## Cover Page



## Universiteit Leiden



The handle <a href="http://hdl.handle.net/1887/42085">http://hdl.handle.net/1887/42085</a> holds various files of this Leiden University dissertation.

Author: Milovic, D.

Title: On the 16-rank of class groups of quadratic number fields

**Issue Date:** 2016-07-04

## Stellingen

behorende bij het proefschrift On the 16-rank of class groups of quadratic number fields door Djordjo Zeljko Milovic

If D is a fundamental discriminant, i.e., the discriminant of a quadratic number field, we let  $\mathrm{Cl}(D)$  denote the narrow class group of the quadratic number field  $\mathbb{Q}(\sqrt{D})$ . Given a finite abelian group G, a prime number  $\ell$ , and an integer  $k \geq 1$ , we define the  $\ell^k$ -rank of G to be

$$\operatorname{rk}_{\ell^k} G = \dim_{\mathbb{F}_\ell} \left( \ell^{k-1} G / \ell^k G \right).$$

- **1.** Suppose p is a prime of the form  $a^2 + c^4$ , where a and c are integers.
- (i) If  $a \equiv \pm 1 \mod 16$  and  $c \equiv 0 \mod 4$ , then  $\operatorname{rk}_{16}\operatorname{Cl}(-4p) = 1$ .
- (ii) If  $a \equiv \pm 3 \mod 16$  and  $c \equiv 2 \mod 4$ , then  $\mathrm{rk}_{16}\mathrm{Cl}(-4p) = 1$ .
- (iii) If  $a \equiv \pm 7 \mod 16$  and  $c \equiv 0 \mod 4$ , then  $\operatorname{rk}_{16}\operatorname{Cl}(-4p) = 0$ .
- (iv) If  $a \equiv \pm 5 \mod 16$  and  $c \equiv 2 \mod 4$ , then  $\operatorname{rk}_{16}\operatorname{Cl}(-4p) = 0$ .
- **2.** For all sufficiently large real numbers X, we have

$$\#\{p \le X : p \equiv 1 \mod 4, \ \operatorname{rk}_{16}\operatorname{Cl}(-4p) = 1\} \ge \frac{X^{3/4}}{8 \log X}$$

and

$$\#\{p \le X : p \equiv 1 \mod 4, \ \operatorname{rk}_{16}\operatorname{Cl}(-4p) = \operatorname{rk}_{8}\operatorname{Cl}(-4p) - 1 = 0\} \ge \frac{X^{3/4}}{8\log X}.$$

**3.** For every  $\epsilon > 0$ , there is a constant  $C_{\epsilon} > 0$  depending only on  $\epsilon$  such that for every  $X \geq 2$ , we have

$$\left| \sum_{\substack{p \le X \\ p \equiv -1 \bmod 16}} \left( \frac{v}{u} \right) \right| \le C_{\epsilon} X^{\frac{149}{150} + \epsilon},$$

where, for each p in the sum above, u and v are taken to be integers satisfying  $p = u^2 - 2v^2$  and  $u \equiv 1 \mod 16$ .

**4.** The density of the set of prime numbers  $p \equiv -1 \mod 4$  for which  $\mathrm{rk}_{16}\mathrm{Cl}(-8p) = 1$  is equal to

$$\lim_{X \to \infty} \frac{\#\{p \le X : p \ prime, \ p \equiv -1 \bmod 4, \ \mathrm{rk}_{16}\mathrm{Cl}(-8p) = 1\}}{\#\{p \le X : p \ prime\}} = \frac{1}{16}.$$

**5.** The equality of Jacobi symbols

$$\left(\frac{b}{a}\right) = \left(\frac{4a + 9b}{9a + 20b}\right)$$

holds true for all rational integers a and b such that a and 9a + 20b are odd and positive.

**6.** Let  $w = a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$  be such that  $\operatorname{Norm}(w)$  is a rational prime congruent to 1 modulo 8 and such that  $|a+b| \equiv 3 \mod 4$ . Let  $\overline{w} = a - b\sqrt{2}$ , and let  $\mathcal{I}(\overline{w})$  denote the group of all fractional ideals of  $\mathbb{Z}[\sqrt{2}]$  coprime to  $(\overline{w})$ . Then the function

$$\psi_w: \mathcal{I}(\overline{w}) \to S^1 = \{s \in \mathbb{C}: |s| = 1\}$$

defined by setting

$$\psi_w(\mathfrak{a}) = \left(\frac{z}{(\overline{w})}\right) \cdot \operatorname{sign}(\operatorname{Norm}(z)),$$

where z is any generator of the ideal  $\mathfrak{a}$ , is a Hecke character for the modulus  $(\overline{w})\infty_1\infty_2$ , where  $\infty_1$  and  $\infty_2$  are the two real embeddings of  $\mathbb{Q}(\sqrt{2})$ .

**7.** Let X > 1 be a real number, let  $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{C}$  be a function satisfying  $||f||_{\infty} \leq 1$ , and let S(X; f) be defined as

$$S(X; f) = \sum_{\substack{pq \le X \\ p < q}} f(p, q),$$

where p and q denote prime numbers. Let Y be a real number satisfying  $1 < Y < X^{\frac{1}{4}}$ . Suppose that there exist positive real numbers  $\delta_1$ ,  $\delta_2$ , and  $\delta_3$  satisfying  $\delta_3 < 2\delta_2$  such that

(A) 
$$A_p(X;f) = \sum_{q \le X} f(p,q) \ll XY^{-\delta_1}$$

for all  $p \leq Y$ , where the implied constant is absolute, and such that

(B) 
$$\mathcal{B}(M,N;f,\Delta) = \sum_{\substack{M$$

for all M, N > 1 and  $\Delta \in (0,1)$  satisfying  $\Delta M, \Delta N > 1$ , where the implied constant is absolute. Then there exists a positive real number  $\delta$  in (0,1) such that

$$S(X; f) \ll Y^{-\delta} X \log X$$
,

where the implied constant is absolute. Moreover, we can take

$$\delta = \min\left(\frac{\delta_1}{2}, \frac{\delta_3}{2\delta_2}, \frac{\delta_3}{2}\right).$$

8. Let p and q denote distinct prime numbers congruent to 1 modulo 4. Then we have

$$\liminf_{X\to\infty}\frac{\#\{pq\le X: \mathrm{rk_4Cl}(8pq)=2, \mathrm{rk_8Cl}(8pq)\ge 1\}}{\#\{pq\le X: \mathrm{rk_4Cl}(8pq)=2\}}\ge \frac{1}{8}.$$

9. Boj ne bije svijetlo oružje, već boj bije srce u junaka.