ via (x, y) = (℘̃(z, τ), 1
2
∂
∂z
℘̃(z, τ)). This model of C/Λτ over H has not only

a j-invariant whose q-expansion has integral coefficients, but the coefficients of the
q-expansion of its discriminant ∆̃ are integral as well. The functions g̃2 and g̃3 do not
have integral q-expansions, although they are almost integral since they are fractions
whose denominator is a divisor of 864 = 23 · 33 as formula (10) shows. Substituting
x = x′ + 1

12
and y = y′ + 1

2
x′ gives the curve

y′2 + x′y′ = x′3 + a4x
′ + a6, a4 := −5s3, a6 := −5s3 + 7s5

12
(13)

It is clear that a4 has integral coefficients in its q-expansion. For any integer n
one has 5n3 + 7n5 ≡ 0 mod 12 so that a6 also has integral coefficients. The Tate
curve Eq is the curve (13) over Z[[q]] where one uses q-expansion to see a4 and a6 as
elements of Z[[q]]. It is not an elliptic curve since its fiber above q = 0 is singular,
however since ∆̃ is a unit in Z[[q]][1

q
] it is an elliptic curve over Z[[q]][1

q
]. The Tate

curve is useful since it allows one to study elliptic curves over p-adic fields, i.e. finite
extensions of Qp. This is captured in the following Theorem due to Tate whose
statement can be obtained by combining [Silverman(1994), V Thm 3.1 and Lemma
5.1]

Theorem 1.1 (Tate). Let K be a p-adic field and q0 ∈ K∗ with |q0| < 1 then the
power series a4 and a6 converge in q0. Let Eq0 be the curve given by

y′2 + x′y′ = x′3 + a4(q0)x′ + a6(q0)

then Eq0(K) is isomorphic to K
∗
/q0 as Gal(K/K) modules. The curve Eq0 has

|j(Eq0)| > 1 and for every elliptic curve E over K with |j(Eq0)| > 1 there is a
unique q0 ∈ K such that E ∼= Eq0 over K.

The isomorphism between K
∗
/q0 and Eq0(K) is obtained by using formula’s 6

and 8 to find the q-expansions of x′ = ℘̃ − 1
12

and y′ = 1
2
∂
∂z
℘̃ − 1

2
℘̃ − 1

12
. With this

isomorphism one sees that the invariant differentials

2πidz =
du

u
=

dx′

2y′ + x′
,

are equal, where the left most differential only makes sense in the complex world.
The above theorem is the p-adic analogue of the fact that every elliptic curve over
C can be written as C/(τZ + Z) ∼= C∗/e2πiτZ .

1.3. Néron polygons. The fiber of the Tate curve Eq over Z[[q]] at q = 0 is not
an elliptic curve although it is still a curve, in fact it’s special fiber is isomorphic
to P1 with two points glued together. The special fiber is an example of a Néron
1-gon. In general if N is an integer and R is a ring then the Néron N-gon NN
over R is defined to be the singular projective curve over R that one obtains by



MODULAR CURVES AND MODULAR FORMS 7

taking a copy Xi of P1
R for each i ∈ Z/NZ and glueing the point ∞ of Xi to the

point 0 of Xi+1 in such a way that the intersections become ordinary double points.
Using the identification Gm,R = P1

R \ {0,∞} one sees that the smooth locus of
the Néron N -gon over R is isomorphic to Z/NZ×Gm,R, turning the smooth locus
of the Néron N -gon into a group scheme. Morphisms between Néron N -gons are
the scheme morphisms that induce group-scheme homomorphisms when restricted
to the smooth locus, so in particular they should map the smooth locus to itself.
If K is a field of characteristic co-prime to N then one can make µN(K) act on
Z/NZ × P1

K by ζN(i, (a : b)) := (i, (ζ iNa : b)) and one can make {±1} act on
it by −(i, (a : b)) := (i, (b : a)). Both these actions are group homomorphisms
when restricted to Z/NZ×Gm,K ⊆ Z/NZ× P1

K and they are compatible with the
identifications of∞ on the i-th component with 0 on the i+ 1-th component. Since
these actions commute, one gets that automorphism group of NN contains

µN(K)× {±1} .
The above group is actually the entire automorphism group.

1.4. Generalized Elliptic curves. Theorem 1.1 shows that the Tate curve Eq
over Z[[q]] can be used to study elliptic curves over p-adic fields with |j| > 1 and
j 6=∞. Its special fiber at q = 0 is not an elliptic curve but it is still a Néron N -gon.
Generalized elliptic curves are curves where we also allow the geometric fibers to be
Néron N -gons, to be more precise.

Definition 1.2. Let S be a scheme, a generalized elliptic curve over S is a scheme
E that is proper, flat and of finite presentation over S together with a group scheme
structure on Esm, such that each of the geometric fibers EK of E is isomorphic to
either an elliptic curve over K or the Néron N -gon over K.

In the above definition Esm denotes the locus of E that is smooth over S and the
isomorphisms of the geometric fibers should respect the group scheme structure on
Esm
K

. A point of order N on a generalized elliptic curve E/S is understood to be
an element P ∈ E(S) of order N such that all geometric fibers of P also have order
N and furthermore such that the subgroup generated by P meets all components of
all geometric fibers.

2. Modular curves

2.1. The modular curve Y1(N). Modular curves are curves whose points corre-
spond to elliptic curves with some extra structure. The modular curve Y1(N) is the
curve whose points correspond to an elliptic curve with a torsion point of order N .
To avoid technical difficulties we assume that N > 4 is an integer. Let (E1, P1)
and (E2, P2) be pairs of an elliptic curve together with a point of order N , then an
isomorphism from (E1, P1) to (E2, P2) is defined to be an isomorphism of elliptic
curves f : E1 → E2 such that f(P1) = f(P2). This definition will be used for both
complex and algebraic elliptic curves.
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Let H be the complex upper half plane.
To τ ∈ H one can associate the elliptic
curve Eτ := C/(τZ + Z). If E = C/Λ
is an elliptic curve and ω1, ω2 are gen-
erators of Λ such that Im(ω1/ω2) > 0
then division by ω2 gives an isomorphism
E ∼= Eω1/ω2 showing that every elliptic
curve is isomorphic to some Eτ .

Let SL2(Z) act on H by [ a bc d ] τ = aτ+b
cτ+d

.
Then the sequence of isomorphisms

Eτ ∼= C/ ((aτ + b)Z + (cτ + d)Z)

∼= C/
(
aτ+b
cτ+d

Z + Z
)

= Eaτ+b
cτ+d

.

shows that if γ ∈ SL2(Z), then Eγτ ∼= Eτ .
One can even show that if τ1, τ2 ∈ H then
Eτ1
∼= Eτ2 if and only if there exists a

γ ∈ SL2 (Z) such that τ2 = γτ1.

The point 1
N
∈ Eτ has order N , and

because N > 3 one can show that Eτ has
no automorphisms that fix 1

N
. Now

cτ+d
N
≡ 1

N
mod τZ + Z

if and only if (c, d) ≡ (0, 1) mod N , so if
one defines Γ1(N) ⊆ SL2(Z) to be the set
of matrices with (c, d) ≡ (0, 1) mod N
then the isomorphism(

Eaτ+b
cτ+d

, 1
N

)
∼=
(
Eτ ,

cτ+d
N

)

shows that if γ ∈ SL2 (Z), then
(Eγτ , 1/N) ∼= (Eτ , 1/N) if and only if
γ ∈ Γ1(N). So that Y1(N) := Γ1(N)\H
can be interpreted as the set of isomor-
phism classes of pairs (E,P ) where E is
an elliptic curve and P ∈ E a point of
order N .

Let R be a ring and b, c ∈ R, then Eb,c
is the curve defined by

y2 + (1− c)xy − by = x3 − bx2.

Define Rb,c := Z[b, c, 1
∆b,c

] where ∆b,c is

the discriminant of the curve Eb,c and de-
fine Y := SpecRb,c. The curve Eb,c is an
elliptic curve over Y and

P0 := (0 : 0 : 1) ∈ Eb,c(Y ).

Let ΦN ,ΨN ,ΩN ∈ Rb,c be such that

(ΦNΨN : ΩN : Ψ3
N) = NP0.

The equation ΨN = 0 is equivalent to P0

having order dividing N . One can show
that if d | N then Ψd | ΨN . Define FN by
removing all factors coming form the Ψd

with d | N, d 6= N from ΨN , and

Y1(N) := SpecRb,c[
1
N

]/FN .

Let b̄, c̄ ∈ SpecRb,c[
1
N

]/FN denote the
equivalence classes of b, c and define
E1(N) := Eb̄,c̄, it is an elliptic curve over
Y1(N) and P1(N) := (0 : 0 : 1) is a point
on it.

Let S be a scheme over Z[ 1
N

] and
X ∈ Y1(N)(S), then E1(N) ×X S is an
elliptic curve over R and the order of
P1(N)×X S as well as that of all its geo-
metric fibers is N . Conversely if E is an
elliptic curve over S and P ∈ E(R)[N ]
is such that the order of P is N in all
geometric fibers, then there exist unique
b, c ∈ OR such that FN(b, c) = 0 and
(E,P ) ∼= (Eb,c, P0), furthermore this iso-
morphism is unique. So the pair b, c de-
fines a point X ∈ Y1(N)(S) such that
(E,P ) ∼= (E1(N)S, P1(N)S).

We have seen that in the complex world the points of Y1(N) correspond to pairs
(E,P ) where E is elliptic curves over C and P a point of order N . In the alge-
braic world we have seen that if R is a Z[ 1

N
] algebra, then the points in Y1(N)(R)

correspond to pairs (E,P ) where E is an elliptic curve over R and P ∈ E(R)[N ]
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is such that the order of P is also N in all geometric fibers, in other words Y1(N)
represents the functor which takes an R algebra to the set of isomorphism classes of
pairs (E,P ) of elliptic curve over R together with a point of order N . Taking R = C
one obtains an isomorphism Y1(N) ∼= Y1(N)(C) of Riemann surfaces. The curve
Y1(N) is smooth over Z[ 1

N
] and has geometrically irreducible fibers, see [Deligne and

Rapoport(1975), Ch. IV].

2.1.1. The universal elliptic curve with a point of order N . In the above discus-
sion we have seen that the pair (E1(N), P1(N)) is pair of an elliptic curve over
Y1(N) together with a point P1(N) ∈ E1(N)(Y1(N)) of order N all whose geometric
fibers are also of order N . And we have even seen for R a Z[1/N ]-algebra that
every pair (E,P ) where E is an elliptic curve over R and P ∈ E(R) a point of
order N all whose geometric fibers also have order N can be obtained as the base
change of (E1(N), P1(N)) along a unique morphism X : SpecR→ Y1(N). The pair
(E1(N), P1(N)) is called the universal elliptic curve with a point of order N . Now
(E1(N)(C), P1(N)(C)) is a smooth family of elliptic curves with a smooth family of
points of order N over Y1(N)(C) and this family can actually also be constructed
directly in the complex world. Let Z2 act on C×H by (m,n)(z, τ) = (z+mτ+n, τ).
Then the fiber of (C × H)/Z2 above τ ∈ H is the elliptic curve Eτ , and the map
P1(N) : H→ (C×H)/Z2 which sends τ to (1/N mod Zτ +Z, τ) is a point of order
N . If one lets SL2(Z) act on C×H by

SL2(Z)× (C×H)→ C×H (14)
([
a b
c d

]
, (z, τ)

)
7→
(

z

cτ + d
,
aτ + b

cτ + d

)

Then one can make the semi-direct product Z2 o SL2(Z) act on C×H by

((m,n), γ)(z, τ) = (m,n)(γ(z, τ)).

Now define E1(N) := (Z2 o Γ1(N))\(C × H). The map E1(N) → Y1(N) which
sends (Z2oΓ1(N))(z, τ) to Γ1(N)τ makes E1(N) into a family of curves over Y1(N).
Using N > 4 one sees that the stabilizer of τ in Γ1(N) is trivial for all τ ∈ H. This
triviality of the stabilizers implies that the fiber of E1(N)→ Y1(N) above Γ1(N)τ is
isomorphic to Eτ for all τ ∈ H. One checks that the map P1(N) : H→ (C×H)/Z2

induces a map P1(N) : Y1(N) → E1(N) by taking the quotient by Γ1(N) on both
sides. The pair (E1(N),P1(N)) is the universal elliptic curve with a point of order
N in the complex setting. And it is isomorphic to (E1(N)(C), P1(N)(C)).

2.2. The modular curve X1(N). The curve Y1(N) of the previous section is
not compact and the curve Y1(N) is not proper over Z[ 1

N
]. But compactness and

properness are properties that are useful for studying curves (and higher dimensional
varieties/schemes). The modular curves X1(N), respectively X1(N) that will be
defined in this section are compact, respectively proper over Z[ 1

N
]. The curves

Y1(N) respectively Y1(N) will be open and dense parts of them.
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The j-invariant induces a holomorphic
map j : Y1(N) → C by sending (E,P )
to j(E). This turns Y1(N) into a finite
ramified cover of C. See C as an open
in P1(C) whose complement is the point
∞. Take D ⊆ P1(C) a punctured disc
centered at ∞. By choosing D small
enough one can assure that j−1(D) is a
disjoint union of punctured discs. The
Riemann surface X1(N) is the Riemann
surface obtained from the Riemann sur-
face Y1(N) by filling the holes in these
punctured discs. The map j turns X1(N)
into a finite ramified cover of P1(C). One
has j−1(∞) = X1(N) \ Y1(N). The set
j−1(∞) is a finite set and its elements are
called the cusps.

The j-invariant induces a morphism of
Z[ 1

N
]-schemes j : Y1(N) → A1

Z[1/N ] which

sends (E,P ) ∈ Y1(N)(T ) to j(E) ∈ OT
for all Z[ 1

N
]-schemes T . See A1

Z[1/N ] as an

open subscheme of P1
Z[1/N ] whose comple-

ment is the closed subscheme ∞. The
generic point of P1

Z[1/N ] is SpecQ(j) and

by viewing j as element of Q(Y1(N)) we
see that Q(j) ⊆ Q(Y1(N)) is a finite ex-
tension of fields. The curve X1(N) is de-
fined as the normalization of P1

Z[1/N ] in

Q(Y1(N)). The map j turns X1(N) into
a finite ramified cover of P1

Z[1/N ]. One has

j−1(∞) = X1(N) \ Y1(N). The scheme
j−1(∞)Z[1/N,ζN ]∩R is a disjoint union of
copies of SpecZ[ 1

N
, ζN ] ∩ R.

In the complex world there is also a second way to construct the underlying
topological space of the Riemann surface X1(N). For this one first defines H∗ :=
H∪P1(Q) and one extends the action of SL2(Z) to H∗ still using the formula [ a bc d ] τ =
aτ+b
cτ+d

, where one defines a∞+b
c∞+d

= a
c

and az+b
cz+d

= ∞ if cz + d = 0. One can show that

SL2 Z acts transitively on P1(Q). One topologizes H∗ by saying that HimZ>x ∪ {∞}
with x ∈ R>0 forms a basis of open neighbourhoods of ∞ and requiring that the
topology is invariant under the action of SL2(Z). One can show that there is a
unique isomorphism of topological spaces between X1(N) and Γ1(N)\H∗ that is the
identity on Y1(N) := Γ1(N)\H. This allows one to identify the cusps of X1(N) with
Γ1(N)\P1(Q).

2.2.1. Moduli interpretation of the cusps. In Section 2.1 we saw that there exists an
elliptic curve E1(N) over Y1(N) which has a point of order N that also has order N
in all geometric fibers, and that for every Z[ 1

N
] algebra R every elliptic curve over

R together with a point of order N that also has order N in all geometric fibers
is the base change of E1(N) to R for a unique morphism X : SpecR → Y1(N).
Using the notion of generalized elliptic curve this story extends to X1(N). There is
a unique extension (E ′1(N), P ′1(N)) of the pair (E1(N), P1(N)) over Y1(N) to X1(N)
such that the geometric fibers of E ′1(N) over X1(N) are generalized elliptic curves,
the point P ′1(N) lies in the smooth locus of E ′1(N), the geometric fibers of P ′1(N)
are all points of order N and for each geometric fiber P ′1(N) is a generator of the
component group.

Theorem 2.1. [Deligne and Rapoport(1975), Ch. IV] This pair (E ′1(N), P ′1(N))
mentioned above is universal, meaning that if S is a scheme over Z[ 1

N
] and (E,P )

is a pair where E is an elliptic curve over S and P ∈ E(S) a point of order N such
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that all the geometric fibers of P are also of order N and generate the component
group of their fiber, then there exists a unique X : S → X1(N) such that (E,P ) is
isomorphic to the base change of (E ′1(N), P ′1(N)).

In particular, if K is an algebraically closed field and s ∈ (X1(N) \ Y1(N))(K),
then E ′1(N)s is a Néron d-gon for some integer d and P ′1(N)s is a point of order
N that generates the component group of the Néron d-gon. Since the component
group of a Néron d-gon is Z/dZ this means that d | N .

The Tate curve given by Eq. (13) gives a way to study the curve E ′1(N) over
X1(N) in the neighbourhood of the cusps. Let d | N be an integer and denote by
Eq,d the base change of Eq to Z[[q1/d]]. The scheme Eq,d is not smooth over Z[[q1/d]],
but if d = 1 then it is at least still a regular scheme. If d > 1 then the singularities of
Eq,d can be resolved by blowing up the point (q, x′, y′) = (0, 0, 0) exactly bd

2
c times,

let Ẽq,d denote the resulting scheme, its fiber over q1/d = 0 is the Néron d-gon over

Z, and for every field K one has that Ẽq,d,K[[q1/d]] is the minimal regular model of
Eq,d,K[[q1/d]]. Consider x′ and y′ of Eq. (13) as elements of Z((u))[[q]] and let i, j be

two integers. Evaluating x′ and y′ at u = qiζjN gives a Z[ 1
N
, ζN ][[q1/d]] point of Ẽq,d,

which we will denote by Pd,i,j. This point lies in the smooth locus and its order is a
divisor of N . Actually the map

α : Z/dZ× Z/NZ→ Ẽsm
q,d (Z[ 1

N
, ζN ][[q

1
d ]]) (15)

i, j 7→ Pd,i,j (16)

is a well defined injective group homomorphism. The point α(1, 0) is a generator
of the component group at q1/d = 0 and α(0, 1) lies in the identity component.
Define Ad ⊂ Z/NZ × Z/dZ to be the set of elements of order N whose first co-
ordinate generates Z/dZ. The set Ad is exactly the set of (i, j) such that the pair
(Ẽq,d, α(i, j)) gives a point sd,i,j ∈ X1(N)(Z[ 1

N
, ζN ][[q1/d]]). Let s′d,i,j ∈ X1(N)(Z[ζN ])

be the point obtained by setting q1/d = 0, then s′d,i,j is a cusp, and the map

sd,i,j : SpecZ[ζN ][[q1/d]] → X1(N) induces an isomorphism between Z[ζN ][[q1/d]]
and the completion of X1(N)

Z[
1
N
,ζN ]

along s′d,i,j. Every Néron d-gon together with

a point of order N that generates the component group is obtained from some s′d,i,j
with (i, j) ∈ Ad, showing that

{
s′d,i,j|d | N, (i, j) ∈ Ad

}
is exactly the set of cusps

of X1(N)
Z[

1
N
ζN ]

, however two different elements of Ad might give the same cusp,

indeed one can make µd(Z[ 1
N
, ζd])× {±1} act on Ad by ζd(i, j) = (i, j + iN/d) and

−(i, j) = (−i,−j). This action is compatible with the action of µd × {±1} on the
set of points of order N of the Néron d-gon, showing that s′d1,i1,j1 = s′d2,i2,j2 if and
only if d1 = d2 and (i1, j1) and (i2, j2) are in the same orbit under this action.
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3. Modular forms

Let k > 0 be an integer, f : H → C be a holomorphic function and γ = [ a bc d ] ∈
SL2(Z), define f [γ]k : H→ C to be the function given by f [γ]k(τ) := (cτ+d)−kf(γτ).
The map f → f [γ]k defines a right action of SL2(Z) on the set of all holomorphic
functions H→ C called the weight k action.

Definition 3.1. Let k > 0 be an integer and Γ ⊆ SL2(Z) be a finite index subgroup,
then a modular form of weight k for Γ is a continuous function f : H∗ → C such
that:

(1) f is invariant under the weight k action of Γ, i.e. f = f [γ]k for all γ ∈ Γ.
(2) f is holomorphic when restricted to H.

The function f is called a cusp form if f(x) = 0 for all x ∈ P1(Q).

Where one should note that in this definition f is required to be continuous on all
of H∗. If one instead just requires f to be continuous on H one needs to add an extra
condition that is called being ”holomorphic at the cusps”. This complex analytic
definition of modular forms does not carry over to the algebraic world, however it
can be reinterpreted in a way that does make sense in the algebraic world. Namely
one can define ωΓ,k to be the sheaf on X(Γ) := Γ\H∗ whose functions on Γ\U are
the continuous functions f : U → C invariant under the weight k action of Γ that
are holomorphic when restricted to H ∩ U for all open U ⊂ H∗ that are invariant
under Γ. If either k is even or Γ acts freely on H then the sheaf ωΓ,k is a line bundle
on X(Γ), i.e. it is a sheaf of OX(Γ) modules that is locally free of rank 1. The global
sections of ωΓ,k are exactly the modular forms of weight k. This line bundle ωΓ,k is
the object that does generalize to the algebraic world, at least if one requires that
Γ is a congruence subgroup:

Definition 3.2. Let N be an integer and define

Γ(N) :=

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
1 0
0 1

]
mod N

}
.

A congruence subgroup is a subgroup Γ ⊆ SL2(Z) such that there exists an integer
N for which Γ(N) ⊆ Γ.

For simplicity we will restrict ourselves to congruence subgroups Γ that contain
Γ1(N) as a normal subgroup for some N in the discussion below. First we will
discuss modular forms of weight k for Γ1(N) with N > 4 and only later will we
discuss it for its groups that contain Γ1(N).

3.1. Modular forms for Γ1(N). Let N > 4 be an integer. Over the curve X1(N)
we have the universal curve E1(N), and we have the zero section 0 : X1(N) →
E1(N). This means we can look at the sheaf Ω1

E1(N)/X1(N) of relative differential

forms on E1(N), this sheaf is locally free of rank 1 when restricted to the locus of
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E1(N) where it is smooth over X1(N). Define

ωE1(N)/X1(N) := 0∗Ω1
E1(N)/X1(N).

One has that ωE1(N)/X1(N)
∼= ωΓ1(N),1 and more generally ω⊗kE1(N)/X1(N)

∼= ωΓ1(N),k.

Indeed, let π : H∗ → X1(N) be the quotient map, then π∗ωωE1(N)/X1(N)
is a free sheaf

of rank 1 when restricted to H. This is because one has π∗ωΓ1(N)
∼= 0∗Ω1

((C×H)/Z2))/H)

and the latter is generated by dz where z is the coordinate on C. Since
[
a b
c d

]
dz = d

z

cτ + d
=

1

cτ + d
dz

it follows that f 7→ 2πifdz = f du
u

gives an isomorphism between ω⊗kE1(N)/X1(N) and

ωΓ1(N),k on Y1(N). Using the Tate curve over C one can show that 2πidz = du
u

is
also a generator of Ω1

E1(N)/X1(N) in a neighbourhood of the 0 section at the cusps

(u = 1 at the zero section), hence the isomorphism over Y1(N) extends to one over
X1(N).

In the previous section it was already shown that modular forms of weight k for
Γ1(N) can be seen as sections of ωΓ1(N),k and using the isomorphism ω⊗kE1(N)/X1(N)

∼=
ωΓ1(N),k one can even see them as sections of ω⊗kE1(N)/X1(N). This last definition is the

definition that carries over to the algebraic world.

Definition 3.3. Let N > 4 and k be integers and R a Z[ 1
N

] algebra. Define

ωX1(N),R,k :=
(
0∗Ω1

E1(N)R/X1(N)R

)⊗k
.

An R valued modular form of weight k for X1(N) is a global section f of ωX1(N),R,k.
A modular form f is called a cusp form if it has zeros at all cusps, i.e. it is zero on
X1(N)R \ Y1(N)R.

The above discussion shows that if one takes R = C then this definition agrees
with the complex analytic definition.

3.2. Modular forms in weight 2. In weight 2 there is even a different interpre-
tation of modular forms. The reason for this is that

[
a b
c d

]
dτ = d

aτ + b

cτ + d
=
a(cτ + d)− c(aτ + b)

(cτ + d)2
dτ =

1

(cτ + d)2
dτ,

showing that if f is a complex analytic modular form of weight 2 for some con-
gruence subgroup Γ, then 2πifdτ = f dq

q
is a differential on H that is invariant

under the action of Γ. In particular, f dq
q

descends to a differential on Y1(N). Us-

ing the description of the formal neighbourhoods of the cusps one can show that
this differential has no poles at the cusps if and only if f is a cusp form, so that
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f 7→ f dq
q

gives an isomorphism ωΓ1(N),2
∼= Ω1

X1(N)/C(cusps) called the Kodaira-

Spencer isomorphism. This isomorphism extends to the algebraic world as an iso-
morphism ωX1(N),Z[1/N ],2

∼= Ω1
X1(N)/Z[1/N ](cusps), where the isomorphism is given by

(du
u

)⊗2 7→ dq
q

at the Tate curve.

This discussion shows cusp forms of weight two for X1(N) over a ring R can be
interpreted as global sections of Ω1

X1(N)/R.

4. The modular curves X0(N) and Xµ(N).

In the sections on Y1(N) and X1(N) we saw that these curves parametrize elliptic
curves together with a point of order N . The curves Y0(N) and X0(N) are the
curves that parametrize elliptic curves together with a cyclic subgroup of order N .

The complex setting will be described first. Define

Γ0(N) :=

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 mod N

}
,

and recall that if τ ∈ H, then Eτ denotes the curve C/(τZ + Z). In the discussion
on Y1(N) it was shown that if τ1, τ2 ∈ H then pairs (Eτ1 , 1/N) and (Eτ2 , 1/N) are
isomorphic if and only if there exists a γ in Γ1(N) such that τ2 = γτ1. Similarly
one can show, replacing the point 1/N ∈ Eτ by the subgroup generated by 1/N ,
that (Eτ1 , 〈1/N〉) and (Eτ2 , 〈1/N〉) are isomorphic if and only if there exists a γ ∈
Γ0(N) such that τ2 = γτ1. This shows that over C the isomorphism classes of pairs
(E,G) of elliptic curve together with a cyclic subgroup of order N are in one to one
correspondence with Γ0\H. So the modular curve Y0(N) is defined to be Γ0\H. One
can compactify Y0(N) in a similar way to Y1(N) and the resulting compactification
will be denoted by X0(N) = Γ0\H∗.

Note that Γ1(N) is a normal subgroup of Γ0(N) so that we could also have con-
structed Y0(N) and X0(N) as quotients of Y1(N) and X1(N) by Γ0(N)/Γ1(N).
The map Γ0(N) → (Z/NZ)∗ given by [ a bc d ] 7→ d is a surjective group homomor-
phism whose kernel is Γ1(N) showing that Γ0(N)/Γ1(N) ∼= (Z/NZ)∗. One can even
interpret the action of (Z/NZ)∗ on X1(N) directly, since d ∈ (Z/NZ)∗ corresponds
to sending the pair (E,P ) of elliptic curve with point of order N to (E, dP ). The
automorphism of X1(N) corresponding to d ∈ (Z/NZ)∗ is denoted by 〈d〉 and is
called a diamond operator.

The action of d ∈ (Z/NZ)∗ given by by (E,P ) 7→ (E, dP ) also makes sense in the
algebraic world and gives an action on the Z[ 1

N
]-schemes Y1(N) andX1(N). One uses

this action to define the modular curves Y0(N) resp. X0(N) to be Y1(N)/(Z/NZ)∗

resp. X1(N)/(Z/NZ)∗. We saw that Y1(N)(R) can be identified with the set of
isomorphism classes of pairs (E,P ) of elliptic curve together over R with a point of
order N for all Z[ 1

N
]-algebras R. However for Y0(N) this property fails. A pair (E,G)

of elliptic curve over R together with a cyclic subgroup of order N still gives rise to
an R valued point on Y0(N), but non isomorphic pairs (E1, G1) and (E2, G2) might
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give the same R point of Y0(N). Although in the case R = K is an algebraically
closed field then Y0(N)(R) can still be identified with the set of isomorphism classes
of elliptic curves with a point of order N , as we already saw over C. An additional
problem with Y0(N) and Y0(N) is that there is no universal elliptic curve over them.
If one tries to define the universal elliptic curve E0(N) := (Z2 o Γ0(N))\(C × H)
over Y0(N), similar to what was done for E1(N), then one runs into problems. This
definition would still give a curve over Y0(N) := Γ0(N)\H, however the proof that
the fiber of E1(N) over Γ1(N)τ ∈ X1(N) is isomorphic to Eτ uses that Γ1(N) acts
freely on H under the assumption N > 4. This is no longer true for Γ0(N), in fact
since − Id :=

[ −1 0
0 −1

]
∈ Γ0(N) and − Id acts trivially on H we see that the fiber

of E0(N) above Γ0(N)τ is a quotient of Eτ/±1 which is not an elliptic curve, but
something isomorphic to P1(C). One has similar problems with trying to construct
the universal elliptic curve over X0(N),

4.1. Modular forms on X0(N). The complex analytic definition of a modular
form in Definition 3.1 is general enough to also work if one takes Γ = Γ0(N).
However the algebraic definition 3.3 for modular forms on X1(N) uses the existence
of the universal elliptic curve E1(N) over X1(N). This leads to problems when
trying to define modular forms on X0(N), since we saw previously that we have no
universal elliptic curve in this case. However these problems can by solved. Namely
let R be a Z[ 1

N
]-algebra and let π : X1(N) → X0(N) denote the quotient map,

then π∗ωX1(N),R,k is a sheaf on X0(N) with an action of (Z/NZ)∗, taking (Z/NZ)∗

invariants gives the desired sheaf of X0(N).

Definition 4.1. Let N > 4 and k be integers and R a Z[ 1
N

] algebra. Define

ωX0(N),R,k := (π∗ωX1(N),R,k)
(Z/NZ)∗ .

An R valued modular form of weight k for X0(N) is a global section f of ωX1(N),R,k.
A modular form f is called a cusp form if it has zeros at all cusps, i.e. it is zero on
X0(N)R \ Y0(N)R.

Let R be a flat Z[ 1
N

]-algebra, then Ω1
X0(N)/R

∼= (π∗Ω1
X1(N)/R)(Z/NZ)∗ . This means

that the Kodaira-Spencer isomorphism ωX1(N),Z[1/N ],2
∼= Ω1

X1(N)/Z[1/N ](cusps) de-

scends to an isomorphism ωX0(N),Z[1/N ],2
∼= Ω1

X0(N)/Z[1/N ](cusps), showing that one
can still see cusp forms over R as one forms. However if R is a ring that is not flat
over Z[ 1

N
] there are some troubles that can arise, especially rings of characteristic

2 and 3 pose problems. More details on different ways of viewing cusp forms as
differential forms and the difficulties that arise in characteristics 2 and 3 can be
found in [Mazur(1977), §II.4].

4.2. The modular curve Xµ(N).. The modular curve Xµ(N) is just a slight vari-
ation on the modular curve X1(N). The curve X1(N) parametrizes pairs (E,P )
of an elliptic curve together with a point of order N , or equivalently pairs (E,α)
where α : Z/NZ → E is a closed immersion of the constant group scheme into
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E. The modular curve Xµ(N) parametrizes pairs (E, β) where β : µN → E is a
closed immersion of the group of N -th roots of unity into E. Since over Z[ 1

N
, ζN ] one

has µN ∼= Z/NZ, one sees that X1(N)Z[1/N,ζN ]
∼= Xµ(N)Z[1/N,ζN ]. This isomorphism

shows in particular that X1(N) and Xµ(N) are isomorphic over all algebraically
closed fields and that Xµ(N) and X1(N) are twists of each other over Z[ 1

N
, ζN ].

Since ζN ∈ C there is nothing that really changes in the complex world so that we
still can see Xµ(N)(C) as X1(N) = X1(N)(C). However over rings not containing
ζN there is a difference. The twisting of X1(N) that gives Xµ(N) can even be made
explicit by the isomorphism

Xµ(N) ∼=
(
X1(N)×Z[ 1

N
] Z
[

1

N
, ζN

])
/(Z/NZ)∗,

where d ∈ (Z/NZ)∗ acts on X1(N) via the diamond operator 〈d〉 and on Z[ 1
N
, ζN ] via

ζN 7→ ζdN . In contrast to X0(N), the modular curve Xµ(N) does have a universal
elliptic curve over it. This universal elliptic curve is denoted by Eµ(N) and the
entire story about modular forms on X1(N) translates directly to a description of
the modular forms on Xµ(N). For a Z[ 1

N
] algebra R one can define

ωXµ(N),R,k :=
(

0∗Ω1
Eµ(N)R/Xµ(N)R

)⊗k
.

similar to Definition 3.3, and say that an R-valued modular form of weight k on
Xµ(N) is a global section of ωXµ(N),R,k. Also the Kodaira-Spencer isomorphism
ωXµ(N),Z[1/N ],2

∼= Ω1
Xµ(N)/Z[1/N ](cusps) continues to exist.
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