

Cover Page

The handle http://hdl.handle.net/1887/40676 holds various files of this Leiden University
dissertation.

Author: Ciocanea Teodorescu, I.
Title: Algorithms for finite rings
Issue Date: 2016-06-22

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/40676
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

Linear algebra over Z:
basic algorithms for finite
rings

We have seen in the previous chapter how to represent and carry out basic computa-
tions with finite abelian groups. This enables us to deal with the underlying additive
group of a finite ring, which is crucial for all our algorithms. This chapter is a com-
pendium of basic algorithms to do with finite rings.

We will represent finite rings using “basis representations” and describe algorithms
that accomplish the following tasks:

1. compute homomorphism groups between two finite modules over a finite ring,
2. compute the ideal generated by a given set of elements,
3. compute sums, products and intersections of ideals,
4. compute the quotient of a finite ring by a two-sided ideal,
5. compute the characteristic, centre and prime subring of a finite ring.

We will also look at the problem of computing the Jacobson radical of a ring. In
the case where the given ring is a finite-dimensional algebra over a field, this can
be accomplished deterministically in polynomial time ([27, 75]). However, in general,
such a result cannot be expected, in view of our inability to compute the largest
square divisor of an integer.

Finally, we will briefly look at some other known algorithms for finite rings, and
some open algorithmic questions.

45

46 Algorithms for finite rings

3.1 Representing objects and basic constructions

3.1.1 Representing rings and modules

To represent finite rings inside algorithms, we will use basis representations. These are
considered to be the “right” representations for complexity considerations, since they
are neither too verbose (so as to make all problems quasipolynomial), nor too compact
(so as to make all problems NP-hard). For more on the different representations and
the complexity of problems on different representations, see [2, 4, 52, 53].

Definition 3.1.1. Let R be a finite ring. A basis representation of R consists of a
sequence of integers d1, . . . , dt ∈ Z>1, for some t ∈ Z≥0 such that

R+ ∼=
t⊕
i=1

(Z/diZ), (3.1)

together with a bilinear map

σ : R+ ×R+ → R+ (3.2)

(ei, ej) 7→ eiej , (3.3)

where ei is a generator of the cyclic subgroup Z/diZ, for 1 ≤ i ≤ t, and we express eiej
linearly in terms of {ei}, i.e. for each 1 ≤ i, j ≤ t we give a sequence aijk ∈ Z/dkZ,

for 1 ≤ k ≤ t, such that eiej =
∑t
k=1 aijkek.

Note 3.1.2. We have established in Definition 2.3.2 that the default representation of
a finite abelian group is the exact-sequence representation. However, by the results of
Section 2.6.5, we may assume that R+ is in fact given by a direct-sum decomposition
into cyclic groups.

Note 3.1.3. The map σ in (3.2) will be referred to as the multiplication map of R.
Specifying σ amounts to giving t3 integers aijk, which are called structure constants.

Note 3.1.4. Given d1, . . . , dt and a sequence of t3 integers, aijk, we can check in
polynomial time whether they define a ring. This amounts to checking a series of
equalities and solving systems of linear equations over Z.

Note 3.1.5. The size of a basis representation is equal to

t∑
i=1

log2(di) · t2 = log2(|R|) · t2 ≤ log3
2(|R|), (3.4)

since t ≤ log2(|R|). Thus, when we say an algorithm with input R runs in polynomial

time, we mean that the number of bit operations is bounded above by (log2(2 + |R|))C ,
for some constant C. The 2 is added in order to accommodate the zero ring.

Iuliana Ciocănea-Teodorescu 47

To input a finite module, we give a finite abelian group (M,+) and a bilinear map

α : R+ ×M →M, (3.5)

which describes the action of R on M . For every additive generator of R and M , we
express the image in terms of the additive generators of M .

3.1.2 Representing ring and module homomorphisms

Let R1 and R2 be two finite rings. A ring homomorphism ρ : R1 → R2 is a homo-
morphism of the underlying abelian groups that sends the unit element of R1 to the
unit element of R2 and respects the multiplicative structure of the rings, i.e. for all
r, s ∈ R1, we have that

ρ(rs) = ρ(r)ρ(s). (3.6)

Proposition 3.1.6. There exists a deterministic polynomial-time algorithm that,
given two finite rings R1 and R2, and a group homomorphism ρ : R+

1 → R+
2 , de-

cides whether ρ is a ring homomorphism, and if it is, decides whether it is injective
or surjective.

Proof. As in Section 2.3.2, the map φ is given by a matrix which specifies the image
of each additive generator of R1 as a linear combination of additive generators of R2.
Given such a matrix, we can easily check if it induces a homomorphism of rings, by
verifying that the induced map preserves multiplication and sends the unit element of
one ring to the unit element of the other. This amounts to checking equalities over Z.
By Propositions 2.3.6 and 2.3.7, we can also check for injectivity or surjectivity.

Let R be a ring and M,N two R-modules. A module homomorphism φ : M → N
is a homomorphism of abelian groups which is R-linear, i.e. for all r ∈ R,m ∈M , we
have that

φ(rm) = rφ(m). (3.7)

Proposition 3.1.7. There exists a deterministic polynomial-time algorithm that,
given a finite ring R, two R-modules M and N , and a group homomorphism φ :
M → N , decides whether φ is an R-module homomorphism, and if it is, decides
whether it is injective or surjective.

Proof. As in Chapter 2, Section 2.3.2, the map φ is given by a matrix which spec-
ifies the image of each additive generator of M as a linear combination of additive
generators of N . Given such a matrix, we can easily check if it induces a module ho-
momorphism by verifying that the induced map preserves scalar multiplication. This
amounts to checking equalities over Z. By Propositions 2.3.6 and 2.3.7, we can also
check for injectivity or surjectivity.

48 Algorithms for finite rings

3.1.3 Homomorphism group

Proposition 3.1.8. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and two finite R-modules M1 and M2, computes the homo-
morphism group HomR(M1,M2).

Proof. We can certainly compute HomZ(M1,M2). Then

HomR(M1,M2) = {f ∈ HomZ(M1,M2) | f(rx) = rf(x), ∀r ∈ R,∀x ∈M1}. (3.8)

It is enough to ensure that the relation f(rx) = rf(x) holds for the additive generators
of R and M1. Consider the map

HomZ(M1,M2)→
⊕

r additive generator of R
x additive generator of M1

M2

f 7→ (f(rx)− rf(x))r,x.

Then HomR(M1,M2) is the kernel of this map, which we can compute.

3.2 Computations with ideals

Let R be a ring. A left ideal I is, in particular, a left R-module, so it is given to the
algorithm as an additive subgroup of R, together with a map R× I → I, as in (3.5).
Right ideals and two-sided ideals are given in a similar way.

3.2.1 Computing the ideal generated by a given set of elements

Proposition 3.2.1. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and a set S ⊂ R, computes the ideal generated by S in R.

Proof. Suppose S = {s1, . . . , su}. The left ideal I, generated by S in R has underly-
ing additive group generated by the set {eisj | 1 ≤ i ≤ t, 1 ≤ j ≤ k}, which can be
computed using Proposition 2.3.10. This will also produce an injective group homo-
morphism I ↪→ R specifying I+ as a subgroup of R+. To determine the R-action, we
look at the map σ : R+×R+ → R+ as in (3.2), giving the multiplicative structure of
R. Suppose eisj =

∑t
n=1 bijnen. Then

ekeisj =

(∑
m

akimem

)
sj =

∑
m,n

akimbmjnen. (3.9)

Now we express this sum as a linear combination of the eisj .

The right and two-sided ideals are dealt with in a similar manner.

Iuliana Ciocănea-Teodorescu 49

3.2.2 Sum, product and intersection of ideals

Proposition 3.2.2. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and two ideals I, J ⊂ R, computes the ideals I+J, I ∩J and IJ .

Proof. Note that (I + J)+ = I+ + J+ and (I ∩ J)+ = I+ ∩ J+, and the action of R
is induced by the ring multiplication map σ (as in (3.2)).

Suppose x1, . . . , xn is a set of additive generators of I and y1, . . . , ym is a set of
additive generators of J . Recall that IJ ⊆ J . We have that

(IJ)+ = 〈{xi · yj}i,j〉Z, (3.10)

where the product xi · yj is computed by writing each xi and yj in terms of additive
generators of R and then using the multiplication map σ to write each xi · yj as a
linear combination of additive generators of R. The action of R on (IJ)+ is again
induced by σ.

The right and two-sided ideals are dealt with in a similar manner.

3.2.3 Quotient of ring and two-sided ideal

Proposition 3.2.3. There exists a deterministic polynomial-time algorithm that,
given a finite ring R and a two-sided ideal I, computes the quotient ring R/I.

Proof. Let I be a two-sided ideal of R. Then

(R/I)+ = R+/I+, (3.11)

which can be computed using Proposition 2.3.13. This will also produce a surjective
group homomorphism R+ � (R/I)+. The multiplication map for R/I is induced by
the multiplication map for R.

3.3 Computing the centre and the prime subring of
a finite ring

Given a finite ring, we will often want to view it as an algebra over its centre or its
prime subring. We show how to compute these.

Theorem 3.3.1. There exists a deterministic polynomial-time algorithm that, given
a finite ring R, computes its centre, prime subring and characteristic.

Proof. To compute the centre of a finite ring R, we consider the map

ψ : R+ −→
⊕

r additive generator of R

R+

s 7−→ (rs− sr)r.

50 Algorithms for finite rings

The centre of R is the kernel of ψ, which we can compute. Its ring structure is induced
by σ, the map defining multiplication in R.

To compute the prime subring of a finite ring R, we consider the map

α : Z→ R+, 1 7→ 1R.

The prime subring of R is the image of α, which we can compute. The multiplication
map is induced by σ.

The cardinality of the prime subring is the characteristic of R, which we can
also compute by taking the lowest common multiple of the sizes of the cyclic direct
summands of R+.

3.4 Computing the Jacobson radical

When dealing with problems concerning rings, it is often convenient to reduce to the
semisimple case. When the ring at hand is left-artinian, this reduces to computing
the Jacobson radical (see Theorem 1.4.9, part (iv)). Thus, the natural question to
ask is if Jacobson radicals can be efficiently computed. For our purposes, the appro-
priate version of this question is whether the Jacobson radical of a finite ring can be
computed deterministically in polynomial time.

If the given ring R is a finite-dimensional algebra over a “nice” field F, there do
exist deterministic polynomial-time algorithms that compute the Jacobson radical of
R (see [18, 27, 75]). For F a field of characteristic 0, this reduces to solving a system of
linear equations over F by Dickson’s theorem (see Theorem 1.4.10). If F is a finite field,
then Friedl and Rónyai showed how to recursively construct a sequence of ideals of R,
whose last element is equal to J(R). Using a very similar technique, Cohen, Ivanyos
and Wales generalised these results, showing how to compute the Jacobson radical
in the case that F is any field in which one can perform arithmetic and over which
one can solve semilinear equations of the form

∑k
i=1 aix

p
i = 0, where p = char(F),

k ∈ Z>0 and ai ∈ F for all 1 ≤ i ≤ k. Finite fields are examples of such fields.

Theorem 3.4.1 ([18]). There exists a deterministic polynomial-time algorithm that,
given a finite-dimensional algebra R over a field F, where F is a field over which we
can perform arithmetic and solve semilinear equations, computes the Jacobson radical
of R.

Note 3.4.2. We cannot in general expect to be able to compute the Jacobson radical
for rings not containing a field. To see this, consider rings of the form Z/nZ, with
n ∈ Z>0, for which the task ultimately reduces to finding square divisors of n. This
is not something we know how to do deterministically in polynomial time.

3.5 Other known algorithms and open questions

Rings are ubiquitous. It is thus important to have a wide range of algorithms to deal
with finite rings. This list of deterministic polynomial-time algorithms for finite rings

Iuliana Ciocănea-Teodorescu 51

however, is not as long as would be expected for such basic objects. One of the reasons
for this is that many problems for finite rings reduce to rings of the type Z/nZ, and
at this stage the fact that we cannot factor n efficiently becomes a serious issue.

The study of algorithmic problems involving automorphisms and isomorphisms of
finite rings intensified after the first deterministic polynomial-time primality test was
formulated by Agrawal, Saxena and Kayal in terms of automorphisms of a certain
finite ring (see [1]). Subsequently, the same authors studied how some of the most im-
portant open algorithmic questions, like integer factorisation, polynomial factorisation
over finite fields and graph isomorphism can be reduced to ring automorphism ques-
tions. The questions for which deterministic polynomial-time algorithms are sought
are the following:

1. Ring Isomorphism Problem

(i) Decision version: Given two finite rings, decide if they are isomorphic.
(ii) Search version: Given two finite rings, find an isomorphism if one exists.
(iii) Counting version: Given two finite rings, compute the number of isomor-

phisms between them.

2. Ring Automorphism Problem

(i) Decision version: Given a finite ring, decide if it has a nontrivial ring au-
tomorphism.

(ii) Search version: Given a finite ring, find a nontrivial automorphism if one
exists.

(iii) Counting version: Given a finite ring, compute the number of its automor-
phisms.

As far as deterministic polynomial-time algorithms are concerned, all of the above
problems are open, with the exception of the decision version of the ring automorphism
problem, which was shown to be in P in [53]. The algorithm given there relies on the
classification of rigid rings (i.e. rings with no nontrivial automorphisms).

Theorem 3.5.1 ([53], Theorem 7.1). There exists a deterministic polynomial-time
algorithm that, given a finite ring R, determines whether R has a nontrivial automor-
phism.

It is shown in [53] that both integer factorisation and the graph isomorphism
problem reduce to the counting version of the ring automorphism problem, which is
unlikely to be NP-complete. The decision version of the ring isomorphism problem is
shown to be at least as hard as the graph isomorphism problem. Moreover, integer
factorisation reduces to the search version of the ring isomorphism problem.

For finite fields, the isomorphism problem can be handled deterministically in
polynomial time.

52 Algorithms for finite rings

Theorem 3.5.2 ([65], Theorem 1.2). There exists a deterministic polynomial-time
algorithm that, given two finite fields of the same cardinality, exhibits an isomorphism
between them.

Apart from these problems, to which systematic study has been devoted, the list of
algorithms for finite rings remains quite a short one. It is one of the goals of this thesis
to expand on this list, thus supplementing the toolbox for algorithmically dealing with
finite rings.

