Cover Page

The handle http://hdl.handle.net/1887/36589 holds various files of this Leiden University
dissertation.

Author: Zhuang, Weidong

Title: Symmetric diophantine approximation over function fields
Issue Date: 2015-12-03


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/36589
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 8

Distances between algebraic

functions

Let K = k(t). In section 8.1 we give a lower bound for the distance tetween
two roots of a polynomial f € k[t][X], and in section 8.3 we derive such a
lower bound between roots of different polynomials. We follow [9], [10] where

similar results have been derived over number fields.

8.1 Root separation of polynomials

Let K = k(t) and let f € K[X] be a polynomial of degree n > 4 with
splitting field L and non-zero discriminant. Assume that f = a H(X Vi)

with a € K* and 7; € L fori =1,...,n. Let S be a finite set of valuatlons
on K and let T be the set of valuations on L above those in S. For each

v € S fix a prolongation of |- |, to L, also denoted by | -|,. Define

v = Yilv
As(f) = ; ‘
s(f) s 1<rzn<l}l<n max(1, |7;],) max(1, |7j|u)

Since L/K is a Galois extension, this quantity Ag(f) is independent of
the choices of the extensions of | - |, to L. To be specific, by (1.4.3) we have
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130 Chapter 8. Distances between algebraic functions

for w € A(v) and o € E(w|v) that

. i — Vil
min
1<i<j<n max(1, |v;|.,) max(1, [v;l.)

_ , lo (i = 7)o o
= min
1<i<j<n max(1, [o(y;)],) max(1, |o(v;)],)
N . Jv
( min ’70(2) 70(])|V )
1<i<j<n max(1, [Vo( |v) max(1, [vo¢y|v)

B ) 1Y = Y5lw o
= min )
1<i<j<n max(1, |y;|,) max(1, |v;].)
since 0 € Gal(L/K) acts on 1,...,n as a permutation and g, = [L,, : K,] is

independent of w. Hence

As(f) =11 ( min i = 3 )mm‘ (8.1.1)

28 e el max(T, 551

Put H(f) = ][ |f|,- Then clearly H(f) > 1.

veMg

((nq) ((n+11)#5-5)

Theorem 8.1.1. Let c4(n) = exp 0TI

). We have
As(f) = ealn) T H(f) "o,
Proof. Homogenize f = agX™ + a; X" ' + -+ + a, and choose
F(X,Y)=blapX" +a; X" Y 4+ - +a,Y")
with b € K™ such that
bloo = [fI H(f), 1bl, = |f[5" for v # v

The existence of b is guaranteed because [] |f|,;*H(f) = 1. So we get
veEMg
F e Og[X,Y], |Floeo = H(f) and hence

H*(F) = max(L,|F|.) = H().

Factor F'in L as F = [[(a;X + 5;Y). Then v; = —g— Put

=1

|Oéiﬁj - Oéjﬁi|w

1<i<isn |ag, Bilwlayg, Bl

0y = (weT).
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Then
As(f) = T o

weT
Let F*(X,Y) = F(aX +bY,cX +dY) with (2%) € GL(2,Os) be such
that F* is reduced. Then F*(X,Y) = ﬁ(oz;‘X + B:Y) where (af, 3F) =
(0 B) (8)i=1,....n -
Now for w € T put fu, := |, Bilw, fio, == o], Bl and G = [eiff; —
03], Then f{l fiw = |F|w,£[1 fo=Floand ] G = D)2

- = 1<i<j<n
By the ultrametric inequality we have (;j, < fi fjw, and

Gijw = lad = be|*|ai B; — o 57| < lad — el [, £,
S0
Gijo < min( fio fo: lad —bel ) o, fr,) for 1<i<j<nweT. (81.2)

We are going to bound 4§, from below for each w € T. Let w € T, and

assume, without loss of generality, that d,, fclsz Then
55 G Gizo _ D)L
flwaw 1<i<j<n min(fiwfjwv |a’d - bc|;1fit;f]>'kw> AW 7
(1.5)#(1,2)
with Ay, = fiwfaw ]I min(fiwfjwv lad — bc|;1fz‘szw)‘
1<i<g<n
(6,3)#(1,2)

We claim that
< |F|o|F*|"2|ad — be|;" 272, (8.1.3)
Then

5 |D(F)|Y?|ad — be|"2/?
© | || F*|n=2

By the Main Theorem, we have

1/2 (lfn)((n+1l)#575)
|D(F)|J* > H*(F*)"/ o2 ™ somim (8.1.4)
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Using ad — be € O%, Hg(F) < H*(F), Hs(F*) = H*(F*) < H*(F) =
H(f), we deduce that

_ 1/[L:K]
|D(F)|Y?|ad — be|"~ 2/
sl = (H FLIFT:

weT
\D( IS
- HS' F* n—2
(n=1)((n+1)#S-5)\ 1 o
> H*(F*)on+z n+2
eXp( 20+ 1/n o e
n—l n+11)#5—5) B o
> H(f) " aome, (8.1
exp ( TEsYe (fy L (8.15)

Finally, to prove (8.1.3), we have to distinguish two cases. First let n > 4

(
be even. Take I = {(1,2),...,(n—1,n)}. Then

Aw < Hfzw H |ad_bc|;1fizf;w

1<i<g<n
(i,5)¢1

= TLe(T1 ) ad = beppr2rs
=1 i=1

_ ’F|w|F* n72|ad . bcl;n(an)/Z_

&

Next let n > 5 be odd. Take
I={1,2),....(n—2,n—1),(n—2,n),(n —1,n)}.

Then

n—3
Aw < H fiw H (fiwfjwf;;)f;w|ad - bC|;1)1/2 H |a’d - bc|u_;1fi*wf;w
=1

n—2<i<j<n 1<i<j<n

(i) 1

- ﬁ Jiw < ﬁ fi2>n2|ad — be| 2/
i=1

= |F|,|F* 2|ad—bc|_”” 272,

Iw
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As a direct consequence, we obtain the following result on simultaneous

root separation for various absolute values.

Corollary 8.1.2. We have

. —(n=1)((n+11)#S-5
min |y; — ], = exp( ( ))

1<i<j<n 20
ves

H(p) i,

Proof. Since the denominator of Ag(f) is at least 1, this is a direct conse-

quence of Theorem 8.1.1 and the fact ]x\gL:K] = |z|7. O

Corollary 8.1.3.

T ) H ()

As(f) > exp ( — an_Ol(&L(n + )#S +

Proof. 1t is similar with proof of Theorem 8.1.1, but replace (8.1.4) by using
Theorem 5.3.2. [

8.2 Two lemmas

We need some preparations for the next section where we consider distances
between algebraic function that are roots of different polynomials.

Let K = k(t). Let H*(y) = [] max(1,|y|.)YEE] for any v € L alge-
weMT,
braic over K. This is independent of the choice of L.

Let &, 1 be distinct and algebraic over K. Let L = K(&,n) and T a finite

set of valuations on L. Define

€l o
-— — 77 -
Ar(&,n) = (H max(1, [£[,) max(1, |7]|w)> .

weT

Then clearly

1/[L:K)
Arlen) = (H max“"iﬂff"“"”'“) H () H )
w€T w

> O H )
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This is a type of Liouville-type inequality. Recall that for a matrix A =

(a;;)i;, we have defined its v-value |A|, = max(|a;;|,) for v € M. In this
irj

way, we also define

Hg(A) =[] 14l

ves

Lemma 8.2.1. Let F(X,Y) € Os[X,Y] be a binary form of degree n > 3

with non-zero discriminant. Then for any U € GL (2, Os), we have

Hg(Fy) 3/n
]—ISS(F) < Hs(U) < (Hs(F)Hs(Fy))™™.

Proof. Let T be the set of valuations on the splitting field L lying above the

valuations in S, write F(X,Y) = ag [[ (e, X +5;Y) with ag € K*, o, 5; € Or
i=1

and Fy(X,Y) =ao [[(af X + 8FY) with

i=1

(7, 87) = (e, B))U, i =1,...,n.
Let U = (2%). Then

fori=1,...,n.

ac; + cf; = af

From the non-archimedean property, it easily follows that
max(|o;w, |5 |w) < |Ulwmax(|ailw, |Bil.) for w e T,
hence by Gauss’ lemma we have
Hr(Fy) < |U|pHp(F),

which gives
Hs(Fy) < |U|sHs(F).

Take any three indices ¢, 7, [ and consider the system of equations

Ax =0, (8.2.1)
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where x = (xy,...,27)T and
a B 0 0 o 0 0
0 0 w B B0 0
S| s0 00 ao
0 0 a; B; 0 B 0
o B0 0 0 0 af
0 0 o B 0 0 B

Put X = (21 23). Then

—xs(afaﬁf) = (az’,ﬁz‘)X7
—ze(aj, B;) = (g, B;) X,
—x7(ag, B) = (au, B) X.

However, D(F) # 0, so X maps three pairwise non-parallel vectors to three
other pairwise non-parallel vectors. Such a matrix X is unique up to a scalar
if it exists. But we already know that X = U with 25 = 24 = 27 = —1
is a solution, therefore the solution space of (8.2.1) is one-dimensional and
hence for any solution there exists A such that U = AX. Let Ay be the
determinant of the matrix obtained by removing the s-th column of A. We
claim that (Ay, —As, ..., A7) is a solution of the system of linear equations.
To see this, we make an extra seventh row by copying an row and thus
obtain a square matrix with determinant 0. By Laplace’s formula, expanding
this determinant along the seventh row, we immediately get the result. So
U=\ ( 7AA12 7AA34 ) By the ultrametric inequality and again Laplace’s formula,

it is easy to see that

A, < H max(|a|,, |55e) max(|as|w, |Bslw),w € My for r =1,2,3,4.
s=t,j,h
Hence

Ul < [Alw H max(|oglw, [ 55 |w) max(|as |, |Bslw) (w € My).

S:ivjvh
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Therefore, by taking the product over w € M,

1T Wl < [] Helos B)HL(e}, 7).

weMT, s=i,j,h

By taking the geometric means over all triples (i,7,h) and going back

from L to K, we obtain that

1/[L:K]
IT w1 = <W£IML|U|“>

< (HK(F)HK(FU)>(n21)/<§>

_ (HK(F)HK(FU)>3/".

Since U € GL (2,0g), we have |U|, = 1 for v ¢ S. Further, F, Fy; €
Os[X,Y]. Hence

Hg(U) < (HS(F)HS(FU)>3/n.

]

Lemma 8.2.2. Let L be a finite extension of K of degree n and T the set of
valuations on L above those in S. Forx € L, denote byo;,i =1,...,n the K-
embeddings of L into its algebraic closure, with oy the identity. Then for x €

K*, there exists o, B € Or such that § = and for F' = [ (0i(a) X +0;(B)Y)
i=1

we have

_29p

(& "AH%(Fv

3=
3=

< H*(z) < Hg(F)r.

Proof. First pick o/, 5" € L such that z = g—: By Lemma 3.2.3, there is
0 € L* such that

min(ﬁ, ﬁ) forw T

A, forweT,

where A, € €%, w € T satisfy [] A, = €2 [] max(|d/|,, |5]w)-
weT wgT
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Let a = 0o/, 8 =6f'. Then a, 8 € Or and so F € Og[X,Y] and x = 3.
Also, we have
1 > H max(|aly, [Bl.)

wgT

— [Tk T mesalon 191)
w€T wgT

_ max(|a],, [5|w)
11 16l | o H
wET

> H [ mex(jol., 18'].,)
weT Y el

_ 2 (8.2.2)

Let M be a normal extension of K containing L, and U the set of valua-

tions above those in S. By Lemma 1.4.1 we have

117, = ( 1 F )[MK
veS wgU
OTR]
( Hmax loi ()| |oi(8 )|u)> o
ngU i=1
orE
(Hmax |l Bl ))
wgU
n[M:L]
MK
= ([ max(lol. |51.))
wgT
[T max(lal. |6L.). (8.23)
w€T

Combining (8.2.2) with (8.2.3) we derive that

H(F)
Hg(F)

e~ 29L <

< L
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By the product formula we have

) = ([[# o)’

n R —

— (I T mextios(a)los () ™"

=1 OJEML

_ < I1 |F\W>"[L1“q

weMy,
1

= H(F)n.

This implies that

8.3 A symmetric improvement of the Liouville-

type inequality

Theorem 8.3.1. Suppose &,n are algebraic over K. Let L = K(&,n) and

[K(&) : K] >3, [K(n): K] 23, [L: K] = [K(S) : K][K(n) : K].

Let S be a finite set of valuations on K, Ty the set of valuations on L lying
above those in S and T C Ty such that

Wl =

1
w = max T K Z[Lw K <

wlv
weT

Let g1, g2 be the genera of K(&) and K(n) respectively. Then

Ar(€,n) = O H(HH () H (),
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where ¥ = % and
Cs = exp (422(m+n;f7+291+292)+(4m+4n+433)#—l—(m—i—n)(m%—n—@(l—ﬁ)).

Proof. Assume [K(§) : K] = m, [K(n) : K] = n. Then [L : K| = mn.
Without loss of generality, suppose v, € S. For if v, € S, then adding v,
to S does not affect w. Let oy,...,0,, and 7,..., 7, be the K-isomorphic
embeddings of K(§) and K(n) respectively into M.

By Lemma 8.2.2 there are «, 5 € K(§) and 7,0 € K(n) that are inte-
gral over Qg such that £ = %,77 = %, and the corresponding binary forms
FX,Y) =TT (0:(a)X + 0()Y),G(X,Y) = ] (1) X +75(6)Y) satisfy

=1 j=1

(8.3.1)

Moreover, the assumption implies that &, 7 are not conjugate over K and
hence F, G are irreducible and F'G is square-free. By Theorem 7.5.1, there
exists U € GL (2, Og) such that

|R(F,G)|s > C"Hg(Gy)77 Hg(Fy) 77, (8.3.2)
where
422 +n—5+2g,+2 S
' =exp (- Mt S0 E292) i (4 + 4 + 133)43).

Notice that

where
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Let V' € GL (2, Og) be the inverse of U. Then

ad — By = (detV)(a'd = B'y),
max(|04|wa|ﬂ|uJ) < |V|wmax(|a,|wv|ﬁ,|w)7
<

max (|7, |0]) [V Lo max(|y'lu, |0°].0)-

For w € My, put

B 1€ — 1w
AlE )= L el max(LL o)
15— B /w
N o=

max(|a’le, [8']w) max(|y']w, 16'].)

Then A, (&, n) < 1,Al(¢,n) < 1. From what we mentioned above we have

|a5 - 67’4‘)
max(|aly, |Blw) max(|7y]w, [6].)
| det V|, |a/d" — B'Y|.,
V2 max(|o/|., |8']) max(|7']w, |6'].)
- [aauen)
| det V/|[F< ]

= |V|,2/[LWZKV] AL(S’U)

AW (57 77) =

Since | det V|, < |V|? for any v € Mg and V € GL (2, Og), we derive that

[[auEn = HH(’dﬁ;'”)”””ﬂa;(an)

weT veS weT weT
wlv

det V|, \ [L:K]w ,
> TL(Se) ™ T auen

ves weT

1 /
= (V)R H AL ).

weT

By Lemma 8.2.1 we have

Hs(V) < (Hs(Fu)Hs(Fuv))*™
— (Hs(F)Hs(Fy))*™,
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and

Hs(V) < (Hs(G)Hs(Gu))*'",

and from these inequalities we deduce that

| | A 5 1 3[L:K]w A/ 6
77 ( 1/m 1/n 1/m 1 n) 77

e Hs(F)YmHg(G)V"Hs(Fy)'/mHs(Gy)Y WIEIT

By taklng g = m <1 and

H = Hg(F)Y™Hg(G)'", H' = Hg(Fy)Y™Hs(Gy)'™,
we conclude that

[Tauen > @a) ™= [T (Auen)'ALEn)y)

weT weT

> () e T (Aulem) ™ ALED))  (8.33)

w€eTy

However, since [L : K] = [K(€) : K][K(n) : K] we have
- H H (0i()7i(8) — 05(B)7i(7)) = Nijx(ad — B).

i=1 j=1

This implies that

[R(F.G)|, =[] lad = B, for v € M.

wlv

n

Similarly to (8.2.3), we have Hg(F) = Hu,(av, 8) TR, Hg(G) = Hy, (v, §) =K
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Combining this with (8.3.2) we deduce that

|R(F,G)|
H Aw(fan) = HTO(Ot,ﬁ)HTOS('Yv(S)

w€eTp
|R(F\G)|s
o [LK]
(HS(F)l/mHS(G)l/n)
> exp ( B 422m71(m+7;1—75+291+292) —mn(4m + 4n + 433)#) X
Hs(Gy) ™7 Hg(Fy) 77
X [L:K]
(HS(F)l/mHS(G)l/n)
- o ( B 422m”(m+77l;75+291+292) — mn(4m + 4n + 433) 7#1§>
1 1 T mn
(Hs(Go)n Hs(Fy)m 4
Hs(F)YmHg(G)/n (8.3.4)
Similarly, we have
! — |R(Fu,Gu)ls
H AW(gan) - HTO(CY',B/)HTO(’Y/75/)
w€eTy
_ |[R(F\G)ls
o LK)
(Hs(FU)l/mHS(GU)l/n)
> exp ( h 422mn(m+77l;75+291+292) —mn(4m + 4n + 433) ?ﬁ)
1 1 ﬁ mn
(Hs(Go)n Hs(Fy)m )
Hg(Fy)V/mHg(Gy)t/r (8.3.5)
Substituting (8.3.4) and (8.3.5) into (8.3.3), we conclude that
mneco I_IIm
HA &n) = (HH)™ W%WX
weT
x exp (- LRI DR (4 + 4 + 433) 23 )
= exp ( - 422mn(m+zl—75+291+292) . (4777, +dn + 433) 7#1§>Hmn( 14+9)
> P ( B 422mn(m—|—?1—75+291+292) — mn(4m + 4n + 433) jﬁ)

1.1 mn(—1+19)
X(H*(f)H*O]) QQL(ern)) ]
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where the equality is because of the choice of €, which makes the exponent

of H' to be 0, and the last inequality is due to (8.3.1). This implies that

Ar(en) = D (HOH ()

where

D = exp (422(m+n;f;—291+292) + (47”"‘4”"‘433)?% + 2gL<% + %)(1 _ 19))

]

Notice that ¥ < 1 and by (5.1.4),

2gL -2
mn

<m+n—06,

we conclude that D < C5 where

422 —54+2 2
Cs = exp ( (min-S4+2g+ 92)+(4m+4n+433)#+(m+n)(m+n—5)(1—ﬂ)).







