The handle http://hdl.handle.net/1887/37026 holds various files of this Leiden University dissertation.

Author: Schram, Raoul Diederick
Title: Enumeration and simulation of lattice polymers as models for compact biological macromolecules
Issue Date: 2015-12-15
Appendix A

More elaborate derivation of contact probability for fractal globules

To derive the contact probability of a “fractal globule”, we first have to define exactly what we mean by that term. Here, we define our fractal object as one where at each length scale the contacts between the 2^d neighboring smaller parts “look” the same: the fraction f_I of the surface in between them divided by the total surface of the individual parts (without taking the contact between the parts into consideration) is equal for all length scales. The last assumption is that the blocks build themselves in a fractal way: 2^d consecutive blocks are ordered inside a larger $2 \times 2 \times 2$ block (in the case of 3 dimensions). The effect of this is that the surface of a large blob can be fractal with a dimension higher than $d-1$. We define S_1 as the surface of the elementary building block where the globule starts to be fractal.

Using these definitions, we now derive the contact probability, without even needing to know the fractal dimension of the globule, which is constrained, though not necessarily uniquely determined, by the value of f_I. Since we are not interested here in these constraints, we will refrain from deriving them. Our derivation here is neither limited to polymers, though with the ordering constraint of the blocks, assuming connected bonds is a rather loose constraint.

Since blocks are connected to each other through their surface that is determined by the surfaces of the smaller blocks it constitutes of, we first derive the surface of a block of g elementary blocks. The first new surface area S_{2^d} is a function of the surface of the elementary blocks and the internal surface fraction f_I: 76
\[S_{2d} = (1 - f_I) S_1 2^d. \] (A.1)

Thus we get for arbitrary \(g = (2^d)^k \):

\[S_g = (1 - f_I)^k S_1 \] (A.2)

Using that \(k = \log(g) / \log(2^d) \), we find that:

\[S_g = (1 - f_I)^{\log(g) / \log(2^d)} S_1 = g^{1 + \frac{1}{d} \frac{\log(1 - f_I)}{\log(2)}} S_1. \] (A.3)

For simplicity of the argument we only find the contact probability of monomers with a block of \(g \) monomers, at least \(g 2^{-d} \) monomers apart, where the last condition ensures that monomers are in separate sub-blocks. Thus, the resulting contact probability \(p_c(g) \) is actually a (weighted) average over the interval \([g 2^{-d}, g] \). Since we are not interested in a complete explicit formula, but more in scaling and the dependence on \(f_I \) without caring too much about small corrections, this assumption suffices for us.

The total surface of the sub-blocks is given by \(S_g / (1 - f_I) \), which follows readily from their respective definitions. Then the internal surface of all sub-blocks is given by \(M_g = S_g f_I / (1 - f_I) \). To obtain the contact probability, we find the total number of possible contacts, that can be found between monomers that are within a \(g \) block, more than \(g 2^{-d} \) apart, which is given by \(Q_g = 1/2(1 - 2^{-d})g^2 \). Thus we find for the contact probability:

\[p_c(g) = \frac{M_g}{Q_g} = \frac{2 f_I S_g}{(1 - f_I)(1 - 2^{-d})g^2} = \frac{2 f_I S_1}{(1 - f_I)(1 - 2^{-d})} g^{1 + \frac{1}{d} \frac{\log(1 - f_I)}{\log(2)}}. \] (A.4)

Thus for the case of a smooth fractal, we have \(f_I = 0.5 \), and we get \(p_c \sim g^{-1 - 1/d} \), which is the same as given in the main text. Since this is the highest possible value of \(f_I \), and we can get anything down to \(f_I = 0 \), we find for the possible values of the exponent: \(-1 > \beta \geq -4/3 \). Note however that if \(f_I \) goes to 0, the prefactor also goes to 0. Thus, getting exactly a \(-1 \) law is impossible with our assumptions, though we can approach it arbitrarily close, with an increasingly small prefactor.
Bibliography

List of Figures

2.1 Monte Carlo moves .. 8
2.2 Render of FCC fractal ... 11
2.3 Polymer in poor solvent ... 14
2.4 Contact probability of polymer in poor solvent 15
2.5 Smoothed contact probability fractal 16
2.6 Equilibration FCC fractal with chain crossing, displacement .. 17
2.7 Equilibration FCC fractal with chain crossing, contact probability ... 18
2.8 Knotting fraction ... 19
2.9 Equilibration without chain crossing, displacement 20
2.10 Equilibration without chain crossing, contact probability 20
2.11 Knotting fraction, no chain crossing 21
2.12 Globule swelling .. 23
2.13 Globule renders .. 24
2.14 Mixing moves ... 25
2.15 Contact probability, short time 26

3.1 Monte Carlo moves .. 31
3.2 Storage of data ... 35
3.3 Work distribution among work-items 36
3.4 CPU scaling .. 40
3.5 Mean-squared distance .. 42
3.6 Auto-correlation function of the end-to-end vector 42
3.7 Displacement center of mass 43
3.8 Diffusion coefficient ... 44

4.1 Correlation map .. 50
4.2 Rouse amplitude .. 50
4.3 Squared distance versus genomic distance 51
4.4 Rouse mode dynamics ... 53
4.5 Displacement center of mass 54
4.6 Diffusion coefficient ... 55

5.1 Configuration $2 \times 2 \times 2$ cube 58
5.2 Surface configuration storage tree 61
5.3 Examples forbidden configurations 64
5.4 Surrounding surface ... 67
5.5 Weight distribution .. 70
5.6 Partition sum .. 71
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>System specifications</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Performance of different systems</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Simulation runs (linear polymers)</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Simulation runs (rings)</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Exact enumeration and simulation results</td>
<td>70</td>
</tr>
</tbody>
</table>