The handle http://hdl.handle.net/1887/41537 holds various files of this Leiden University dissertation

Author: Mombo-Ngoma, Ghyslain
Title: Parasitic infections during pregnancy: birth outcomes and immunological changes
Issue Date: 2016-07-07
CHAPTER 6

Efficacy of mefloquine intermittent preventive treatment in pregnancy against *Schistosoma haematobium* infection in Gabon: a nested randomized controlled assessor-blinded clinical trial.

©Ghyslain Mombo-Ngoma

A. B., G. M.-N., M. R. contributed equally to this work. They participated in the design and coordination of the study and drafted the manuscript.
Abstract

Background
Urogenital schistosomiasis is a major public health problem in sub-Saharan Africa, and routine programs for screening and treatment of pregnant women are not established. Mefloquine – currently evaluated as a potential alternative to sulfadoxine-pyrimethamine as intermittent preventive treatment against malaria in pregnancy (IPTp) – is known to exhibit activity against Schistosoma haematobium. In this study we evaluated the efficacy of mefloquine IPTp against S. haematobium infection in pregnant women.

Methods
Pregnant women with S. haematobium infection presenting at 2 antenatal health care centres in rural Gabon were invited to participate in this nested randomized controlled, assessor-blinded clinical trial comparing sulfadoxine-pyrimethamine with mefloquine IPTp. Study drugs were administered twice during pregnancy with a 1- month interval after completion of the first trimester.

Results
Sixty-five pregnant women were included in this study. Schistosoma haematobium egg excretion rates showed a median reduction of 98% (interquartile range [IQR], 70%-100%) in the mefloquine group compared to an increase of 20% (IQR, -186% to 75%) in the comparator group. More than 80% of patients showed at least 50% reduction of egg excretion and overall cure rate was 47% (IQR, 36%-70%) 6 weeks after the second administration of mefloquine IPTp.

Conclusion
When used as IPTp for the prevention of malaria, mefloquine shows promising activity against concomitant S. haematobium infection leading to an important reduction of egg excretion in pregnant women. Provided that further studies confirm these findings, the use of mefloquine may transform future IPTp programs into a 2-pronged intervention addressing 2 of the most virulent parasitic infections in pregnant women in sub-Saharan Africa.

Clinical Trials Registration Number: NCT01132248; ATMR2010020001429343.

Keywords: Schistosoma, praziquantel, mefloquine, pregnancy, bilharziosis
Mefloquine IPTp Against *Schistosoma Haematobium* Infection

Introduction

Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is estimated to affect 120 million people in sub-Saharan Africa [1]. Children and women are at highest risk for schistosomiasis-related morbidity owing to frequent exposure to freshwater when doing domestic chores [2]. Anemia, bladder fibrosis, obstruction of the urinary tract, and an increased risk for bladder cancer are classic complications of *S. haematobium* infection. However, other pathologies caused by the chronic granulomatous inflammation of the genitourinary tract including vaginal fibrosis, dyspareunia, and pelvic inflammatory disease are only recently being appreciated [3-5]. Importantly, *S. haematobium* infection has also been associated with an increased risk for human immunodeficiency virus (HIV) transmission most likely due to chronic genital ulceration [6, 7].

The World Health Organization (WHO) estimates that only 33.5 million people among the 230 million people requiring treatment for schistosomiasis receive effective therapy each year [2]. At present, treatment of *Schistosoma* species relies entirely on the single drug praziquantel. Although no clinically relevant resistance to the drug has been confirmed so far, some studies report lower than expected cure rates, raising concerns about the continued usefulness of this drug [8]. There is therefore a broad consensus that new drugs with unrelated modes of action urgently need to be developed.

Mefloquine, an aryl-amino-quinoline antimalarial, is used for the treatment and prophylaxis of malaria on a large scale for > 25 years. It is active against *Plasmodium* species resistant to common antimalarials including chloroquine and sulfadoxine-pyrimethamine. Tolerability of mefloquine is known to be limited by dose dependent neuropsychiatric side effects and gastrointestinal disorders. It is, however, considered to be a particularly safe drug in pregnancy [9-12]. Mefloquine was shown to exert considerable activity against *S. mansoni* and *S. japonicum* – the causative agents of intestinal schistosomiasis – in rodent models [13-15]. Recently, a first exploratory trial evaluating mefloquine alone and in artemisinin combination therapy against *S. haematobium* infection in schoolchildren provided evidence for a clinically relevant effect in humans [16].

Pregnant women are thought to be at an increased risk for adverse pregnancy outcome owing to chronic inflammation and blood loss caused by urogenital schistosomiasis [17]. It is estimated that > 10 million pregnant African women each year have *S. haematobium* infections [18]. However, because of a lack of established screening, treatment or prevention programs, schistosomiasis is rarely diagnosed or treated during pregnancy.
In contrast to this situation, intermittent preventive treatment against malaria is an established prevention strategy in most sub-Saharan African regions [19-21]. Due to increasing drug resistance of *Plasmodium falciparum* against sulfadoxine-pyrimethamine, mefloquine is currently investigated in a large multicenter randomized controlled trial for its efficacy, tolerability, and safety as intermittent preventive treatment of malaria during pregnancy (IPTp) in Africa. Since malaria and urogenital schistosomiasis show co-endemicity in large parts of Africa, a shared prevention strategy against both malaria and schistosomiasis during pregnancy would therefore be particularly advantageous and a practicable public health intervention for these underserved populations [22].

This randomized controlled clinical trial was hence designed as a proof of concept study to evaluate whether mefloquine IPTp exerts clinically relevant activity against *S. haematobium* infection in pregnant women in Gabon when compared to sulfadoxine-pyrimethamine, which served as comparator without known antischistosomal activity. This study was set out to test whether mefloquine leads to an at least 50% reduction in egg excretion compared to sulfadoxine-pyrimethamine IPTp.
Mefloquine IPTp Against *Schistosoma Haematobium* Infection

Materials and Methods

This study was conducted at the Centre for Medical Research of Lambaréné, the Albert Schweitzer Hospital, and the Ngounié Medical Research Centre in Fougamou, Gabon [23]. This semi-rural region is situated within the equatorial rain forest and is known to be highly endemic for *S. haematobium* and *P. falciparum* infections [22, 24-26]. *Plasmodium falciparum* is known to show high levels of resistance against chloroquine, whereas mefloquine and quinine have retained high activity against clinical field isolates [27-29].

This study was designed as a nested randomized controlled, assessor blinded, clinical trial embedded in an open label multicenter randomized controlled trial assessing the efficacy, tolerability, and safety of mefloquine IPTp against malaria (MIPPAD [Malaria in Pregnancy Preventive Alternative Drugs]; NCT 00811421). All pregnant women attending an antenatal clinic before the 28th week of pregnancy were screened for *S. haematobium* infection and in case of positivity, participation in this nested trial was proposed after written informed consent has been obtained. Exclusion criteria consisted of intake of anthelminthic or antimalarial drugs within 2 months or serologic evidence for HIV infection. At initial presentation presence of hematuria was assessed semi-quantitatively by a urine dipstick test (Combur; Roche Diagnostics, Switzerland). Infection with *S. haematobium* was determined by using 10 mL of urine passed through a 12µm polyamide N-filter (Millipore, Billerica) followed by a subsequent microscopic examination for the detection of eggs as previously described [30]. Urine analysis was performed for each time-point on at least 2 consecutive days and the arithmetic mean of available counts was used for further statistical analysis. Cure was defined as the examination of 3 consecutive urine samples without the presence of eggs.

Women were randomly allocated to either mefloquine or sulfadoxine-pyrimethamine treatment in a 2:1 allocation ratio. The randomization list was computer generated and provided by the independent MIPPAD Trial Management Team (Barcelona Centre for International Health Research, Spain), which was not involved in the recruitment of participants. Study assignment was concealed via sealed opaque envelopes, which were opened only after enrolment of a patient by a study investigator. The assigned study treatment was administered twice during pregnancy. The first dose was administered between the 13th and 28th week of gestation. The second dose was scheduled at least 1 month apart from the previous dose. Mefloquine was administered either as a single full dose (15mg/kg bodyweight) or as a split dose of 2 doses (7.5mg/kg each) on 2 consecutive days (Lariam®, Roche, Basel, Switzerland). Drugs were administered under the supervision of a study investigator. The rationale for the evaluation of these two mefloquine
treatment schedules was to evaluate potential differences in tolerability for mefloquine. The study design was chosen on the assumption of comparable pharmacodynamics owing mefloquine’s long half-life of 12-17 days. This assumption will further be elaborated in rich- and population-pharmacokinetic studies, which are still ongoing. Sulfadoxine-pyrimethamine was given as single dose treatment following current WHO recommendations (3 tablets of 500/25mg sulfadoxine-pyrimethamine; Malastop®, Laboratoires STEROP, Brussels, Belgium). Sulfadoxine-pyrimethamine, a sulfa-type antimalarial, is known not to exert activity against *S. haematobium* and served as a control group in this randomized controlled trial to account for natural variations in egg excretion. In order to minimize potential bias in the microscopic assessment of *Schistosoma* egg excretion, laboratory technicians were blinded to the treatment allocation and the time point of sampling by labelling of urine samples with numbers.

Clinical follow-up and repeated urine examinations were performed 4 weeks after the first intake of IPTp, coinciding with the second IPTp administration, and 6 weeks after the second dose of IPTp (Figure 1). The primary outcome measure was the parasitological urine examination 6 weeks after the second administration of IPTp, which was used to calculate the primary outcome as relative reduction of egg excretion in the mefloquine arm when compared to sulfadoxine-pyrimethamine. All women were offered a therapeutic course of praziquantel at 1 month after delivery. Pregnant women were further followed up until 6 weeks post-delivery and infants were followed up until their first birthday.

This proof of concept study was set out to test the primary hypothesis whether mefloquine IPTp leads to an at least 50% reduction in egg excretion compared to the inactive comparator drug sulfadoxine-pyrimethamine when evaluated 6 weeks after the second dose of IPTp (Wilcoxon-signed rank test). To allow for loss to follow up and incomplete parasitological assessments 65 patients were included in this study (β=0.8 and α=0.05). The secondary hypothesis was to evaluate whether mefloquine IPTp may lead to an adequate cure rate for *S. haematobium* infection of > 80%. Efficacy analysis was performed, including participants contributing outcome measurements at the end of study visit. The study was granted ethical approval by the Institutional Review Board of the Medical Research Unit at the Albert Schweitzer Hospital in Lambaréné.

Data were recorded on dedicated paper record forms. Data entry was performed by 2 data clerks independently and automated and manual verification of the database was performed. A commercially available software package was used for statistical analysis (JMP 5.0, SAS Institute). Descriptive characteristics were computed depicting median and interquartile ranges and treatment outcomes were compared by non-parametric tests as appropriate.
Figure 1: Patient flow.
Abbreviations: IPTp, intermittent preventive treatment in pregnancy; MQ, mefloquine; SP, sulfadoxine-pyrimethamine.
Results

From September 2009 to December 2011, 902 pregnant women participating in the MIPPAD study were screened at first presentation at the study centres for the presence of urogenital schistosomiasis (Figure 1). Among those 79 individuals (9%) were infected with *S. haematobium* and 65 (82%) provided written informed consent to participate in this study. Among these participants 48 and 17 patients were randomized to the mefloquine and sulfadoxine-pyrimethamine treatment groups, respectively (Figure 1). Median gestational age at initial presentation was 21 and 20 weeks, respectively. Both treatment groups had comparable baseline characteristics including age (median 21 years), weight (median 56kg) and hemoglobin (median 100 and 95 g/L, respectively; Table 1). Thirty-seven and 28 patients were enrolled at the study centres in Lambaréné and Fougamou, respectively. There were no important differences of patient characteristics between the two study centres (data not shown).

Thirty and 14 patients in the mefloquine and sulfadoxine-pyrimethamine groups, respectively, were successfully followed up for the primary outcome measure. Reasons for non-adherence to the full treatment course included loss to follow up, withdrawal from the study, migration, delivery before second dose of IPTp, abortion, refusal of second dose of IPTp, and repeated vomiting (Figure 1).

Table 1: **Baseline Characteristics of Study Participants**

<table>
<thead>
<tr>
<th></th>
<th>MQ</th>
<th>SP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. and %</td>
<td>24 MQf</td>
<td>17</td>
<td>74%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>24 MQs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>21</td>
<td>19-25</td>
<td>21</td>
<td>19-25</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>56</td>
<td>50-66</td>
<td>56</td>
<td>53-66</td>
</tr>
<tr>
<td>Height, cm</td>
<td>156</td>
<td>153-162</td>
<td>160</td>
<td>156-164</td>
</tr>
<tr>
<td>Gestational Age at inclusion, wk</td>
<td>20</td>
<td>17-23</td>
<td>21</td>
<td>19-25</td>
</tr>
<tr>
<td>Hemoglobin, g/L</td>
<td>100</td>
<td>89-111</td>
<td>95</td>
<td>84-110</td>
</tr>
<tr>
<td>Median egg count V1, /mL</td>
<td>18</td>
<td>4-177</td>
<td>26</td>
<td>15-199</td>
</tr>
<tr>
<td>Hematuria a</td>
<td>3</td>
<td>2-4</td>
<td>3</td>
<td>2-4</td>
</tr>
<tr>
<td>Literacy, No. and %</td>
<td>38</td>
<td>81%</td>
<td>15</td>
<td>88%</td>
</tr>
<tr>
<td>MUAC, cm</td>
<td>23</td>
<td>19-25</td>
<td>24</td>
<td>21-25</td>
</tr>
</tbody>
</table>

Abbreviations: MQ, Mefloquine; MQf: single full dose of 15 mg/kg mefloquine; MQs: split dose of 7.5 mg/kg mefloquine over two consecutive days; SP, Sulfadoxine-Pyrimethamine; MUAC, mid-upper arm circumference

a Semi-quantitative detection of hemoglobin by urine-strip (scale: 0-4)
Median egg excretion rates of *S. haematobium* decreased from 18 eggs/ml urine (4-177/ml) at baseline to 7 eggs/ml (1-34/ml) and 2 eggs/ml (0-10/ml) 4 weeks after the first administration of mefloquine-IPTp and six weeks after the second administration, respectively. In the sulfadoxine-pyrimethamine treatment arm, respective egg excretion rates were 26 eggs/ml (15-199/ml), 33 eggs/ml (15-181/ml), 62 eggs/ml (5-174/ml) (Table 2). Hematuria was present in all participants at initial presentation (3+). Semi-quantitative detection of hematuria decreased in the mefloquine treatment arm (2+) and increased in the control group (4+).

Cure rates in mefloquine and sulfadoxine-pyrimethamine groups were 47% (36-70%) and 7% (1-31%) at the end of the study, respectively. More than 50% reduction egg excretion at the end of the study was reached in 80% (63-90%) and 36% (16-61%) of participants in the mefloquine and sulfadoxine-pyrimethamine groups, respectively (p=0.004) (Table 2). The primary hypothesis – whether mefloquine IPTp shows an at least 50% reduction of egg excretion compared to SP IPTp, showed a statistically significant difference (2 versus 62 eggs/ml urine for mefloquine and sulfadoxine-pyrimethamine IPTp, respectively; p=0.001; Table 2).

Table 2: Posttreatment *Schistosoma haematobium* Egg Excretion and Cure Rates

<table>
<thead>
<tr>
<th>Follow-up 1 (4 wk)</th>
<th>MQ</th>
<th>Median</th>
<th>Range</th>
<th>SP</th>
<th>Median</th>
<th>Range</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>24</td>
<td>13</td>
<td></td>
<td>7</td>
<td>1-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg excretion, eggs/mL</td>
<td>80</td>
<td>-22 to 99</td>
<td>-22</td>
<td>33</td>
<td>-85 to 28</td>
<td>-22</td>
<td>3-4</td>
</tr>
<tr>
<td>Reduction in egg excretion, %</td>
<td>80</td>
<td>-22 to 99</td>
<td>-22</td>
<td>33</td>
<td>-85 to 28</td>
<td>-22</td>
<td>3-4</td>
</tr>
<tr>
<td>Hematuria a</td>
<td>3</td>
<td>1-4</td>
<td>3</td>
<td>2</td>
<td>1-4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-up 2 (10 wk)</th>
<th>MQ</th>
<th>Median</th>
<th>Range</th>
<th>SP</th>
<th>Median</th>
<th>Range</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>30</td>
<td>14</td>
<td></td>
<td>14</td>
<td>62</td>
<td>5-174</td>
<td></td>
</tr>
<tr>
<td>Egg excretion, eggs/mL</td>
<td>98</td>
<td>70-100</td>
<td>-20</td>
<td>2</td>
<td>4</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Reduction in egg excretion, %</td>
<td>98</td>
<td>70-100</td>
<td>-20</td>
<td>2</td>
<td>4</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Hematuria a</td>
<td>2</td>
<td>0-3</td>
<td>4</td>
<td>4</td>
<td>3-4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>>50% reduction</td>
<td>24</td>
<td>80% (63-90)</td>
<td>5</td>
<td>36% (16-61)</td>
<td>0.004b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>80% reduction</td>
<td>21</td>
<td>70% (52-83)</td>
<td>2</td>
<td>14% (4-40)</td>
<td>0.0004b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cure rate</td>
<td>14</td>
<td>47% (36-70)</td>
<td>1</td>
<td>7% (1-31)</td>
<td>0.01c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: MQ, mefloquine; SP, sulfadoxine-pyrimethamine

a Semi-quantitative detection of hemoglobinuria: range 0-4

b χ² test

c Fisher exact test
Discussion

Our data show a marked reduction of egg excretion in pregnant women infected with *S. haematobium* when receiving mefloquine as intermittent preventive treatment against malaria. A rapid and marked anti-schistosomal effect was evident after the first dose of mefloquine IPTp and this effect was further increased after the second dose of IPTp leading to clinically important reductions in egg excretion. A high proportion of women (80%) showed a reduction by more than 50%. Importantly, 47% showed complete cessation of egg excretion at 6 weeks of follow up indicating parasitological cure from schistosomiasis after administration of mefloquine IPTp.

The activity of mefloquine against *S. haematobium* is significantly higher in our patient population than in a previously published clinical trial. In that study evaluating mefloquine in a pediatric patient population a cure rate of 21% was reported [16]. A number of reasons may explain this significantly improved outcome in our study. Firstly, important differences in the therapeutic regimen of mefloquine may have led to a higher efficacy in our study population. Mefloquine was administered twice with a one month interval in our study as opposed to a single treatment course in the other reports. This repeated dose regimen of a slowly eliminated drug with an estimated half-life of 12-17 days ensures prolonged therapeutic serum concentrations over a more than two month period and therefore leads to sustained exposure of adult *S. haematobium* worms to the drug. This repeated dosing regimen may compensate for the lower dose of mefloquine per drug administration (15mg/kg) as was used in this study compared to previous reports (25mg/kg). These data may therefore indicate that the length of exposure to therapeutic drug concentrations of mefloquine may constitute a more important predictor for treatment outcome than peak plasma concentrations.

Another reason for differences in treatment responses may constitute the fact that pregnant women – although an important population at risk for urogenital schistosomiasis – are typically excreting fewer eggs per ml urine than pediatric patient populations, who are characterised by the highest level of infection [1,31,32]. Low rates of egg excretion, and a potentially lower number of reproducing adult worms, may therefore constitute an important explanation for higher cure rates in adult patients. Acquired specific immunity against *S. haematobium* in adults may act synergistically with the anthelmintic effect of mefloquine leading to more pronounced activity than in pediatric patient populations. Finally, less freshwater exposure and therefore a lower rate of reinfection may further explain improved outcomes in adults than in pediatric populations [33, 34].
Whereas SP-IPTp is an established strategy to reduce malaria related morbidity and mortality in pregnant women, no such interventions exist for urogenital schistosomiasis [35]. Neither active screening nor routine treatment programs are established in most endemic regions, indicating that most infections will remain undetected and untreated and an opportunity for intervention during antenatal care visits is missed. Since the therapeutic usefulness of sulfadoxine-pyrimethamine against falciparum malaria is limited by the continuing spread of drug resistance in sub-Saharan Africa, the search for second generation IPTp drugs provides the opportunity for an informed decision on the most appropriate candidate drug [19, 36]. This decision may be based not simply on the antimalarial activity of a candidate drug, but may take the potentially significant collateral effect of any IPTp drug on other infectious diseases during pregnancy into account. Although it is well established that sulfadoxine-pyrimethamine is highly efficacious against a number of important Gram negative and Gram positive bacterial pathogens, little evidence exists on the clinical importance for its use as IPTp [37]. Similarly, potential risks for the selection and spread of drug resistant bacterial pathogens by large scale use of antifolate antimalarials is not well understood, despite the potential threat to health systems of low income countries with limited alternatives for antibiotic drugs. The clinical development of any new second generation IPTp drug should therefore evaluate its potential as antimalarial, but should similarly assess its impact on concomitant infectious and non-infectious diseases in pregnant women and the ecologic effect on common bacterial pathogens.

Our study adds important information on the collateral activity of mefloquine on one of the most important co-endemic parasitic diseases infecting pregnant women. Although cure rates of mefloquine IPTp against S. haematobium are not comparable to current first line treatment with praziquantel, a reduction of egg excretion and the associated granulomatous inflammation in pregnant women may lead to multiple beneficial consequences including reduced exposure of the newborn to inflamed or bleeding vaginal mucosa – therefore potentially reducing exposure to vertically transmitted infections including HIV and hepatitis B – and reduction of pathological consequences of chronic urogenital schistosomiasis including pelvic inflammatory disease, infertility [38, 39, 40]. Similarly, a cure rate of 47% as evidence in our study is an important improvement from a public health perspective compared to the current standard of care in many regions leaving the majority of pregnant women unscreened and un-treated for urogenital schistosomiasis during antenatal care.

Our study was designed as a proof of concept study with the aim to provide for the first time data on the use of mefloquine on urogenital schistosomiasis during pregnancy. Whereas the results show a striking activity against S. haematobium, the overall sample size of this clinical trial is limited and a proportion of participants did not completely adhere to the treatment and...
follow-up schedule. Importantly, reinfection with *S. haematobium* due to continued freshwater exposure is likely to have occurred throughout the study period in our patient population. The true efficacy of mefloquine against urogenital schistosomiasis may therefore be underestimated in this clinical study. Much emphasize was laid on a rigorous trial methodology to minimize potential bias. The design as a nested randomized, placebo controlled clinical trial provided the unique opportunity to assess the activity of mefloquine against the natural background variation in egg excretion over time. Furthermore assessor bias was avoided by blinding of urine microscopists. Based on our results future larger studies will be needed to confirm these findings in diverse geographical regions and patient populations.

In summary, urogenital schistosomiasis is a greatly underappreciated health problem of pregnant women in sub-Saharan Africa. The search for second generation IPTp regimens against malaria provides an important opportunity to evaluate and address their impact on other infectious diseases including *S. haematobium* infection. The activity of mefloquine IPTp as evidence in this randomized controlled clinical trial is likely to be of clinical importance. IPTp programs including mefloquine may therefore serve as a two thronged approach against two of the most important parasitic infections.
Funding
This work was supported by European and Developing Countries Clinical Trials Partnership (EDCTP) and the Landsteiner Gesellschaft.

Acknowledgements
The authors wish to thank the participants of this study and the local and health authorities in Gabon, the Executive Committee of the MIPPAD study for allowing the conduct of this study. We are thankful to the staff of both the Medical Research Unit of the Albert Schweitzer Hospital in Lambaréné and the Ngounié Medical Research Centre in Fougamou, particularly Dr Pierre-Blaise Matsiegui for his administrative assistance, Raissa Sandrine Mengue, Wenceslas Lendamba, and Anasthas Bopenga for performing the laboratory work.

Authors’ contributions
AB, GMN, MR participated in the design and coordination of the study and drafted the manuscript; MC, DAA, HW, JRM, MF, RMZ, RG, CM participated in study design, conduct of the study and reviewed the manuscript; participated in the recruitment and follow up of study participants, collection of data and review of the manuscript; AAA, PGK, MR, participated in the design of the study and performed the statistical analysis. All authors read and approved the final manuscript.

Conflict of Interest
All authors declare no conflict of interest
References
