Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/40676</u> holds various files of this Leiden University dissertation.

Author: Ciocanea Teodorescu, I. Title: Algorithms for finite rings Issue Date: 2016-06-22

List of symbols

\mathbb{F}_q	finite field with q elements
Z	ring of integers
$\mathbb{Z}_{>0}$	set of positive integers
$\mathbb{Z}_{\geq 0}$	set of non-negative integers
S	cardinality of a set S
$\mathcal{M}_n(R)$	ring of $n\times n$ matrices with entries in the ring R
$\mathcal{M}_{n \times m}(R)$	set of $n \times m$ matrices with entries in the ring R
R^{e}	the enveloping algebra of R (page 76)
R^{o}	the opposite ring of the ring R
R[G]	the group ring of G over R
$\operatorname{Max}(R)$	set of maximal ideals of a commutative ring ${\cal R}$
$\operatorname{Spec}(R)$	set of prime ideals of a commutative ring ${\cal R}$
$\mathcal{J}(R)$	Jacobson radical of a ring R
Z(R)	centre of a ring R
$\operatorname{char}(R)$	characteristic of a ring ${\cal R}$
rad(n)	the product of all primes dividing an integer \boldsymbol{n}
\hookrightarrow	injective map
	surjective map
$M \otimes_R N$	tensor product of M with N over R
$\operatorname{End}_R(M)$	ring of R -endomorphisms of M
$\operatorname{Hom}_R(M, N)$	group of R -homomorphisms from M to N
$\mathfrak{M}_R^{\mathrm{fg}}$	category of finitely generated right R -modules
\mathfrak{M}_R	category of right R -modules

${}^{\mathrm{fg}}_R\mathfrak{M}$	category of finitely generated left $R\operatorname{-modules}$
$_R\mathfrak{M}$	category of left R -modules
$_RM_S$	R- S -bimodule M