The handle http://hdl.handle.net/1887/37019 holds various files of this Leiden University dissertation

Author: Brau Avila, Julio
Title: Galois representations of elliptic curves and abelian entanglements
Issue Date: 2015-12-01
Stellingen
behorende bij het proefschrift

Galois Representations of elliptic curves
and abelian entanglements

door Julio Brau Avila

1. Let \(a, b \in \mathbb{Q} \) be rational numbers such that \(E_{a,b} : Y^2 = X^3 + aX + b \) defines an elliptic curve that does not have complex multiplication over \(\overline{\mathbb{Q}} \). Then there exists a deterministic algorithm which, given as inputs such \(a \) and \(b \), determines the image of the Galois representation \(\rho_{E_{a,b}} \) attached to the torsion points of \(E_{a,b} \).

2. Let \(E/\mathbb{Q} \) be a Serre curve. Let \(D \) be the discriminant of \(\mathbb{Q}(\sqrt{\Delta}) \), where \(\Delta \) is the discriminant of any Weierstrass model of \(E \) over \(\mathbb{Q} \), and let \(C_E \) be the density (conditional on GRH) of primes \(p \) such that the group \(E(\mathbb{F}_p) \) is cyclic. Then
\[
C_E = c_E \prod_{\ell} \left(1 - \frac{1}{(\ell^2 - 1)(\ell^2 - \ell)} \right)
\]
where the entanglement correction factor \(c_E \) is given by
\[
c_E = \begin{cases}
1 & \text{if } D \equiv 0 \pmod{4} \\
1 + \prod_{\ell | 2D} \frac{-1}{(\ell^2 - 1)(\ell^2 - \ell) - 1} & \text{if } D \equiv 1 \pmod{4}
\end{cases}
\]

3. There exists a modular curve \(X'(6) \) of level 6 defined over \(\mathbb{Q} \) whose \(\mathbb{Q} \)-rational points correspond to \(j \)-invariants of ellip-
monic curves E over \mathbb{Q} that satisfy $\mathbb{Q}(E[2]) \subset \mathbb{Q}(E[3])$, hence do not have abelian entanglements.

4. The modular curve $X'(6)$ completes a set \mathcal{X} of modular curves such that, for any elliptic curve E over \mathbb{Q} we have that

\[E \text{ is not a Serre curve } \iff j(E) \in \bigcup_{X \in \mathcal{X}} j(X(\mathbb{Q})). \]

5. Let E/\mathbb{Q} be the elliptic curve given by $Y^2 + XY + Y = X^3 - X^2 - X - 14$. Let $K = \mathbb{Q}(\zeta_3)$ and $L_m = K(\sqrt[3]{m})$. Then there are infinitely many cube-free m such that $\text{rk } E/L_m = 0$.

(J.Brau. Selmer groups of elliptic curves in degree p extensions, preprint. arxiv: 1401.3304, 2014.)

6. Suppose that G is a normal subgroup of $G_1 \times \cdots \times G_n$ such that the projection maps $\pi_i : G \to G_i$ are surjective for all i. Then the quotient $(G_1 \times \cdots \times G_n)/G$ is abelian.

7. Let E/\mathbb{Q} be the elliptic curve given by Weierstrass equation $Y^2 + Y = X^3 - X^2 - 10X - 20$. Then we expect $\tilde{E}(\mathbb{F}_p)$ to be cyclic for around 61% of primes p.

8. Let E be a non-CM elliptic curve over \mathbb{Q} and let S be the finite set of primes ℓ for which the representation $\rho_{E,\ell}$ is not surjective. Define

\[\mathcal{T} := \{2, 3\} \cup S \cup \{\ell : \ell \mid N_E\}, \]

\[m := \prod_{\ell \in \mathcal{T}} \ell. \]

Then the integer m splits ρ_E, that is,

\[G = G_m \times \prod_{\ell \mid m} \text{GL}_2(\mathbb{Z}_\ell). \]