The handle http://hdl.handle.net/1887/39707 holds various files of this Leiden University dissertation.

Author: Baranski Madrigal, Z.
Title: Osteosarcoma: searching for new treatment options
Issue Date: 2016-05-26
Dasatinib Src inhibitor selectively triggers apoptosis and loss of invasive potential in human osteosarcoma cells

Zuzanna Baranski, Tijmen H. Booij, Anne-Marie Cleton-Jansen, Leo Price, Bob van de Water, Judith V. M. G. Bovée, Pancras C.W. Hogendoorn, Erik H.J. Danen

Manuscript in preparation
ABSTRACT

Conventional high-grade osteosarcoma is the most common primary bone malignancy with relatively high incidence in young people. About 40% of the patients develop metastases and have a very poor prognosis. New insights into osteosarcoma growth and progression that may lead to new therapeutic strategies are needed. Expression and activity of the Src cytoplasmic tyrosine kinase has been correlated with clinical stage and survival. Here, we studied the effect of pharmacological inhibitors of Src activity, including dasatinib, bosutinib and saracatinib in MOS and U2OS human osteosarcoma cell lines in 2D and 3D. All inhibitors decreased viability with an IC50 in the micromolar range. Likewise, treatment with each of the inhibitors reduced the IC50 of doxorubicin. However, only dasatinib treatment triggered caspase3/7 activation pointing to apoptosis. The selective activity of dasatinib correlated with its capacity to reduce Src activity. Next, the effects of the inhibitors were studied in MOS and U2OS cultures in 3D extracellular matrix (ECM) scaffolds. Under these conditions, all three inhibitors reduced viability but formation of branched networks in 3D ECM was selectively inhibited by dasatinib in presence of doxorubicin. The activity of focal adhesion kinase (FAK), a Src substrate that is important for cell migration, was exclusively sensitive to dasatinib. Indeed, in 3D ECM-embedded spheroid cultures dasatinib blocked cell migration capacity whereas the other inhibitors had no or partial effects. Together, these findings point to the use of dasatinib as a candidate drug to enhance apoptosis in response to chemotherapy and to reduce metastatic spread in patients with osteosarcoma.
INTRODUCTION

Osteosarcoma is the most common primary malignant bone tumor that arises from mesenchymal stem cells that are capable of producing osteoid[1]. It has an overall incidence of 3 cases per million annually occurring predominantly in children and adolescents, with a second peak in people above 50 years of age[2]. At the moment of diagnosis, 10-20% of the patients present with metastasis, and about 30-40% of the patients with localized osteosarcoma will relapse mainly by presenting lung metastasis. Patients with relapsed disease have very poor prognosis with 23-33% 5-year overall survival[3].

Src is a nonreceptor tyrosine kinase that belongs to a family of 11 members, and it is widely expressed in a most tissues. Src acts as signal transducer from cell membrane receptors to downstream substrates. Src activity regulates cell morphology, adhesion, and migration, as well as survival and proliferation through activation of PI3K-Akt, Ras-Raf-MEK-ERK, and Jak-Stat and a cell-extracellular matrix (ECM) adhesion-signaling platform including the Src substrate focal adhesion kinase (FAK) [4,5]. Activation and expression of Src in colon cancer is associated with late tumor stage[6] and ability to metastasize[7]. Furthermore, Src activity and expression is also implicated in other malignancies such as breast cancer[8,9], ovarian cancer[10], lung cancer[11] and chondrosarcoma[12]. Notably, despite the fact that Src is overexpressed or constitutively active in many malignancies, mutations are rare in this gene. Therefore, in most cancers Src does not appear to drive tumor initiation or tumor formation, but may rather play a role in aspects of tumor progression[13,14].

As mentioned above, Src transduces signal from cell receptors among which is IGFR. This receptor was reported to be highly expressed in high grade conventional osteosarcoma[15], and its inhibition with antibodies proofed to increase event free survival duration[16]. Additionally, in osteosarcoma Src expression and activity has been shown to correlate with clinical stage and patient survival, making Src a potential aiding marker to determine prognosis in osteosarcoma[17]. All together, these findings leads us to investigate the inhibition of Src as potential treatment for patients with osteosarcoma.

Dasatinib and bosutinib are two Src/Bcr-Abl inhibitors approved by the FDA for chronic myelogenous leukemia resistant to prior therapy[18-21]. Saracatinib, is a Src inhibitor that is currently in clinical trial for patients with recurrent osteosarcoma localized to the lung (NCT00752206), other cancers including melanoma (NCT00669019), prostate cancer (NCT01267266), and Alzheimer’s disease (NCT01864655). The compounds have been tested as single agents in solid tumors with no evident clinical activity[22-26]. Here, we assessed the capacity of these inhibitors to attenuate human osteosarcoma cell survival and migration in 2D and 3D environments. The inhibitors were tested alone or in combination with the clinically relevant chemotherapeutic compound, doxorubicin.
MATERIALS AND METHODS

Reagents and antibodies. Doxorubicin was obtained from the Department of Clinical Pharmacology at LUMC, bosutinib, dasatinib and saracatinib were from SelleckChem (Huissen, Netherlands). Antibodies against ERK1/2(clone137F5), phospho-ERK(42/44) (#4695), AKT(9272), and phospho-AKT(Ser473) (#9271), were from Cell Signalling (Bioké, Leiden, The Netherlands). Antibodies against Src (clone GD11) and phospho-Src(Tyr418) (#44660G) were from Millipore (Amsterdam, The Netherlands) and Invitrogen (Bleiswijk, The Netherlands), respectively. Antibody against FAK (clone4.47) was from BioConnect (Huissen, The Netherlands). Antibodies against phospho-FAK(Tyr925) (#MBS8507066) and phospho-FAK(Tyr861) (#MBS8507535) were from Biosourse (California, U.S.A.). Antibody against tubulin (T-9026) was from Sigma-Aldrich (Zwijndrecht, Netherlands).

Cell culture. Human osteosarcoma cell lines MOS, U2OS were previously described[27,28]. Cells were grown in RPMI1640 medium supplemented with 10% fetal bovine serum and 25 U/mL penicillin and 25 µg/mL of penicillin-streptomycin. All cells were cultured in a humidified incubator at 37°C with 5% CO2.

Western blotting. Cells were lysed with SDS protein buffer (125mM Tris/HCl pH 6.8, 20% glycerol, 4% SDS and 0.2% bromophenol blue). Proteins were resolved by SDS-PAGE and transferred to polyvinylidine difluoride membrane. Membranes were blocked in 5% BSA-TBST (TRIS-0.05% Tween20), followed by overnight incubation with primary antibodies and 45 minutes incubation with HRP-conjugated secondary antibodies. Chemoluminescence was detected with a bioimager, LAS400 (GE Healthcare).

Measuring cell viability and apoptosis in 2D cultures. For cell viability, cells were processed using the ATPlite 1Step kit (Perkin Elmer) according to the manufacturer’s instructions, followed by luminescence measurement. Apoptosis was measured by assessing caspase3/7 activity with CaspaseGlo 3/7 (Promega). The cells were exposed to the drug for 24 hours after which the reagent was added 1:1. Luminescence was measured in a Fluostar Optima plate reader.
3D collagen/matriigel culture assay. U2OS and MOS cells were cultured in 384-well plates (Greiner μclear) in a hydrogel containing Matrigel (Beckton Dickinson) and collagen I, supporting invasive growth of both cell lines. Cells in culture were trypsinized and directly added to the cooled gel solution. Using a robotic liquid handler (CyBio Selma 96/60), 14.5μL of gel-cell suspension was transferred to each well of a 384-well plate (2000 cells/well). After polymerization for 30 minutes at 37°C in an atmosphere of 5% CO₂, growth medium was added on top of the gel. After three days, when the cells had formed a network structure, compounds were diluted and added in quadruplicate wells for a period of 72 hours.

For measuring cell viability in 3D, a solution of 7g/L WST-1 (Serva Electrophoresis) and 8mg/L phenazinium methylsulfate (PMS; Sigma Aldrich) in 1x PBS were mixed in a 1:1 ratio and 5μL was added to each well. Plates were placed at 37°C for 5 hours, after which the absorbance at 450nm was measured using a FluoStar Optima late reader. Percentage viability was thereafter calculated by robust normalization (median) of the plates between positive control (no cells; 0% viability) and negative control (solvent; 100% viability) conditions.

For imaging, cells were fixed using 3.7% Formaldehyde (Sigma-Aldrich), permeabilized with 0.1% Triton-X100 and stained for F-actin using 50nM Rhodamine-Phalloidin (Sigma Aldrich) for 12 hours at 4°C. Subsequently, the plates were washed in PBS for at least 24 hours at 4°C. The plates were then imaged on a BD Pathway 855 inverted fluorescence microscope (BD Biosciences) using a 4x lens to capture Rhodamine-Phalloidin staining at focal planes spaced 50μm throughout the gel, capturing approximately 70% of a well. Subsequently, maximum intensity projections of the in-focus information of the Z-stacks was made using OcellO (OcellO B.V., Leiden, The Netherlands) image analysis tools.

3D collagen spheroid assay. Cell suspensions were injected into collagen scaffolds using automated injection as previously described[29,30]. 1 mg/ml rat tail collagen was prepared in complete growth medium supplemented with 1:5 dilution of 0.44M NaHCO₃ and 1:10 dilution of 1M Hepes pH 7.4. 60μL was added to each well of a 96-well μ-clear plate (Corning) and incubated for 1 hour at 37°C to allow polymerization. Cells were collected in medium containing 2% PVP, transferred to a needle and droplets of ~8nL were injected into the collagen gels resulting in spheroids of ~300μm diameter, using injection robotics from Life Science Methods, Leiden NL (http://www.lifesciencemethods.com). For DIC imaging of spheroids, a Nikon confocal microscope was used.

Statistical analysis. Dose response curve fitting and all statistical analyses were performed with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). The unpaired two-tailed t-test
was used to compare between groups. Significant difference between groups in the 3D assay was calculated using 2-way ANOVA with Bonferroni posttest.

RESULTS

Reduced human osteosarcoma cell viability in presence of bosutinib, dasatinib and saracatinib and selective Src kinase inactivation by dasatinib

We determined the effect of dasatinib, bosutinib and saracatinib on cell viability in MOS and U2OS human osteosarcoma cells. Responses to these inhibitors were highly similar for MOS and U2OS cells but differed considerably between the different inhibitors (Fig. 1A). Both cell lines showed no response to bosutinib concentrations <1 µM and a rapid decline in viability was observed as the bosutinib concentration increased from 1 to 5 µM. Instead, viability gradually decreased in response to 0.1-10 µM dasatinib and a similar trend, albeit less effective, was observed for saracatinib. IC₅₀ for bosutinib and dasatinib was ~5 µM and IC₅₀ was >10 µM for saracatinib (Fig 1B).

PI3K/AKT and Raf-MEK-ERK MAP kinase signaling pathways represent important drivers of survival and proliferation in many different cancer types. These two pathways are regulated by Src activity[31,32]. We tested if treatment of MOS and U2OS cells with the Src inhibitors affected these pathways. However, treatment with up to 2.5µM bosutinib, dasatinib, or saracatinib did not affect phosphorylation of ERK (Fig 1C). In fact, treatment with saracatinib increased the levels of ERK phosphorylation particularly in U2OS. On the other hand, dasatinib and saracatinib suppressed AKT phosphorylation at 2.5µM whereas bosutinib had no effect. Moreover, while 1µM dasatinib effectively attenuated Src phosphorylation at Y418 in both cell lines, indicating attenuated Src kinase activity, bosutinib and saracatinib failed to do so even at 2.5µM.
Figure 1. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells. A) Dose response curves for dasatinib, bosutinib and saracatinib in two human osteosarcoma cell lines. Error bars represent the standard deviation of three experiments performed in triplicate. Cells were exposed for 72 hours. B) Table with IC50 values of bosutinib, dasatinib and saracatinib in MOAS and U2OS cells. C) Western blot analysis of phospho-ERK(p44/42), total ERK, phospho-AKT(Ser473), total AKT, phospho-Src(Tyr418), total Src, and tubulin loading control in MOS and U2OS cells under control (DMSO) conditions or after 48 hours treatment with 1 or 2.5µM of the indicated inhibitors.

Sensitization to doxorubicin in presence of bosutinib, dasatinib and saracatinib and selective induction of apoptosis by dasatinib

Src kinase activity may not be a bona fide cancer driver and mono therapy using either of these inhibitors may be ineffective. However, as Src stimulates pro-survival and proliferation...
Figure 2. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells in the context of doxorubicin. A) Dose response curves for doxorubicin in two human osteosarcoma cell lines in absence (black) or presence of 1µM of dasatinib (red), bosutinib (green) or saracatinib (blue). Cells were exposed for 72 hours. Error bars represent mean ± SEM of three experiments. B) Table with IC50 values for doxorubicin alone (DMSO) or in combination with 1µM bosutinib, dasatinib or saracatinib in MOS and U2OS cells. C) Caspase 3/7 activity in two human osteosarcoma cell lines under control conditions (white bars) or upon exposure for 24 hours to 0.1µM doxorubicin (black bars) in the presence of DMSO or 1µM dasatinib, bosutinib and saracatinib as indicated. Mean ± S.D is shown for one representative experiment of 3 performed in triplicate.

signaling pathways[13,14]. Its inhibition may render tumor cells more sensitive to chemotherapy. To investigate this, MOS and U2OS cells were exposed to 1µM of the inhibitor together with a dose range of doxorubicin for 72 hours. Indeed, both cell lines showed a reduction in viability already at lower doses of doxorubicin in presence of
dasatinib, bosutinib, or saracatinib, as compared to the response to doxorubicin alone (Fig. 2A). For MOS cells, the IC50 for doxorubicin was reduced by 30-50%, and for U2OS cells a reduction of 50-80% was observed (Fig 2B). In order to assess whether decreased viability was related to apoptosis, we determined caspase3/7 activity. Interestingly, only treatment with dasatinib led to apoptosis either alone (not shown) or in combination with doxorubicin (Fig. 2C).

Reduced human osteosarcoma cell viability in 3D cultures in presence of bosutinib, dasatinib and saracatinib and selective morphological effects induced by dasatinib.

Next, we analyzed the effect of the panel of Src inhibitors in a 3D in vitro culture model. MOS and U2OS cells were suspended in a collagen-matrigel mixture and allowed to form a multicellular network for 72 hours. Subsequently cells were exposed to 1µM of dasatinib, bosutinib, or saracatinib alone or combined with a concentration range of doxorubicin. Inhibition of cell viability by the inhibitors alone as measured biochemically, was more pronounced compared to effects measured in 2D. All three inhibitors by themselves caused a reduction in viability of 40-50% (Fig 3A). Additional treatment with doxorubicin further decreased viability but no synergy was observed between doxorubicin and any of the inhibitors.

Next we used imaging and image analysis algorithms to measure “branch length” and “solidity” or roundness of the multicellular structures; parameters correlated cell migration [33]. Low concentrations of doxorubicin up to 0.1µM did not affect these parameters (Fig 3B). Exposure to 1µM of the Src inhibitors alone led to decreased branch length and increased solidity. However, in the presence of dasatinib MOS and U2OS cells were selectively responsive to low concentrations of doxorubicin; showing a decrease in branch length and a concomitant increase in solidity of the multicellular structures (Fig. 3B-D).

Selective inhibition of FAK activity and 3D osteosarcoma cell migration by dasatinib

To further investigate morphological effects caused by these inhibitors that may impact on osteosarcoma progression we made use of a 3D spheroid model. MOS and U2OS cells were injected as nL droplets into collagen gels as described before[29,30], and resulting spheroids
Figure 3. Effect of dasatinib, bosutinib and saracatinib in human osteosarcoma cells in the context of doxorubicin in 3D cultures. **A,B** Doxorubicin dose response curve for human osteosarcoma cells grown in collagen/matrigel mixture under control conditions (DMSO; black line) or in presence of 1µM dasatinib (red), bosutinib (green), or saracatinib (blue). Cells were exposed for 72 hours. **A** Viability was assessed using WST/PMS absorbance. Error bars represent mean ± SEM of three experiments. Values were normalized to median of DMSO. **B** Image analysis was used to assess average branch length (top graphs) and solidity (bottom graphs). Error bars represent mean±s.d of one representative experiment done in quadruplicate. **C** Representative images such as those used
Dasatinib inhibits Fak activation and stops collagen invasion in osteosarcoma. A) U2OS and MOS cell-derived collagen-embedded spheroids directly after cell-injection (0 hours) and after 72 hours incubation under control conditions (DMSO) or in presence of 1µM of the indicated inhibitors. Images were obtained using a Nikon confocal microscope.

B) Western blot analysis of total FAK and phospho-Fak(Tyr397), (Tyr861), (Tyr925), and tubulin loading control for U2OS and MOS cells maintained for 48 hours under control conditions (DMSO) or in presence of 1µM of the indicated inhibitors.

were exposed to DMSO or 1µM bosutinib, dasatinib and saracatinib for 72 hours. Saracatinib did not affect spheroid outgrowth or 3D cell migration and bosutinib had an intermediate effect while dasatinib treatment completely blocked outgrowth and collagen invasion of MOS and U2OS cells in this model (Fig 4A).
Src promotes invasion and metastasis and plays a key role as a regulator of cell-ECM adhesions containing the Src substrate FAK. The Src/FAK complex integrates signals from the extracellular environment and controls and coordinates adhesion dynamics and cell migration[34,35]. FAK is autophosphorylated at Tyr397 upon integrin-mediated adhesion creating a binding site for Src, which subsequently phosphorylates FAK at Tyr407, 576, 577, 861 and 925[34,36]. We analyzed FAK phosphorylation after 48hour treatment with 1µM dasatinib, bosutinib or saracatinib. The FAK autophosphorylation site was not affected by any of the inhibitors. However, in agreement with its selective inhibition of cell migration through 3D ECM scaffolds, phosphorylation of FAK at Src substrates Tyr861 and Tyr925 was selectively inhibited by dasatinib. Whereas Saracatinib and bosutinib had no apparent effect (Fig 4B).

DISCUSSION

In this study we investigated the effect of Src inhibitors dasatinib, bosutinib, and saracatinib in two human osteosarcoma cell lines. Impacts on cell viability and migration were tested as single agent as well as in combination with the chemotherapeutic compound doxorubicin, which is used in the clinic for treatment of osteosarcoma. Src activity regulates the PI3K-Akt, Ras-Raf-ERK, Jak-Stat and FAK-Paxillin pathways. In osteosarcoma, none of the inhibitors interfered with ERK and AKT phosphorylation, and only dasatinib inhibited Src and Fak activation in MOS and U2OS cell lines. Notably, the inhibitors have other targets such as other members of the Src family, Bcr-Abl, MAPK kinases, Eph receptors, cKit, STK6, PDGFR and TEC family kinases[37,38]. An interesting study that mapped the target profile of bosutinib in chronic myeloid leukemia cells identified new targets and to what extent targets were inhibited[39]. The MAPK family was found to be a major target, but MEK1 and MEK2 were not significantly inhibited[39,40]. These results may explain why ERK activation was not inhibited by any of the inhibitors in our study. Furthermore, the fact these inhibitors do not completely inhibit the activity of a kinase, can explain why saracatinib and bosutinib did not show appreciable inhibition of Fak phosphorylation, and failed to affect cell migration. The autophosphorylation site (Tyr397) of Fak causes a conformational change allowing Src binding and further Fak phosphorylation in Tyr576/577, Tyr861 and Tyr925. The phosphorylation of these sites is important for the interaction with integrins and E-cadherin[34]. While bosutinib has been reported to inhibit Fak-(Y925) phosphorylation in breast cancer cells, in the two osteosarcoma cell lines used only dasatinib inhibited Src-mediated phosphorylation of Fak Tyr861 and Tyr925[41].
To study the effect of dasatinib, bosutinib or saracatinib on the migratory behavior of osteosarcoma cells, we used 3D cell culture systems. 3D cultures may better reflect the tumor microenvironment as compared to 2D cultures and cell matrix adhesions and migratory behavior are closer to the in vivo situation [42-45]. In the two 3D systems we used, including mixture of cells in collagen/matriigel and microinjection of cells to examine migration from spheroids in collagen gels, collagen type I is the major ECM component and this is also the main component (90%) of the ECM of bones[46]. Our finding that dasatinib selectively blocks osteosarcoma cell migration in this environment correlates its selective inhibition of Src-mediated Fak phosphorylation. Thus, dasatinib treatment likely interferes with the Src/Fak signaling platform to prevent cell migration and may thus interfere with metastatic capacity.

In addition, dasatinib selectively triggers apoptosis and causes morphological alterations in 3D cultures in the presence of doxorubicin. It was previously reported that dasatinib has the capacity to sensitize chondrosarcoma cells to doxorubicin (jolieke refe). Furthermore, a new Src inhibitor, A-770041, was shown to increase sensitivity to doxorubicin in osteosarcoma cells (refDuan et al. BMC Cancer 2014, 14:681). Notably, a decrease in the IC50 of doxorubicin is observed when combined with each the inhibitors indicating that dasatinib selectively affects some, but not all aspects of these inhibitors. Several studies have hown that these three inhibitors do not have an effect as single agents in solid tumors. For example, dasatinib inhibits activation of Src and Fak in vitro and in vivo, but it does not induce apoptosis or prevent tumor metastasis to the lungs in a xenograft osteosarcoma mice[47]. However, others showed that for biliary tract carcinomas saracatinib was effective in a preclinical model, and both dasatinib and saracatinib are effective in leukemia[48-51] indicating that the therapeutic effect of these inhibitors is cancer type-dependent. Despite the lack of activity as a single agent, the combination of dasatinib, bosutinib or saracatinib with doxorubicin in breast cancer or pancreatic cancer cells did lead to a synergistic effect in vitro and in vivo[52-54].

Altogether, we find that dasatinib selectively inhibits activity of the Src/Fak signaling complex in osteosarcoma cells and, most likely as a consequence of this, migration in collagen scaffolds. Furthermore, while all three inhibitors decreased the IC50 of doxorubicin, dasatinib selectively triggers apoptosis and morphological changes in the context of doxorubicin. Our findings point to the combination of dasatinib and doxorubicin as a potential therapy for osteosarcoma to prevent or minimize metastasis.
CONFLICT OF INTEREST

L.S. Price is founder and co-owner of OcellO B.V. a contract research company that offers screening services using 3D tissues. This role has had no bearing on the content of the manuscript.
REFERENCES

11. Leung EL, Tam IY, Tin VP, et al. SRC promotes survival and invasion of lung cancers with epidermal growth factor receptor abnormalities and is a potential candidate for molecular-targeted therapy. *Molecular cancer research : MCR* 2009; **7**: 923-932.

