The handle http://hdl.handle.net/1887/37169 holds various files of this Leiden University dissertation.

Author: Monteiro Garrido Castro e Silva, Ana Luisa (Ana Luisa Silva)
Title: PLGA-based particulate vaccine delivery systems for immunotherapy of cancer
Issue Date: 2015-12-22
Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: a comparative study of cationic liposomes and PLGA nanoparticles

Eleni Maria Varypataki*, Ana Luisa Silva*, Christophe Barnier-Quer, Nicolas Collin, Ferry Ossendorp, Wim Jiskoot

*contributed equally to this work

Manuscript in preparation for publication
Abstract

The potential of synthetic long peptide (SLP)-cancer vaccines, based on TLR ligand-adjuvanted liposomes and PLGA nanoparticles (NPs) to induce a cell-mediated immune response, as potential alternatives to clinically used Montanide ISA-51- and squalene-based emulsions is investigated in this study. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by DCs and subsequent activation of T cells \textit{in vitro}. Subcutaneous vaccination of mice showed that the efficiency of the SLP-loaded liposomes and PLGA NPs to induce functional antigen-T cells \textit{in vivo} was as good as or even better than that of the emulsions, with liposomes outperforming PLGA NPs. Moreover, after adoptive transfer of target cells in mice, liposomes showed the highest killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate delivery systems promising candidates as a delivery platform for SLP-based immunotherapy of cancer.

\textbf{Keywords:} cellular immune response, synthetic long peptides, TLR ligands, cationic liposomes, PLGA nanoparticles

1. Introduction

Peptide-based vaccine formulations offer several advantages over protein-based vaccines, as peptides can be easily synthesized and characterized, and are generally more stable [1] and better processed [2] than whole proteins. Synthetic peptides derived from tumor associated antigens (TAAs) have attracted considerable interest as a basis for cancer vaccines, and vaccination with synthetic long peptides (SLPs), containing all the CTL and Th epitopes of a TAA, has been applied in mouse models with superior efficacy to protein antigen [3] or minimal MHC class I restricted epitopes [4, 5]. In contrast to short peptides, SLPs cannot bind directly to MHC molecules, but have to be taken up and processed by DCs like regular pathogens, inducing a stronger immune response, owing to the activation of both CD4\(^+\) and CD8\(^+\) T cells [5-7]. However, peptides alone are poorly immunogenic and need to be combined with adjuvants such as immune modulators and/or delivery systems in order to properly activate the innate and adaptive arms of the immune system [1].

Over the past few years, delivery systems that elicit strong immune responses, such as nano-emulsions and particulate delivery systems, have been extensively studied. These include MF59 (Novartis) and AS03™ (GlaxoSmithKline), squalene-based oil-in-water emulsions, which have been approved in Europe for use in the Fluad® and Pandemrix™ influenza vaccines, respectively [8]. Despite the efficacy of these emulsions as influenza vaccine adjuvants, and though some degree of Th1 responses have been observed, still they lack the ability to stimulate strong T cell responses [9]. Montanide (ISA-51, Seppic) water-in-oil (w/o) emulsions have shown to elicit CTL responses in
clinical studies, and have been applied to formulate SLPs in several clinical therapeutic cancer vaccination trials [10-16]. However, the use of Montanide has some important limitations, such as non-biodegradability, limited long-term stability, poorly defined release properties, suboptimal efficacy, and in some cases induction of local adverse side effects [17, 18]. Therefore, alternative delivery systems for SLP-based vaccines are highly needed.

Studies have shown that peptide-based vaccines may benefit from particulate delivery systems that mimic the size and structure of a pathogen, facilitating uptake by DCs and increasing cross-presentation of the peptide [19-21]. Importantly, they can harbor multiple vaccine components and be actively or passively targeted to DCs, also shaping the induced immune response via specific receptors, such as toll-like receptors (TLRs), by incorporation of TLR ligands (TLRLs). Among several particulate delivery systems, both liposomes and polymeric particles have been widely studied.

We have previously studied the application of poly-(lactic-co-glycolic-acid) (PLGA) NPs [22] and cationic liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) [23] for the encapsulation of a 24-amino acid-long SLP (referred to as OVA24) harboring the CTL epitope SIINFEKL of ovalbumin (OVA). Encapsulation of SLP in PLGA NPs led to a significant enhancement of MHC class I Ag presentation and CD8+ T cell activation compared to soluble SLP (sSLP) in vitro [24]. The SLP-specific CD8+ T cell frequency induced in vivo by a liposomal SLP formulation containing poly(I:C), showed a 25 fold increase compared to poly(I:C)-adjuvanted soluble SLP. Furthermore, intradermal immunization of mice with 5 nmol SLP-liposomes combined with poly(I:C) led to a strong cytotoxic activity, in contrast to vaccination with a mixture of soluble SLP and poly(I:C) [23].

In this study, we investigated the potential of PLGA NPs and cationic liposomes as delivery systems for SLP-based vaccine candidates for the induction of a cell-mediated immunity. For that purpose, we studied the co-delivery of two SLPs containing the CTL (OVA24) and the T helper (Th, OVA17) epitopes of OVA together with poly(I:C) and Pam3CSK4, a TLR3 and TLR2/1 ligand, respectively, in comparison to the adjuvants Montanide ISA-51 and SWE, a squalene oil-in-water emulsion. OVA24/OVA17-loaded PLGA NPs and liposomes with or without the TLR-ligands were characterized for particle size, zeta-potential and for peptide and TLR loading efficiencies. The obtained formulations were assessed in vitro and in vivo for their potency to induce CD8+ and CD4+ T cell immune responses. The observed T cell immune responses induced by our particulate formulations were superior to the ones observed with the emulsions (Montanide ISA-51 or SWE), with the liposomal formulation outperforming PLGA NPs. These findings reinforce that particulate systems are promising delivery vehicles for clinical application in cancer immunotherapy.
Chapter 7

2. Materials and Methods

2.1. Materials

The ovalbumin-derived SLP OVA24 [DEVSGLEQLESIINFEKLAAAAAK], including the CTL epitope SIINFEKL, and the short peptide OVA8 [SIINFEKL] were produced and purified at the GMP facility of the Clinical Pharmacy and Toxicology Department at the Leiden University Medical Center [6]. The ovalbumin-derived SLP OVA17 [ISQAVHAAHAEINEAGR], including the helper Th-epitope AAHAEINEA, was produced in the Immunohematology and Blood Transfusion Department of the Leiden University Medical Centre. The lipids DOPC and DOTAP were purchased from Avanti Polar Lipids (Alabaster, Alabama, USA) and the TLR ligands (poly(I:C) and Pam3CSK4) with their labeled analogues (rhodamine and fluorescein) were obtained from InvivoGen (Toulouse, France). Resomer® RG 502H was purchased from Boehringer Ingelheim (Ingelheim, Germany). 4-[(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES), dichloromethane (DCM), dimethyl sulfoxide (DMSO), and trifluoroacetic acid (TFA) were purchased from Sigma-Aldrich (Steinheim, Germany). Acetonitrile (ACN) was obtained from Biosolve BV (Valkenswaard, the Netherlands), PVA 4-88 (31 kDa) was purchased from Fluka (Steinheim, Germany). Sodium hydroxide was purchased from Boom (Meppel, Netherlands). Carboxyfluorescein succinimidyl ester (CFSE) was purchased from Invitrogen (Eugene, Oregon, USA). Acetonitrile (ACN), chloroform, and methanol were obtained from Biosolve BV (Valkenswaard, the Netherlands) and Vivaspin 2 centrifuge membrane concentrators were purchased from Sartorius Stedim Biotech GmbH (Goettingen, Germany). Iscove’s modified Dulbecco’s medium (IMDM; Lonza Verniers, Belgium) was supplemented with 8 % (v/v) foetal calf serum (Greiner Biosciences, Alphen a/d Rijn, the Netherlands), 50 µM 2-mercaptoethanol (Sigma-Aldrich, Zwijndrecht, Netherlands), 100 IU/mL penicillin and 2 mM glutamine (Life Technologies, Bleiswijk, the Netherlands). Deionized water with a resistivity of 18 MΩ.cm was produced by a Millipore water purification system (MQ water). Montanide ISA-51 was purchased from Seppic SA (Paris, France). Squalene oil-in-water emulsion (SWE) contained 3.9% (w/v) squalene, 0.5% (w/v) Tween 80 and 0.5% (w/v) Span 85 in 10 mM citrate buffer pH 6.5 and it was manufactured by the Vaccine Formulation Laboratory of the University of Lausanne. Phosphate buffer was composed of 7.7 mM Na2HPO4.2H2O and 2.3 mM NaH2PO4.2H2O, pH 7.4 (10 mM PB, pH 7.4). MQ water and 10 mM PB, pH 7.4, were filtered through a 0.22-µm Millex GP PES-filter (Millipore, Ireland) before use. Phosphate-buffered saline, which was used for all the in vitro and in vivo assays was purchased from B Braun (Melsungen, Germany). All other chemicals were of analytical grade and all aqueous solutions were prepared with milli Q water.
2.2. Mice

Female C57BL/6 (H-2b) mice were purchased from Charles River (L’Arbresle, France) and congenic CD45.1 (Ly5.1) mice were bred at the Leiden University Medical Centre animal facility and used at 8-14 weeks of age according to the Dutch Experiments on Animal Act, which serves the implementation of “Guidelines on the protection of experimental animals” by the Council of Europe.

2.3. Liposome preparation

Cationic liposomes loaded with SLPs were prepared by using the thin film dehydration-rehydration method, as described previously [23]. Briefly, DOTAP and DOPC (1:1 molar ratio) in chloroform were mixed in a round-bottomed flask to reach a concentration of 10 mg total lipid per mL of final liposome dispersion. The formed dry film was rehydrated with 2 mL of 1 mg/mL OVA24 and/or OVA17 in ACN/H2O 1:1 (v/v); for the liposomes loaded with both OVA24 and OVA17, the aqueous solution of the SLPs was first adjusted to pH 8.5. For poly(I:C)-loaded liposomes, the ligand (including 0.5% fluorescently-labeled equivalent) in a total concentration of 200 µg/mL was added dropwisely to the dispersion, while for the Pam3CSK4-loaded liposomes, the TLR ligand was dissolved in chloroform together with the lipids, before the dry film formation. After the lipid film hydration, the liposome dispersion was snap-frozen in liquid nitrogen, followed by overnight freeze-drying. Dehydrated-rehydrated liposomes were generated by gradually adding 10 mM PB, pH 7.4, to the freeze-dried lipid cake. Liposomes were down-sized by high-pressure extrusion at room temperature using a Lipex extruder (Northern Lipids Inc., Canada) and concentration of peptide-loaded liposomes was performed by using a VivaSpin 2 centrifugation concentrator (PES membrane, molecular weight cut-off (MWCO) 300 kDa) as described previously [23].

2.4. PLGA NPs preparation

Nanoparticles loaded with OVA24 and/or OVA17 and/or TLRLs were prepared by using a double emulsion with solvent evaporation method [22]. In brief, 50 mg of PLGA dissolved in 1 ml of dichloromethane, with or without 0.25 mg Pam3CSK4 (and 0.1% Pam3CSK4 Rhodamine-labeled), were emulsified under sonication (30 s, 20 W) with 1.4 mg OVA24, 1 mg OVA17, 1 mg poly(I:C) (and 0.1% Poly(I:C) fluorescein-labeled, dissolved in 50% ACN in 0.25 mM NaOH + 400 µL Hepes pH 8.0). To this first emulsion (w1/o), 2 ml of 1% PVA solution were added immediately, and the mixture was emulsified again by sonication (30 s, 20 W), creating a double emulsion (w1/o/w2). The emulsion was then added dropwise to 10 ml of extraction medium (0.3% w/v PVA) previously heated to 40°C under agitation, to allow quick solvent evaporation, while stirring, which was continued for 1 h. The particles were then collected by centrifugation for 15 min at
15000 g at 10°C, washed, resuspended in deionized water, aliquoted and freeze-dried at -55°C in a Christ Alpha 1-2 freeze-dryer (Osterode am Harz, Germany) for 12 hours.

2.5. Liposome and PLGA NP characterization

Average diameter (Zave) and polydispersity index (PDI) of the formulations were determined by dynamic light scattering (DLS) using a Zetasizer (NanoZS, Malvern Ltd. UK). The same instrument was used for zeta-potential determination by laser Doppler electrophoresis. For these measurements, liposome samples were diluted 100-fold in PB, pH 7.4. Peptide loading efficiency was determined by extracting OVA24 and OVA17 from the liposomes using a modified Bligh-Dyer method and applying a UPLC method, as described previously [23].

For the PLGA NPs, the Z-average size, polydispersity index and zeta-potential were measured after the freeze-dried NP were resuspended in 1 mM Hepes pH 7.4 to a final concentration of 10 mg PLGA/ml. Peptides’ loading efficiency was determined by measuring the peptide content of digested particles by reversed phase HPLC, as described previously [24].

Loading efficiency of poly(I:C) and Pam3CSK4 was calculated by fluorescence detected with a Infinite® M 1000 Pro (Tecan, Switzerland) microplate reader (excitation/emission wavelengths: 492 nm/518 nm for fluorescein and 549 nm/566 nm for rhodamine).

2.6. Montanide ISA-51 and SWE emulsions preparation and characterization

Preparation of Montanide ISA-51 emulsion was performed by diluting the SLPs, Pam3CSK4 and poly(I:C) in PBS and mixing with Montanide ISA-51 water-in-oil for 30 min in a 1:1 (v/v) ratio, using a vortex mixer. The squalene-based formulation, SWE, was prepared as previously described [25, 26]. For the loading of the SLPs and adjuvants, the SWE was diluted with vaccine medium to 2% (v/v) squalene to the same ratio and mixed gently for 10s prior to immunization.

2.7. In vitro MHC class I antigen presentation

Immature D1 cells were incubated in 96-well flat-bottomed plates at 37°C in supplemented IMDM with SLP-loaded formulations or plain sSLP (with or without TLR-ligands) in PBS (sOVA24+sOVA17) at different concentrations. After 2.5 hours T cell reporter hybridoma B3Z cells (50x105/well) were added and the mixture was incubated overnight at 37°C. Chlorophenol red-β-galactopyranoside (CPRG) was used as lacZ substrate in cell lysates and color conversion was measured by detecting absorbance
at 590 nm.

2.8. Immunization of mice

Mice were immunized with SLP-loaded formulations or soluble peptides, sOVA24 and sOVA17 (with or without TLR-ligands), by subcutaneous injection in the tail base. All formulations were prepared on the day of injection. Vaccination dose was based on the OVA24 SLP concentration, 1 nmol (2.5 µg) of peptide in a total volume of 100 µl, and immunizations were performed on day 0 (prime immunization) and on day 14 (boost injection). Vaccinations with adjuvanted vaccines included a dose of 0.5 – 1.0 µg of a TLR ligand. During the in vivo studies, blood samples were obtained from the tail vein at different time points.

2.9. Analysis of antigen-specific CD8+ and CD4+ T-cell responses by flow cytometry

Staining of the cell surface was performed on blood samples after red blood cell lysis. Cells were stained in staining buffer for 30 min with allophycocyanin labeled tetramer-OVA8 (TM-SIINFEKL) and fluorescently labeled antibodies specific for mouse CD3 (BD Biosciences), CD4, CD8 and the killer cell-lectin-like receptor G1 (KLRG1) (eBiosciences). 7-Aminoactinomycin D (Life Technologies) was used for the exclusion of dead cells.

Overnight intracellular cytokine analysis of PBMCs was performed after incubating the cells with 2 µM of OVA8 and 2 µM of OVA17, in presence of brefeldin A (7.5 µg/mL) (BD Biosciences, Breda, the Netherlands). After the overnight cells incubation the assay was developed as previously described [23].

2.10. In vivo cytotoxicity assay

Splenocytes from naive congenic CD45.1+ mice were lysed and split into two equal parts. Cells were labeled with CFSE and adoptively transferred intravenously in previously immunized recipient C57BL/6 mice in a volume of 200 µl in PBS as described [23]. Two days after the cell transfer (day 24), mice were sacrificed, spleens were isolated and single cell suspensions were analyzed by flow cytometry. Specific killing (SK) was calculated according to the following equation 1:
3. Results

3.1. Characterization of adjuvanted SLP-loaded liposomes and PLGA NPs

We have previously shown that effective tumor vaccines require the inclusion of both CTL and Th epitopes [6, 27]. In this study, a 24-mer SLP covering a CTL epitope and a 17-mer covering a T helper epitope of ovalbumin, designated as OVA24 and OVA17, respectively, were used as model antigens to study the effect of co-encapsulation of these SLP adjuvanted with poly(I:C) and Pam3CSK4 (TLR3- and TLR2-ligands respectively) in liposomes and PLGA nanoparticles (NPs). Our main objective was the direct comparison of the immunogenicity of the different systems, relative to that of a squalene-oil-in-water emulsion (SWE) used at preclinical stage studies and the clinically Phase I/II used Montanide ISA-51 water-in-oil emulsion.

SLP-loaded liposomes were prepared by adjusting the dehydration-rehydration method so that the highest loading of both SLPs in the liposomes was achieved, as previously described [23].

The obtained SLP-liposomes had an average diameter that ranged from 147 nm (only SLPs-loaded liposomes) to 180 nm (OVA24/Pam/poly(I:C)-loaded liposomes). Liposomes with poly(I:C) or poly(I:C) combined with Pam3CSK4 were larger and less monodisperse (PDI > 0.2). The positive zeta-potential was about 26 mV, independent of the formulation (Table 1). The loading efficiency (LE) of OVA24 and OVA17 in unadjuvanted liposomes was about 46% and 20%, respectively, and practically independent of the co-encapsulation of poly(I:C) and Pam3CSK4 (Table 1), suggesting that there is no competition between the TLRLs and the two peptides.

PLGA NPs were prepared by a double emulsion with solvent evaporation method described by Silva et al. [22]. Irrespective of the type of the loading, PLGA NPs were negatively charged, with a zeta-potential ranging from -11 to -14 mV (Table 1), with a final particle size varying from 260 to 360 nm and a PDI below 0.3. The loading efficiency varied between 21 - 30% for OVA24, 31 – 36% for OVA17, 65 – 75% for Pam3CSK4 and 53 – 73% for poly(I:C). We have previously shown the importance of pH for the effective encapsulation of peptides in PLGA NPs and how crucial low burst release is in order to induce a cellular response [22]. Therefore, both OVA24 and OVA17 SLP were formulated at pH 8.0 for optimal encapsulation and showed a relatively low...
burst release from NPs of circa 30% after 24 h (data not shown).

Table 1: Physicochemical properties of SLP (‘TLR ligand)-loaded formulations

<table>
<thead>
<tr>
<th>LE (%)</th>
<th>Zave diameter (nm)</th>
<th>PDI</th>
<th>ZP (mV)</th>
<th>OVA24</th>
<th>OVA17</th>
<th>TLR-ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pam3CSK4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poly(I:C)</td>
</tr>
<tr>
<td>OVA24/Pam/poly(l:C)-liposomes</td>
<td>180±10</td>
<td>0.29±0.03</td>
<td>26 ± 3</td>
<td>56 ± 5</td>
<td>NA</td>
<td>40 ± 5</td>
</tr>
<tr>
<td>OVA24/OVA17-liposomes</td>
<td>147±10</td>
<td>0.21±0.02</td>
<td>25 ± 2</td>
<td>46 ± 7</td>
<td>20 ± 5</td>
<td>NA</td>
</tr>
<tr>
<td>OVA24/OVA17/Pam/poly(l:C)-liposomes</td>
<td>175±20</td>
<td>0.27±0.05</td>
<td>26 ± 2</td>
<td>46 ± 5</td>
<td>20 ± 5</td>
<td>40 ± 5</td>
</tr>
<tr>
<td>OVA24/OVA17/poly(l:C)-liposomes</td>
<td>173±20</td>
<td>0.28±0.05</td>
<td>27 ± 2</td>
<td>42 ± 10</td>
<td>20 ± 3</td>
<td>NA</td>
</tr>
<tr>
<td>OVA24/Pam/poly(l:C)-PLGA</td>
<td>260 ± 19</td>
<td>0.19±0.02</td>
<td>-14 ± 1</td>
<td>26 ± 3</td>
<td>NA</td>
<td>67 ± 7</td>
</tr>
<tr>
<td>OVA24/OVA17-PLGA</td>
<td>355 ± 13</td>
<td>0.24±0.02</td>
<td>-14 ±1</td>
<td>30 ± 10</td>
<td>36 ± 6</td>
<td>NA</td>
</tr>
<tr>
<td>OVA24/OVA17/Pam/poly(l:C)-PLGA</td>
<td>357 ± 45</td>
<td>0.22±0.02</td>
<td>-14 ± 2</td>
<td>21 ± 8</td>
<td>31 ± 5</td>
<td>65 ± 7</td>
</tr>
<tr>
<td>OVA24/OVA17/poly(l:C)-PLGA</td>
<td>350±23</td>
<td>0.22±0.02</td>
<td>-14 ± 3</td>
<td>29 ± 10</td>
<td>35 ± 6</td>
<td>NA</td>
</tr>
<tr>
<td>OVA24/OVA17/Pam/poly(l:C)-ISA-51</td>
<td>500±20</td>
<td>0.25±0.04</td>
<td>42± 5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>OVA24/OVA17/Pam/poly(l:C)-squalene (SWE)</td>
<td>136 ± 15</td>
<td>0.15±0.00</td>
<td>-20 ± 3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Data are averages ± SD of at least 3 independent batches. Zave average: particle diameter; PDI: polydispersity index; ZP: zeta-potential; LE: loading efficiency; NA: not applicable

Altogether, the data presented in Table 1 shows that the model SLPS, OVA24 and OVA17, can be efficiently and reproducibly loaded in liposomes and PLGA NPs, also in presence of up to two TLR-ligands.

3.2. *In vitro* SLP cross-presentation

The immunogenicity of the SLP formulations was first tested *in vitro*, based on their efficiency to activate immature DCs and cross-present the processed SIINFEKL-harboring peptide (OVA24) to the CD8\(^+\) antigen-specific T cells leading to their activation.

Immature DCs were incubated with liposomes and PLGA NPs including both SLPS and both TLR-ligands. Improved concentration-dependent activation of
CD8+ T cells was observed when particles were used compared to free peptides (sOVA24+sOVA17+Pam+poly(I:C)). Moreover, although PLGA NPs plots consistently show a larger dose-response effect, liposomes seem to be more effective in antigen presentation at lower concentrations (Figure 1).

Furthermore, the B3Z assay suggests efficient processing and presentation of OVA24 SLP by the DCs, irrespective of the presence of the OVA17 SLP (Figure 1). In addition to that, the incorporation of the TLR-ligands poly(I:C) and Pam3CSK4 did not significantly affect the in vitro T cell activation by the SLP-loaded particle formulations, as expected (Figure 1).

3.3. In vivo induction of CD8+ T cells

We evaluated the capacity of our particulate formulations to induce cell-mediated immune responses in vivo after subcutaneous vaccination at the tailbase of mice, an administration route that appeared to enhance drainage to the lymphatic system in a more efficient way compared to subcutaneous delivery in the flank (unpublished data).
The *in vivo* vaccine potency of liposomes and PLGA NPs was directly compared with that of the Montanide ISA-51 and SWE adjuvants.

Figure 2: OVA24-specific CD8+ T cell responses in blood (Day 21) and in splenocytes (Day 24) following s.c. immunization with 1 nmol of SLPs on day 0 and 14 (A). Representative gating strategy for detection of SIINFEKL-specific CD8+ T cells by flow cytometry using specific MHC class I tetramers (B). * p<0.05, ** p<0.01 calculated with by one-tailed Mann-Whitney test. ISA51 = Montanide; Pam = Pam3CSK4; pIC = poly(I:C).

In blood of mice immunized twice with SLP(s)-loaded liposome or PLGA NP formulations, on day 21 a high percentage of antigen-specific CD8+ T cells (above 1% of the total CD8+ T cell population) was detected in most groups, whereas in the Montanide ISA-51 or SWE groups this percentage remained below 0.5% (*Figure 2A*). In detail, it appeared that the OVA24/Pam/poly(I:C)-liposomes were more potent than the OVA24/Pam/poly(I:C)-PLGA NPs, expanding the percentages of antigen-specific CD8+ T cells to about 6% and 2%, respectively.
Incorporation of the Th epitope-SLP (OVA17) did not seem to improve the CD8+ T cell proliferation induced by the PLGA NP formulations, while the addition of at least one TLR-ligand, such as poly(I:C), seemed to be essential for T cell activation.

On the other hand, incorporation of the two SLPs in the liposomes (OVA24+OVA17) seemed to be sufficient for the induction of the highest frequency of CD8+ T cells (> 5 %) in blood of vaccinated mice, compared to all other liposomal groups (Figure 2A). Interestingly, incorporation of poly(I:C) to the formulation with the two SLPs did not seem to further increase the number of the induced T cells in blood, while co-encapsulation of the lipophilic Pam3CSK4 seemed to result in lower numbers of antigen-specific T cells. On day 24 in the analyzed splenocytes of vaccinated mice, the ex vivo (non-restimulated) T cell responses in most groups were comparably low, except for the OVA24/OVA17-liposomes group, which showed a CD8+ T cell frequency of about 1% (Figure 2A).

3.4. In vivo cytokine and cytotoxicity induction

Next to the T cell expansion potency of the vaccine formulations also the cytokine-producing functionality of the induced T cells was analyzed. Thus, blood samples from the immunized mice were re-stimulated with MHC class I and class II binding peptides (short SIINFEKL and OVA17) ex vivo and the percentages of CD8+ and CD4+ T cells producing interferon gamma (IFN-γ) or IFN-γ and TNF-α simultaneously (data not shown), were assessed by intracellular cytokine staining.

In re-stimulated blood samples from mice immunized with PLGA NPs loaded with OVA24, Pam3CSK4 and poly(I:C) (OVA24/Pam/poly(I:C)-PLGA) a higher percentage of cytokine-producing CD8+ T cells was detected (0.7%) in comparison to the Montanide ISA-51 formulation (0.3%). This frequency did not increase after loading of OVA17 in the formulation, while all PLGA NPs showed a stronger induction of IFN-γ-producing CD4+ T-cells (~ 0.8 %) in comparison with the Montanide ISA-51 and SWE emulsions (~0.1 %) (Figure 3B).

Mice vaccinated with liposomes loaded with both SLPs, with or without the two TLR-ligands (OVA24/OVA17/Pam/poly(I:C)-liposomes and OVA24/OVA17-liposomes, respectively) showed an at least eight-fold higher efficiency to induce functional IFN-γ-producing CD8+ T cells, as compared to the Montanide ISA-51- and SWE formulations (Figure 3A). As also observed in the SIINFEKL-specific CD8+ T cell induction analysis (Figure 2), incorporation of poly(I:C) and Pam3CSK4 into liposomes did not increase the number of induced T cells, although still much higher than the soluble SLP and TLR ligands. Although Pam3CK4 is known to improve SLP vaccination by itself [27], its incorporation into the liposomes seems to have an inhibitory effect on the vaccination efficacy of the cationic liposomes, suggesting a possible change in the liposomes properties which influences the particles targeting.
Figure 3: Intracellular cytokine analysis in blood of immunized mice at day 21 which was stimulated ex vivo overnight with the minimal SIINFEKL epitope and OVA17. Plots show percentages (±SEM) of CD8⁺ (A) and CD4⁺ (B) T cells producing interferon gamma (IFN-γ). ISA51 = Montanide; Pam = Pam3CSK4; pIC = poly(I:C)
Altogether, all liposomal formulations appeared to be significantly more efficient than any of the PLGA formulation tested (Figure 3). Furthermore, apart from CD8\(^+\), functional CD4\(^+\) T cells were detected in all groups treated with OVA17-containing liposomal formulations as well as PLGA NPs, indicating that OVA17 retains its functionality when co-encapsulated with OVA24 (Figure 3) and pointing out the importance of poly(I:C) presence for induction of antigen-specific CD4\(^+\) T cells.

![Image of cytotoxicity assay](image)

Figure 4: *In vivo* cytotoxicity against SIINFEKL-presenting target cells. The mean percentage of the killing activity of each SLP formulation is presented based on the frequency of the transferred CD45.1\(^+\) cells that could be detected in splenocytes of mice immunized twice with the different formulations containing 1 nmol of OVA24. Bar graphs show the mean percentages (+SEM) of killed cells on day 24 (A). Representative histograms of CSFE-labeled positive target cells (right peak=SLP pulsed and left peak=negative control) (B). *p<0.05 calculated with one-tailed Mann-Whitney test. ISA51= Montanide; Pam = Pam3CSK4; pIC = poly(I:C)

Finally, to test the effectiveness of our particulate vaccines to induce a strong functional cell-mediated immune response, the cytotoxic capacity of the induced CD8\(^+\) T cells was tested in an *in vivo* cytotoxicity immunoassay, based on the killing of SIINFEKL-loaded target cells which were injected intravenously on day 22 in immunized mice (Figure 4).

Incorporation of poly(I:C) into PLGA NPs including both SLPs (and not Pam3CSK4) appeared to be crucial for activation of CD8\(^+\) T cells with a cytotoxic activity up to 40%, four times as high compared to the emulsions (Figure 4). In splenocytes of all mice vaccinated with liposomes a high killing capacity above 60% was detected. Mice immunized with liposomes containing both SLPs (OVA24/OVA17-liposomes) showed maximal *in vivo* cytotoxicity with or without poly(I:C).

According to the functional data of both the intracellular cytokine production and
Cationic liposomes vs PLGA NPs for SLP-vaccine delivery

cytotoxicity assay, we can conclude that liposomal formulations loaded with the SLPs are superior to both PLGA NPs and Montanide ISA-51 or squalene-SLP-contained emulsions, when a rather low dose of SLPs (≤ 1 μg of SLPs) is used like in the current study. Moreover, it appeared that the inclusion of an adjuvant (Pam3CSK4 or poly(I:C)) in the liposomal formulation might not be necessary for the priming of a T cell-based immune response, since solely the presence of the Th epitope seems to facilitate a Th1-based proinflammatory immune reaction essential for effective therapeutic vaccines, to maintain a robust and long-lasting anti-tumor CD8⁺ T cell response.

4. Discussion

There is a growing interest in therapeutic vaccination against cancer. The identification of tumor associated antigens (TAAs) has allowed the development of novel therapeutic strategies resulting in tumor regression. However, fine-tuned vaccines are required to reach the optimal potency and eventually replace the suboptimal formulations currently used. A major advantage of using particulate vaccines, such as liposomes and PLGA NPs, is their modularity. By tuning their physicochemical properties like size, charge and hydrophobicity, not only the stability of the particles and their antigen release pattern can be improved, but also the amount of antigen uptake by DCs, and priming of DCs towards cross-presentation, resulting in a more effective Th1 type CTL response, required for cancer immunotherapy.

In this study we showed the successful co-encapsulation of two SLPs (OVA24 and OVA17) and two TLR-ligands (poly(I:C) and Pam3CSK4) in two different particulate delivery systems. The SLP-loaded and adjuvanted PLGA NPs and cationic liposomes were rather different in size and surface charge, since PLGA NPs are negatively charged and liposomes are positively charged, while their different chemical nature is expected to influence the SLPs/TLR-ligands localization and their in vivo release profiles. Considering all possible differences, their potential for the induction of a cell-mediated immunity was investigated in comparison with two other systems, Montanide ISA-51, a water-in-oil emulsion, and SWE, a squalene-based oil-in-water emulsion.

As we showed here, co-delivery of a Th antigen with a CTL epitope increases the expression of effector cytokines. This is most likely due to the stimulation of the MHC molecules displayed by DCs: CD40/CD40L ligation plays an important role in the activation of DCs and is a crucial stimulus for CD4⁺ Th-based CD8⁺ T cell priming [28, 29]. In addition, incorporation of a TLR ligand to the formulation, such as poly(I:C), can promote the active targeting and shape the immune response towards a more CTL-restricted manner. It has been shown that poly(I:C) stimulation of CD8⁺ DCs in mice led to successful cross-priming of CD8⁺ T cells [30], improved the survival of CD4⁺ T cells and produced functional CD8⁺ memory even in the absence of CD4⁺ T cells [31]. These findings are in line with our data which presented an improved functionality of the activated T cells by formulations where poly(I:C) is present. In contrast, inclusion of Pam3CSK4 in the formulations did not further improve the induced immune response. This may be due to its lipophilic nature, resulting in localization of the Pam3CSK4
liptopeptide in the lipid bilayer of the liposomes, or the polymeric matrix of the PLGA NPs, which might negatively affect the functionality of the TLR-ligand, and thereby its immunogenicity. With regard to the PLGA NPs, unadjuvanted PLGA NPs are considered to have very low immune-stimulating properties [32, 33]. The formulation including both SLPs and poly(I:C), but not Pam3CSK4, was the most promising for the induction of functional and cytotoxic T cells. Although the effect of the Pam3CSK4 on the induced immune response in PLGA NPs was not as pronounced as in liposomes, a negative influence by its presence was also observed, suggesting a change in the PLGA NPs which leads to a less efficient formulation or a different targeting that does not favor the induction of a T cell-based immune response.

In this study we showed that for SLPs-based vaccines, cationic liposomes appeared to be the most potent delivery system, followed by PLGA NPs. The size of particulate adjuvants is crucial for their adjuvant activity and the immunogenicity difference observed in this study between liposomes and PLGA NPs may be partly attributed to the different particle sizes. In general, APCs are able to take up different particles ranging from the size of viruses (20-300 nm), bacteria (0.5-2 μm) up to whole cells, which can be bigger than 10 μm. Upon vaccination, small particles (10-150 nm) can easily penetrate the extra-cellular matrix (ECM) and be quickly transported into the lymph nodes [34] where they will interact with lymph node resident DCs [35]. Moreover, particulate systems with a size below 200 nm, such as the liposomes used in this study, will likely be taken up by DCs more efficiently than bigger particles [36], which are more prone to be recognized by macrophages and other scavenger immune cells, leading to a poorer T cell activation capacity [33, 37]. In addition, it was suggested that smaller particles (20-150 nm) are naturally taken up by endocytosis, resulting in cellular immune response, while larger particles, such as PLGA NPs used here, are more likely to be phagocytosed, leading to a predominantly humoral immune response [38].

Furthermore, the particles’ size combined with the most efficient administration route has also an impact on antigen uptake and therefore can affect the efficacy of immunotherapy. Particles larger than 150 nm cannot be efficiently transported via the lymphatic system as mentioned above, and a percentage of the administered particles will be trapped in the tissue, creating a depot. Subcutaneous vaccination at the tailbase of mice, as the administration route selected for the in vivo studies presented in this study, appeared to enhance the drainage to the lymphatic system in a faster and more efficient way compared to subcutaneous delivery in the flank. With regard to Montanide ISA-51, although the exact adjuvant mechanism is not well understood, it is believed that such a water-in-oil emulsion creates a sustained release from the local antigen depot. However, a longer retention time of larger particles does not necessarily correlate with better antigen uptake and a stronger induced immune response [2]. Considering that, our data suggest that the internalization of particles, such as PLGA or liposomes, may be more important for the induction of an efficient cellular immune response than the formation of a depot.

Surface charge is another variable parameter between the particulate systems investigated in this study, since the PLGA NPs were negatively charged and the liposomes positively charged. However, it is not clear whether positively, negatively
or neutrally charged particles are the best choice to induce effective Th1-type cellular immune response. Investigations so far have revealed contradictive results. For instance, anionic PLGA NPs induced antibody responses as well as strong CTL responses and Th1-biased cytokine release in mice and macaques [39]. Anionic PLGA particles also showed a higher accumulation in the lymph node compared to PEGylated particles of the same size [40]. However, anionic liposomes interacted with a limited fraction of human and murine DC populations [41], setting cationic liposomal formulations in favor. This outcome is in line with published research data where cationic liposomes were considered to be a very potent choice for immunotherapy [42] and we have recently reported efficient cellular response induction \textit{in vivo} with DOTAP based cationic liposomes carrying synthetic long peptides antigens [23]. It was suggested that the positive charge promotes electrostatic interactions with the negatively charged cell surface, thus interacting more efficiently with DCs and other APCs [41]. Positively charged liposomes showed the induction of a superior antigen specific cellular immune response, in comparison with negative or neutral liposomes [43]. Moreover, cationic particles are thought to have an adjuvant effect themselves [44]. It was found that cationic liposomes, but not anionic or neutral ones, can stimulate the expression of DC maturation markers such as CD80 and CD86, depending on the lipid structure, but did not lead to pro-inflammatory cytokine- or enhanced NF-κB expression, suggesting that they act independently of this pathway [45]. The partially contradicting results could be due to different formulation procedures, immunization protocols and antigen characteristics used in reported studies. The latter may result in a charge-dependent entrapment efficiency and antigen release pattern.

To sum up, the reason why liposomes appeared to be a more potent delivery system for the induction of a T cell-based immune response upon therapeutic vaccination than PLGA NPs is not yet fully clear, but is likely due to differences in size, zeta potential and/or surface chemistry. Further research is required to elucidate how these and other properties affect the functionality of particle types as vaccine delivery system, which should help to further improve their properties for effective immunotherapy of cancer.

5. Conclusions

In this study we successfully co-encapsulated four compounds (two antigenic SLPs and two TLR-ligands) in two different delivery systems, cationic DOTAP-based liposomes and PLGA NPs. In a comparative study, we compared the immunogenicity of the particulate formulations with that of two emulsion-based adjuvants, Montanide ISA-51 and squalene SWE. The capacity of the particulate systems of inducing functional antigen-specific T cells was at least as good (PLGA NPs) or better (cationic liposomes) than that of the emulsion-based formulations. This, while also considering the unfavorable safety profile of the currently used adjuvant Montanide ISA-51, makes these particulate delivery systems attractive candidates as a delivery platform for SLP-based immunotherapy of cancer.
6. References

38. Oyewumi, M.O., A. Kumar, and Z. Cui, Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses.
Cationic liposomes vs PLGA NPs for SLP-vaccine delivery

