Chapter 7

Impact of cardiovascular risk factors on the progression of periventricular and deep white matter hyperintensities

DMJ van den Heuvel, MSc
VH ten Dam, MD
AJM de Craen, PhD
F Admiraal-Behloul, PhD
ELEM Bollen, MD PhD

HM Murray, MSc
GJ Blauw, MD PhD
RGJ Westendorp, MD PhD
MA van Buchem, MD PhD

on behalf of the PROSPER study group†

Institutional affiliations: From the departments of 1Radiology, 2Gerontology and Geriatrics, 3Radiology division of Image Processing, 4Neurology, Leiden University Medical Center, The Netherlands. 5Robertson Centre for Biostatistics, North Glasgow University NHS Trust, Glasgow, Scotland, UK.

†See appendix for members

Submitted
Abstract

We longitudinally investigated the association between various cardiovascular risk factors and the presence and progression of deep and periventricular white matter hyper-intensities (WMH) in a sample of 554 non-demented subjects at risk for vascular disease. All data come from the nested MRI substudy of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Dual Echo MR images at baseline and after a mean follow-up of 33 (SD 1.4) months were obtained from all subjects. Volumes of deep and periventricular WMHs were assessed semi-automatically. All subjects had various measurements of cardiovascular risk factors taken at baseline. Linear mixed models were used to assess the association between cardiovascular risk factors and baseline WMH volumes as well as between these risk factors and change in WMH volumes over time. In the cross-sectional analysis, history of hypertension was significantly associated with volume of total ($p=0.029$) and deep WMH ($p=0.025$). In the longitudinal analysis, smoking at baseline was significantly associated with the 3-year progression of total ($p=0.034$) and periventricular WMH ($p=0.017$). After adjustment for prevalent and incident cerebral infarcts, the association between history of hypertension and baseline total WMH volume weakened ($p=0.053$), while the association with baseline deep WMH remained ($p=0.046$). Moreover, the longitudinal association between smoking and progression of total and periventricular WMH persisted ($p=0.037$ and $p=0.018$, respectively). We found history of hypertension to be related to presence of deep WMHs and smoking to be associated with periventricular WMHs. This indicates that different pathological processes probably underlie the development of deep and periventricular WMHs.
Introduction

Cerebral white matter hyperintensities (WMHs) are frequently observed on magnetic resonance images (MRI) of elderly individuals\(^1\text{-}^4\). Although WMHs have been related to cognitive disability and depressive symptoms\(^3\text{-}^5\), their clinical relevance in the elderly is not yet fully understood.

WMHs are thought to be a consequence of arteriosclerosis, cerebral hypoperfusion, and ischemia\(^4\text{-}^7\). Cross-sectional MRI studies have revealed a number of risk factors for WMHs including age\(^1\text{-}^9\), hypertension\(^1\text{-}^1^3\), high and low blood pressure levels\(^1^1\text{-}^1^4\), smoking\(^9\), and a history of vascular and cerebrovascular disease\(^1\text{-}^5\). In longitudinal studies with serial MRI, blood pressure\(^1^6\text{-}^1^8\) and hypertension\(^1^6\text{-}^1^9\) have been found independent predictors of progression of WMHs in elderly individuals. These observations provide support for a causal relationship between vascular disease and the development of WMHs\(^1^6\text{-}^2^1\).

Pathological studies have suggested that the etiology of WMHs in the periventricular area is different from the etiology in the subcortical or deep white matter\(^2^2\text{-}^2^4\). Therefore, risk factors for the development of periventricular WMHs might be different from risk factors for deep WMHs\(^2^2\text{-}^2^6\). In the present study we investigated the association between various cardiovascular risk factors and the presence and progression of periventricular and deep WMHs in a non-demented elderly population.

Methods

Setting All data in this study are from the MRI substudy of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). The PROSPER study was a randomised, double blind, placebo-controlled trial testing the hypothesis that treatment with pravastatin 40 mg/day would reduce the risk of vascular disease in elderly men and women with pre-existing vascular disease or with a significant risk of developing this condition\(^2^7\text{-}^2^8\).

Subjects Inclusion and exclusion criteria of the PROSPER study have been described in detail elsewhere\(^2^7\text{-}^2^8\). Of the 1100 Dutch PROSPER participants, all aged 70-82 years at baseline, 646 consented for participation in the MRI substudy. From these original 646 subjects, 92 dropped out of the study. Seven participants were claustrophobic during the first MRI and two had no MRI due to technical problems. By the time of follow-up 40 subjects had died, 3 subjects had developed a contraindication for MRI, 6 had withdrawn informed consent, and 34 subjects refused a second MRI because of claustrophobia or illness. Hence, a total number of 554 subjects had a MRI measurement at baseline and at end of follow-up. Loss of participants to follow-up was studied. Compared with the follow-up participants the dropouts had higher total baseline WMH volume and more often had a history of myocardial infarction.
Image acquisition MRI was performed on a clinical MR-system operating at 1.5 Tesla field strength (Philips Medical Systems, Best, the Netherlands). Dual fast spin echo images (echo time (TE) 27/120 ms, repetition time (TR) 3000 ms, echo train length factor 10, 48 continuous 3 mm slices, matrix 256x256, field of view (FOV) 220). Fluid Attenuated Inversion Recovery (FLAIR) (TE 100 ms, TR 8000 ms, 48 continuous 3 mm slices, matrix 256x256, FOV 220) and Susceptibility-weighted (TE 48 ms, TR 2593 ms, 22 slices, matrix 256x256, FOV 220) images were obtained from all 554 subjects at baseline and after a mean follow-up of 33 (SD 1.4) months.

WMH measurements For post processing, the dual fast spin echo images were transferred to an offline workstation. Quantification of volume of WMHs was performed using inhouse developed semi-automated software. By combining fuzzy clustering, connectivity rules and mathematical morphology, WMH segmentations were automatically generated. WMHs were defined as hyperintense lesions on both proton density and T2-weighted images. WMHs connected to the lateral ventricles were categorised as periventricular. WMHs not connected to the lateral ventricles were categorised as deep. To correct for misclassification of cerebrospinal fluid (CSF) and grey matter as WMH, the automatically generated WMH segmentations were manually edited by two trained raters (DMJvdH and VHtD). FLAIR hardcopies were used as a reference to rule out other pathologies and the entanglement of WMH with virchow-robin spaces. Infratentorial lesions (brain stem and cerebellum) were excluded. To prevent the possibility of overreading WMH progression in a direct scan comparison setting, we analysed baseline and follow-up MR scans in random order. Fifteen MR scans were segmented twice to assess the intra- and interrater reliability of the volumetric WMH measurements. Intraclass correlation coefficients for both periventricular and deep WMH volumes were all above 0.99.

Cerebral infarcts Cerebral infarcts were identified on hard copies by three experienced neuroradiologists. A cerebral infarct was defined as a parenchymal defect i) having the same signal intensity as CSF on all pulse sequences, ii) surrounded by a rim of tissue with increased signal intensity on T2, PD and FLAIR, iii) with a vascular distribution, and iv) without mass effect. Haemorrhagic infarcts and parenchymal hemorrhages were detected by the presence of hemosiderin on susceptibility-weighted scan and excluded. We were able to distinguish parenchymal defects of 1 mm or larger because of continuous 3mm slices. Their location and lack of surrounding rim of high signal intensity on FLAIR images helped differentiating virchow-robin spaces from lacunar infarcts.

Risk factors Risk factors were divided into factors from subjects’ medical history and factors actually measured at baseline. Past risk factors were history of diabetes, history of hypertension, history of myocardial infarction, and history of any vascular disease and were obtained by interview and by checking the medical history. Current risk factors were pulse pressure, total cholesterol and lipoprotein fractions, and smoking status. Pulse pressure was used as measure of generalised
Atherosclerosis and was calculated as the difference between systolic and diastolic blood pressure, which was measured on an automatic sphygmomanometer (OMRON 705 CP) with subjects in sitting position. Plasma total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride concentrations were assessed by the Lipid Research Clinics Manual of Laboratory Operations. Cholesterol and lipoprotein fractions were measured using Boehringer Mannheim enzymatic reagents. Triglyceride was assessed with the fully enzymatic kit. Smoking status was obtained by interview.

Statistical analysis Statistical analyses were performed using SAS (SAS Institute, Cary, N.C., USA). Linear mixed models were used to assess the associations between the risk factors and baseline WMH volumes as well as between these risk factors and change in WMH volumes over time. In all analyses total, deep, or periventricular WMH volume were the dependent variables. The independent variables were the risk factor, visit (baseline or follow up) and the interaction between the risk factors and visit. All models were adjusted for age, gender, and treatment (placebo/pravastatin). After these analyses, all associations were also simultaneously adjusted for all other risk factors and for the presence of cerebral infarcts. The level of significance was set at $p<0.05$.

Results

Mean age of the 554 participants of our study was 75 years (SD 3.2) and 44% was female. The cardiovascular risk factors are shown in [table 1](#). Of all subjects, 63% had a history of hypertension, while 12% had a history of myocardial infarction. At baseline, mean deep WMH volume was 1.1 mL (SD 1.6) and mean periventricular WMH volume was 4.1 mL (SD 8.5). At the end of follow up mean volume of deep WMH was 1.5 mL (SD 2.2) and volume of periventricular WMH was 5.7 mL (SD 10.0). The increase in both deep and periventricular WMH volume had increased significantly over time (both $p<0.001$).

We used linear mixed models to examine the influence of various cardiovascular risk factors on WMH volume at baseline (i.e the cross-sectional analysis) and the rate of change in WMH volume after 33 months follow up (i.e. the longitudinal analysis). In the cross-sectional analysis, history of hypertension was significantly associated with volume of total ($p=0.029$) and deep WMH ($p=0.025$) ([table 2](#)). The association of history of hypertension with periventricular WMH volumes was borderline significant ($p=0.051$). All other vascular risk factors had no influence on either type of WMH volume at baseline ([table 2](#)). Smoking at study entry was significantly associated with the 3-year progression of total ($p=0.034$) and periventricular WMH ($p=0.017$) ([table 3](#)). The other risk factors had no influence on the progression of total, deep, or periventricular WMHs.

To estimate the independent effect of each risk factor on the presence and progression of WMH we simultaneously entered all risk factors in a single full model.
The significance of all results remained unaltered. Moreover, after adjusting for prevalent and incident cerebral infarcts, the association between history of hypertension and baseline total WMH volume weakened ($p=0.053$), while the association with baseline deep WMH remained ($p=0.046$) (data not shown). Moreover, the longitudinal association between smoking and progression of total and periventricular WMH also persisted ($p=0.037$ and $p=0.018$, respectively) (data not shown).

Table 1. Clinical characteristics study sample ($N = 554$) at baseline.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td></td>
</tr>
<tr>
<td>Diabetes (yes/no)</td>
<td>91 (16.4)</td>
</tr>
<tr>
<td>Hypertension (yes/no)</td>
<td>350 (63.2)</td>
</tr>
<tr>
<td>Myocardial infarction (yes/no)</td>
<td>67 (12.1)</td>
</tr>
<tr>
<td>any vascular disease (yes/no)</td>
<td>241 (43.5)</td>
</tr>
<tr>
<td>Measured at baseline</td>
<td></td>
</tr>
<tr>
<td>Pulse pressure (mmHg)</td>
<td>71.7 (17.4)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.8 (0.8)</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>3.9 (0.7)</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>1.2 (0.3)</td>
</tr>
<tr>
<td>Triglyceride (mmol)</td>
<td>1.5 (0.7)</td>
</tr>
<tr>
<td>Smoking (yes/no)</td>
<td>115 (20.8)</td>
</tr>
</tbody>
</table>

Data shown are mean (SD) for continuous variables and n (%) for categorical variables. LDL; low-density lipoprotein. HDL; high-density lipoprotein.
Table 2. Cross-sectional associations of cardiovascular risk factors with volume of total, deep, and periventricular WMHs.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>total WMH</th>
<th>deep WMH</th>
<th>periventricular WMH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>SE</td>
<td>p</td>
</tr>
<tr>
<td>Diabetes (yes/no)</td>
<td>-0.69</td>
<td>1.08</td>
<td>0.46</td>
</tr>
<tr>
<td>Hypertension (yes/no)</td>
<td>1.98</td>
<td>0.85</td>
<td>0.029*</td>
</tr>
<tr>
<td>Myocardial infarction (yes/no)</td>
<td>0.32</td>
<td>1.24</td>
<td>0.95</td>
</tr>
<tr>
<td>Any vascular disease (yes/no)</td>
<td>-0.35</td>
<td>0.82</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Associations were assessed by linear mixed models, adjusted for age, sex and treatment (placebo/pravastatin). Each estimate presents the baseline association of cerebrovascular risk factors with WMH volumes. * $p<0.05$. WMH; White matter hyperintensities. LDL; low-density lipoprotein. HDL; high-density lipoprotein. WMH volumes are absolute measurements (mL).
Table 3: Longitudinal associations of baseline risk factors with change in volume of total, deep, and periventricular WMH after three years of follow up

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>total WMH</th>
<th>deep WMH</th>
<th>periventricular WMH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>SE</td>
<td>p</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes (yes/no)</td>
<td>-0.38</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>Hypertension (yes/no)</td>
<td>0.12</td>
<td>0.30</td>
<td>0.71</td>
</tr>
<tr>
<td>Myocard infarction (yes/no)</td>
<td>-0.80</td>
<td>0.45</td>
<td>0.074</td>
</tr>
<tr>
<td>Any vascular disease (yes/no)</td>
<td>0.47</td>
<td>0.30</td>
<td>0.11</td>
</tr>
<tr>
<td>Measured at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse pressure (mm Hg)</td>
<td>-0.00</td>
<td>0.01</td>
<td>0.74</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>-0.19</td>
<td>0.17</td>
<td>0.26</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>-0.25</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>0.47</td>
<td>0.46</td>
<td>0.31</td>
</tr>
<tr>
<td>Triglyceride (mmol)</td>
<td>-0.23</td>
<td>0.22</td>
<td>0.28</td>
</tr>
<tr>
<td>Smoking (yes/no)</td>
<td>0.77</td>
<td>0.36</td>
<td>0.034*</td>
</tr>
</tbody>
</table>

Associations were assessed by linear mixed models, adjusted for age, sex and treatment. Each estimate presents the longitudinal effect of baseline cerebrovascular risk factors on decline in WMH volumes after three years of follow up.
Discussion

In the present study we assessed the association between various cardiovascular risk factors and the presence and progression of periventricular and deep WMHs. Cross-sectionally, we observed that a history of hypertension was related to the volume of total and deep WMHs at baseline. After adjustment for other cardiovascular risk factors and cerebral infarcts, the association between history of hypertension and deep WMH remained. In the longitudinal analyses we found current smoking status to be associated with the progression of total and periventricular WMHs. These associations remained when we adjusted for other cardiovascular risk factors and subjects with cerebral infarcts.

Cardiovascular risk factors for WMHs have been investigated in many cross-sectional studies. From these studies, hypertension has been shown to be one of the main risk factors for prevalent WMHs. For example, the Cardiovascular Health Study found that history of hypertension at baseline was independently associated with severity of WMHs. Moreover, the Atherosclerosis Risk in Communities Studies also found that subjects with hypertension were at increased odds of having WMHs. Our cross-sectional findings are in line with these previous observations. It may take many years before hypertension causes structural changes of the cerebral small vessels, which is reflected in structural changes of the white matter. Therefore, the observed association between history of hypertension and prevalence of WMHs most likely reflects such accumulated structural changes due to longstanding hypertension. The relatively short follow-up period in our study for change in WMHs might not have been sufficient to reflect this longstanding process.

The temporal relation between cardiovascular risk factors and WMHs can only be assessed by a longitudinal design. The majority of published studies had a longitudinal design, with repeated measurements of the cardiovascular risk factors (determinant) but with single measurements of the WMHs (outcome). Longitudinal studies with serial measurements of WMHs, enabling association of cardiovascular risk factors in relation to progression of WMHs, have been scarce. In the Austrian Stroke Prevention Study hypertension and diastolic blood pressure were significantly related to progression of WMHs. Veldink et al also found that increased diastolic blood pressure was related to the progression of WMHs, whereas Martin et al found systolic blood pressure to be associated. In the study of Taylor et al diabetes was the most important contributor to progression of WMHs. Recently, the large population-based study reported by Longstreth et al found complex relations of WMH progression with cardiovascular risk factors. In that study, smoking was the only cardiovascular risk factor to be consistently associated with progression of WMH. Our results are in line with this finding. In particular, smoking status was associated with progression of periventricular WMH.
We found deep WMHs but not periventricular WMHs to be independently associated with hypertension. In the elderly, WMHs are considered to be primarily of ischemic origin. Hypertension can induce changes in the wall of cerebral blood vessels, which can eventually compromise cerebral perfusion and consequentially damage white matter. Several pathological studies have suggested that mainly deep WMHs are ischemic in origin whereas periventricular WMHs can have both an ischemic and a non-ischemic origin. For example, besides hypoperfusion decreased interstitial fluid drainage or leakage of cerebrospinal fluid into the adjacent parenchyma could be the cause of the development of periventricular WMHs. The contribution of different etiologies in the development of periventricular WMHs might have concealed the independent contribution of ischemic risk factors, like hypertension, in the development of periventricular WMHs. We think our finding might reflect the different ischemic and non-ischemic etiologies of the WMHs.

Our study benefits from the large series of baseline and follow-up scans that were analysed in order to measure change in WMH over time. Furthermore, in contrast with other serial MR studies on cardiovascular risk factors, we used a volumetric method of quantifying both deep and periventricular WMH. A possible limitation of our study is the relatively short follow up period. With short follow up periods the progression of WMHs is likely to be small. Moreover, we were not able to further explore the observed relation between a history of hypertension and presence and progression of WMHs because the available information on the history of hypertension was limited.

In summary, we found history of hypertension to be related to volume of total and deep WMHs and current smoking status to be associated with the progression of total and periventricular WMHs. Our data indicate that the development and progression of WMHs may take many years and that different pathological processes probably underlie the development of deep and periventricular WMHs. In view of preventive and therapeutic intervention it is essential to further identify these pathological processes, and the risk factors contributing to it, in large-scale long-term prospective follow-up studies.

Acknowledgment

The authors thank Drs H. Olofsen for technical assistance. Also, we thank Dr N Schmitz and Dr WM van der Flier for critical reading and valuable comments.
Reference List

16. Martin CGM, Van Swieten JC, Scheltens P, Pieterman H, Breteler MM. Change in white matter lesions in 60 healthy elderly over a 5 years period. *J Neurol* 1997;244 suppl 3(S23).

