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Chapter 8

Distances between algebraic

functions

Let K = k(t). In section 8.1 we give a lower bound for the distance tetween

two roots of a polynomial f ∈ k[t][X], and in section 8.3 we derive such a

lower bound between roots of different polynomials. We follow [9], [10] where

similar results have been derived over number fields.

8.1 Root separation of polynomials

Let K = k(t) and let f ∈ K[X] be a polynomial of degree n > 4 with

splitting field L and non-zero discriminant. Assume that f = a
n∏
i=1

(X − γi)

with a ∈ K∗ and γi ∈ L for i = 1, . . . , n. Let S be a finite set of valuations

on K and let T be the set of valuations on L above those in S. For each

ν ∈ S fix a prolongation of | · |ν to L, also denoted by | · |ν . Define

∆S(f) :=
∏
ν∈S

min
16i<j6n

|γi − γj|ν
max(1, |γi|ν) max(1, |γj|ν)

.

Since L/K is a Galois extension, this quantity ∆S(f) is independent of

the choices of the extensions of | · |ν to L. To be specific, by (1.4.3) we have
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130 Chapter 8. Distances between algebraic functions

for ω ∈ A(ν) and σ ∈ E(ω|ν) that

min
16i<j6n

|γi − γj|ω
max(1, |γi|ω) max(1, |γj|ω)

=

(
min

16i<j6n

|σ(γi − γj)|ν
max(1, |σ(γi)|ν) max(1, |σ(γj)|ν)

)gν
=

(
min

16i<j6n

|γσ(i) − γσ(j)|ν
max(1, |γσ(i)|ν) max(1, |γσ(j)|ν)

)gν
=

(
min

16i<j6n

|γi − γj|ν
max(1, |γi|ν) max(1, |γj|ν)

)gν
,

since σ ∈ Gal(L/K) acts on 1, . . . , n as a permutation and gν = [Lω : Kν ] is

independent of ω. Hence

∆S(f) =
∏
ω∈T

(
min

16i<j6n

|γi − γj|ω
max(1, |γi|ω) max(1, |γj|ω)

)1/[L:K]

. (8.1.1)

Put H(f) =
∏

ν∈MK

|f |ν . Then clearly H(f) > 1.

Theorem 8.1.1. Let c4(n) = exp(
(n−1)

(
(n+11)#S−5

)
20+1/n

). We have

∆S(f) > c4(n)−1H(f)−n+1+ n
40n+2 .

Proof. Homogenize f = a0X
n + a1X

n−1 + · · ·+ an and choose

F (X, Y ) = b(a0X
n + a1X

n−1Y + · · ·+ anY
n)

with b ∈ K∗ such that

|b|∞ = |f |−1
∞H(f), |b|ν = |f |−1

ν for ν 6= ν∞.

The existence of b is guaranteed because
∏

ν∈MK

|f |−1
ν H(f) = 1. So we get

F ∈ OS[X, Y ], |F |∞ = H(f) and hence

H∗(F ) = max(1, |F |∞) = H(f).

Factor F in L as F =
n∏
i=1

(αiX + βiY ). Then γi = − βi
αi

. Put

δω = min
16i<j6n

|αiβj − αjβi|ω
|αi, βi|ω|αj, βj|ω

(ω ∈ T ).
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Then

∆S(f) =
∏
ω∈T

δ1/[L:K]
ω .

Let F ∗(X, Y ) = F (aX + bY, cX + dY ) with ( a bc d ) ∈ GL (2,OS) be such

that F ∗ is reduced. Then F ∗(X, Y ) =
n∏
i=1

(α∗iX + β∗i Y ) where (α∗i , β
∗
i ) =

(αi, βi) ( a bc d ) , i = 1, . . . , n.

Now for ω ∈ T put fiω := |αi, βi|ω, f ∗iω := |α∗i , β∗i |ω and ζijω := |αiβj −
αjβi|ω. Then

n∏
i=1

fiω = |F |ω,
n∏
i=1

f ∗iω = |F ∗|ω and
∏

16i<j6n
ζijω = |D(F )|1/2ω .

By the ultrametric inequality we have ζijω 6 fiωfjω, and

ζijω = |ad− bc|−1
ω |α∗iβ∗j − α∗jβ∗i |ω 6 |ad− bc|−1

ω f ∗iωf
∗
jω,

So

ζijω 6 min(fiωfjω, |ad− bc|−1
ω f ∗iωf

∗
jω) for 1 6 i < j 6 n, ω ∈ T. (8.1.2)

We are going to bound δω from below for each ω ∈ T . Let ω ∈ T , and

assume, without loss of generality, that δω = ζ12ω
f1ωf2ω

. Then

δω >
ζ12ω

f1ωf2ω

∏
16i<j6n
(i,j)6=(1,2)

ζijω
min(fiωfjω, |ad− bc|−1

ω f ∗iωf
∗
jω)

=
|D(F )|1/2ω

Λω

,

with Λω = f1ωf2ω

∏
16i<j6n
(i,j)6=(1,2)

min(fiωfjω, |ad− bc|−1
ω f ∗iωf

∗
jω).

We claim that

Λω 6 |F |ω|F ∗|n−2
ω |ad− bc|−n(n−2)/2

ω . (8.1.3)

Then

δω >
|D(F )|1/2ω |ad− bc|n(n−2)/2

ω

|F |ω|F ∗|n−2
ω

.

By the Main Theorem, we have

|D(F )|1/2S > H∗(F ∗)n/(40n+2)e
(1−n)

(
(n+11)#S−5

)
20+1/n . (8.1.4)
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Using ad − bc ∈ O∗S, HS(F ) 6 H∗(F ), HS(F ∗) = H∗(F ∗) 6 H∗(F ) =

H(f), we deduce that

∆S(f) >

(∏
ω∈T

|D(F )|1/2ω |ad− bc|n(n−2)/2
ω

|F |ω|F ∗|n−2
ω

)1/[L:K]

=
|D(F )|1/2S

HS(F )HS(F ∗)n−2

> exp

(
−

(n− 1)
(
(n+ 11)#S − 5

)
20 + 1/n

)
1

H(f)
H∗(F ∗)

n
40n+2

−n+2

> exp

(
−

(n− 1)
(
(n+ 11)#S − 5

)
20 + 1/n

)
H(f)−n+1+ n

40n+2 . (8.1.5)

Finally, to prove (8.1.3), we have to distinguish two cases. First let n > 4

be even. Take I = {(1, 2), . . . , (n− 1, n)}. Then

Λω 6
n∏
i=1

fiω
∏

16i<j6n
(i,j)6∈I

|ad− bc|−1
ω f ∗iωf

∗
jω

=
n∏
i=1

fiω

( n∏
i=1

f ∗iω

)n−2

|ad− bc|−n(n−2)/2
ω

= |F |ω|F ∗|n−2
ω |ad− bc|−n(n−2)/2

ω .

Next let n > 5 be odd. Take

I = {(1, 2), . . . , (n− 2, n− 1), (n− 2, n), (n− 1, n)}.

Then

Λω 6
n−3∏
i=1

fiω
∏

n−26i<j6n

(
fiωfjωf

∗
iωf
∗
jω|ad− bc|−1

ω

)1/2
∏

16i<j6n
(i,j) 6∈I

|ad− bc|−1
ω f ∗iωf

∗
jω

=
n∏
i=1

fiω

( n∏
i=1

f ∗iω

)n−2

|ad− bc|−n(n−2)/2
ω

= |F |ω|F ∗|n−2
ω |ad− bc|−n(n−2)/2

ω .
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As a direct consequence, we obtain the following result on simultaneous

root separation for various absolute values.

Corollary 8.1.2. We have

∏
ν∈S

min
16i<j6n

|γi − γj|ν > exp(
−(n−1)

(
(n+11)#S−5

)
20 )H(f)−n+1+ n

40n+2 .

Proof. Since the denominator of ∆S(f) is at least 1, this is a direct conse-

quence of Theorem 8.1.1 and the fact |x|[L:K]
S = |x|T .

Corollary 8.1.3.

∆S(f) > exp
(
− n− 1

100

(
5n(n+ 7)#S +

2gL−1
[L:K]

))
H(f)−n+1+ n

42 .

Proof. It is similar with proof of Theorem 8.1.1, but replace (8.1.4) by using

Theorem 5.3.2.

8.2 Two lemmas

We need some preparations for the next section where we consider distances

between algebraic function that are roots of different polynomials.

Let K = k(t). Let H∗(γ) =
∏

ω∈ML

max(1, |γ|ω)1/[L:K] for any γ ∈ L alge-

braic over K. This is independent of the choice of L.

Let ξ, η be distinct and algebraic over K. Let L = K(ξ, η) and T a finite

set of valuations on L. Define

∆T (ξ, η) :=

(∏
ω∈T

|ξ − η|ω
max(1, |ξ|ω) max(1, |η|ω)

)1/[L:K]

.

Then clearly

∆T (ξ, η) =

(∏
ω 6∈T

max(1, |ξ|ω) max(1, |η|ω)

|ξ − η|ω

)1/[L:K]

H∗(ξ)−1H∗(η)−1

> H∗(ξ)−1H∗(η)−1.
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This is a type of Liouville-type inequality. Recall that for a matrix A =

(aij)i,j, we have defined its ν-value |A|ν = max
i,j

(|aij|ν) for ν ∈ MK . In this

way, we also define

HS(A) =
∏
ν∈S

|A|ν .

Lemma 8.2.1. Let F (X, Y ) ∈ OS[X, Y ] be a binary form of degree n > 3

with non-zero discriminant. Then for any U ∈ GL (2,OS), we have

HS(FU)

HS(F )
6 HS(U) 6

(
HS(F )HS(FU)

)3/n
.

Proof. Let T be the set of valuations on the splitting field L lying above the

valuations in S, write F (X, Y ) = a0

n∏
i=1

(αiX+βiY ) with a0 ∈ K∗, αi, βi ∈ OT

and FU(X, Y ) = a0

n∏
i=1

(α∗iX + β∗i Y ) with

(α∗i , β
∗
i ) = (αi, βi)U, i = 1, . . . , n.

Let U = ( a bc d ). Then{
aαi + cβi = α∗i

bαi + dβi = β∗i
for i = 1, . . . , n.

From the non-archimedean property, it easily follows that

max(|α∗i |ω, |β∗i |ω) 6 |U |ω max(|αi|ω, |βi|ω) for ω ∈ T,

hence by Gauss’ lemma we have

HT (FU) 6 |U |THT (F ),

which gives

HS(FU) 6 |U |SHS(F ).

Take any three indices i, j, l and consider the system of equations

Ax = 0, (8.2.1)
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where x = (x1, . . . , x7)T and

A =



αi βi 0 0 α∗i 0 0

0 0 αi βi β∗i 0 0

αj βj 0 0 0 α∗j 0

0 0 αj βj 0 β∗j 0

αl βl 0 0 0 0 α∗l

0 0 αl βl 0 0 β∗l .


Put X = ( x1 x3x2 x4 ). Then

−x5(α∗i , β
∗
i ) = (αi, βi)X,

−x6(α∗j , β
∗
j ) = (αj, βj)X,

−x7(α∗l , β
∗
l ) = (αl, βl)X.

However, D(F ) 6= 0, so X maps three pairwise non-parallel vectors to three

other pairwise non-parallel vectors. Such a matrix X is unique up to a scalar

if it exists. But we already know that X = U with x5 = x6 = x7 = −1

is a solution, therefore the solution space of (8.2.1) is one-dimensional and

hence for any solution there exists λ such that U = λX. Let ∆s be the

determinant of the matrix obtained by removing the s-th column of A. We

claim that (∆1,−∆2, . . . ,∆7) is a solution of the system of linear equations.

To see this, we make an extra seventh row by copying an row and thus

obtain a square matrix with determinant 0. By Laplace’s formula, expanding

this determinant along the seventh row, we immediately get the result. So

U = λ
(

∆1 ∆3
−∆2 −∆4

)
. By the ultrametric inequality and again Laplace’s formula,

it is easy to see that

|∆r|ω 6
∏

s=i,j,h

max(|α∗s|ω, |β∗s |ω) max(|αs|ω, |βs|ω), ω ∈ML for r = 1, 2, 3, 4.

Hence

|U |ω 6 |λ|ω
∏

s=i,j,h

max(|α∗s|ω, |β∗s |ω) max(|αs|ω, |βs|ω) (ω ∈ML).
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Therefore, by taking the product over ω ∈ML,

∏
ω∈ML

|U |ω 6
∏

s=i,j,h

HL(αs, βs)HL(α∗s, β
∗
s ).

By taking the geometric means over all triples (i, j, h) and going back

from L to K, we obtain that

∏
ν∈MK

|U |ν =
( ∏
ω∈ML

|U |ω
)1/[L:K]

6
(
HK(F )HK(FU)

)(n−1
2 )/(n3)

=
(
HK(F )HK(FU)

)3/n

.

Since U ∈ GL (2,OS), we have |U |ν = 1 for ν 6∈ S. Further, F, FU ∈
OS[X, Y ]. Hence

HS(U) 6
(
HS(F )HS(FU)

)3/n

.

Lemma 8.2.2. Let L be a finite extension of K of degree n and T the set of

valuations on L above those in S. For x ∈ L, denote by σi, i = 1, . . . , n the K-

embeddings of L into its algebraic closure, with σ1 the identity. Then for x ∈
K∗, there exists α, β ∈ OT such that α

β
= x and for F =

n∏
i=1

(σi(α)X+σi(β)Y )

we have

e−
2gL
n HS(F )

1
n 6 H∗(x) 6 HS(F )

1
n .

Proof. First pick α′, β′ ∈ L such that x = α′

β′
. By Lemma 3.2.3, there is

θ ∈ L∗ such that

|θ|ω 6 min( 1
|α′|ω ,

1
|β′|ω ) for ω 6∈ T

|θ|ω 6 Aω for ω ∈ T,

where Aω ∈ eZ, ω ∈ T satisfy
∏
ω∈T

Aω = e2gL
∏
ω 6∈T

max(|α′|ω, |β′|ω).
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Let α = θα′, β = θβ′. Then α, β ∈ OT and so F ∈ OS[X, Y ] and x = α
β
.

Also, we have

1 >
∏
ω 6∈T

max(|α|ω, |β|ω)

=
∏
ω 6∈T

|θ|ω
∏
ω 6∈T

max(|α′|ω, |β′|ω)

=
1∏

ω∈T
|θ|ω

∏
ω 6∈T

max(|α′|ω, |β′|ω)

>
1∏

ω∈T
Aω

∏
ω 6∈T

max(|α′|ω, |β′|ω)

= e−2gL . (8.2.2)

Let M be a normal extension of K containing L, and U the set of valua-

tions above those in S. By Lemma 1.4.1 we have

∏
ν 6∈S

|F |ν =
(∏
ω 6∈U

|F |µ
) 1

[M :K]

=
(∏
µ6∈U

n∏
i=1

max(|σi(α)|µ, |σi(β)|µ)
) 1

[M :K]

=
(∏
µ6∈U

max(|α|µ, |β|µ)
) n

[M :K]

=
(∏
ω 6∈T

max(|α|ω, |β|ω)
)n[M :L]

[M :K]

=
∏
ω 6∈T

max(|α|ω, |β|ω). (8.2.3)

Combining (8.2.2) with (8.2.3) we derive that

e−2gL 6
H(F )

HS(F )
6 1.
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By the product formula we have

H∗(x) =
( n∏
i=1

H∗(σi(x))
) 1
n

=
( n∏
i=1

∏
ω∈ML

max(|σi(α)|ω, |σi(β)|ω)
) 1
n[L:K]

=
( ∏
ω∈ML

|F |ω
) 1
n[L:K]

= H(F )
1
n .

This implies that

e−
2gL
n HS(F )

1
n 6 H∗(x) 6 HS(F )

1
n .

8.3 A symmetric improvement of the Liouville-

type inequality

Theorem 8.3.1. Suppose ξ, η are algebraic over K. Let L = K(ξ, η) and

assume

[K(ξ) : K] > 3, [K(η) : K] > 3, [L : K] = [K(ξ) : K][K(η) : K].

Let S be a finite set of valuations on K, T0 the set of valuations on L lying

above those in S and T ⊂ T0 such that

$ := max
ν∈S

1

[L : K]

∑
ω|ν
ω∈T

[Lω : Kν ] <
1

3
.

Let g1, g2 be the genera of K(ξ) and K(η) respectively. Then

∆T (ξ, η) > C−1
5

(
H∗(ξ)H∗(η)

)−1+ϑ
,
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where ϑ = 1−3$
717(1+3$)

and

C5 = exp
(
422(m+n−5+2g1+2g2)

717 +(4m+4n+433)
#S
717+(m+n)(m+n−5)(1−ϑ)

)
.

Proof. Assume [K(ξ) : K] = m, [K(η) : K] = n. Then [L : K] = mn.

Without loss of generality, suppose ν∞ ∈ S. For if ν∞ 6∈ S, then adding ν∞

to S does not affect $. Let σ1, . . . , σm and τ1, . . . , τn be the K-isomorphic

embeddings of K(ξ) and K(η) respectively into M .

By Lemma 8.2.2 there are α, β ∈ K(ξ) and γ, δ ∈ K(η) that are inte-

gral over OS such that ξ = α
β
, η = γ

δ
, and the corresponding binary forms

F (X, Y ) =
m∏
i=1

(
σi(α)X + σi(β)Y

)
, G(X, Y ) =

n∏
j=1

(
τj(γ)X + τj(δ)Y

)
satisfy

e−
2gL
m HS(F )

1
m 6 H∗(ξ) 6 HS(F )

1
m ,

e−
2gL
n HS(G)

1
n 6 H∗(η) 6 HS(G)

1
n .

(8.3.1)

Moreover, the assumption implies that ξ, η are not conjugate over K and

hence F,G are irreducible and FG is square-free. By Theorem 7.5.1, there

exists U ∈ GL (2,OS) such that

|R(F,G)|S > C ′HS(GU)
m
717HS(FU)

n
717 , (8.3.2)

where

C ′ = exp
(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
.

Notice that

FU(X, Y ) =
m∏
i=1

(
σi(α

′)X + σi(β
′)Y
)
,

GU(X, Y ) =
n∏
j=1

(
τj(γ

′)X + τj(δ
′)Y
)
,

where

(α′, β′) = (α, β)U, (γ′, δ′) = (γ, δ)U.
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Let V ∈ GL (2,OS) be the inverse of U . Then

αδ − βγ = (detV )(α′δ′ − β′γ′),

max(|α|ω, |β|ω) 6 |V |ω max(|α′|ω, |β′|ω),

max(|γ|ω, |δ|ω) 6 |V |ω max(|γ′|ω, |δ′|ω).

For ω ∈ML, put

∆ω(ξ, η) :=
|ξ − η|ω

max(1, |ξ|ω) max(1, |η|ω)
,

∆′ω(ξ, η) :=
|α′δ′ − β′γ′|ω

max(|α′|ω, |β′|ω) max(|γ′|ω, |δ′|ω)
.

Then ∆ω(ξ, η) 6 1,∆′ω(ξ, η) 6 1. From what we mentioned above we have

∆ω(ξ, η) =
|αδ − βγ|ω

max(|α|ω, |β|ω) max(|γ|ω, |δ|ω)

>
| detV |ω|α′δ′ − β′γ′|ω

|V |2ω max(|α′|ω, |β′|ω) max(|γ′|ω, |δ′|ω)

=
| detV |ω
|V |2ω

∆′ω(ξ, η)

=
| detV |[Lω :Kν ]

ν

|V |2[Lω :Kν ]
ν

∆′ω(ξ, η).

Since | detV |ν 6 |V |2ν for any ν ∈MK and V ∈ GL (2,OS), we derive that∏
ω∈T

∆ω(ξ, η) >
∏
ν∈S

∏
ω∈T
ω|ν

( | detV |ν
|V |2ν

)[Lω :Kν ] ∏
ω∈T

∆′ω(ξ, η)

>
∏
ν∈S

( | detV |ν
|V |2ν

)[L:K]$∏
ω∈T

∆′ω(ξ, η)

=
1

HS(V )2[L:K]$

∏
ω∈T

∆′ω(ξ, η).

By Lemma 8.2.1 we have

HS(V ) 6
(
HS(FU)HS(FUV )

)3/m

=
(
HS(F )HS(FU)

)3/m
,
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and

HS(V ) 6
(
HS(G)HS(GU)

)3/n
,

and from these inequalities we deduce that

∏
ω∈T

∆ω(ξ, η) >
( 1

HS(F )1/mHS(G)1/nHS(FU)1/mHS(GU)1/n

)3[L:K]$∏
ω∈T

∆′ω(ξ, η).

By taking ε = 1
717(1+3$)

< 1 and

H = HS(F )1/mHS(G)1/n, H ′ = HS(FU)1/mHS(GU)1/n,

we conclude that

∏
ω∈T

∆ω(ξ, η) > (HH ′)−3[L:K]ε$
∏
ω∈T

(
∆ω(ξ, η)1−ε∆′ω(ξ, η)ε

)
> (HH ′)−3mnε$

∏
ω∈T0

(
∆ω(ξ, η)1−ε∆′ω(ξ, η)ε

)
(8.3.3)

However, since [L : K] = [K(ξ) : K][K(η) : K] we have

R(F,G) =
m∏
i=1

n∏
j=1

(
σi(α)τj(δ)− σi(β)τj(γ)

)
= NL/K(αδ − βγ).

This implies that

|R(F,G)|ν =
∏
ω|ν

|αδ − βγ|ν for ν ∈MK .

Similarly to (8.2.3), we have HS(F ) = HT0(α, β)
m

[L:K] , HS(G) = HT0(γ, δ)
n

[L:K] .
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Combining this with (8.3.2) we deduce that∏
ω∈T0

∆ω(ξ, η) =
|R(F,G)|S

HT0
(α,β)HT0

(γ,δ)

=
|R(F,G)|S(

HS(F )1/mHS(G)1/n
)[L:K]

> exp
(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
×

× HS(GU )
m
717HS(FU )

n
717(

HS(F )1/mHS(G)1/n
)[L:K]

= exp
(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
×

×

(HS(GU )
1
nHS(FU )

1
m
) 1

717

HS(F )1/mHS(G)1/n


mn

. (8.3.4)

Similarly, we have∏
ω∈T0

∆′ω(ξ, η) =
|R(FU ,GU )|S

HT0
(α′,β′)HT0

(γ′,δ′)

=
|R(F,G)|S(

HS(FU )1/mHS(GU )1/n
)[L:K]

> exp
(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
×

×

(HS(GU )
1
nHS(FU )

1
m
) 1

717

HS(FU )1/mHS(GU )1/n


mn

. (8.3.5)

Substituting (8.3.4) and (8.3.5) into (8.3.3), we conclude that∏
ω∈T

∆ω(ξ, η) > (HH ′)−3mnε$ H ′
mn
717

Hmn(1−ε)H ′mnε×

× exp
(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
= exp

(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
Hmn(−1+ϑ)

> exp
(
− 422mn(m+n−5+2g1+2g2)

717 −mn(4m+ 4n+ 433)
#S
717

)
×

×
(
H∗(ξ)H∗(η)e

2gL(
1
m+

1
n )
)mn(−1+ϑ)

.
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where the equality is because of the choice of ε, which makes the exponent

of H ′ to be 0, and the last inequality is due to (8.3.1). This implies that

∆T (ξ, η) > D−1
(
H∗(ξ)H∗(η)

)−1+ϑ

,

where

D = exp
(
422(m+n−5+2g1+2g2)

717 + (4m+ 4n+ 433)
#S
717 + 2gL( 1

m + 1
n)(1− ϑ)

)
.

Notice that ϑ < 1 and by (5.1.4),

2gL − 2

mn
6 m+ n− 6,

we conclude that D 6 C5 where

C5 = exp
(
422(m+n−5+2g1+2g2)

717 +(4m+4n+433)
#S
717+(m+n)(m+n−5)(1−ϑ)

)
.




