Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/36589 holds various files of this Leiden University dissertation.

Author: Zhuang, Weidong **Title:** Symmetric diophantine approximation over function fields

Issue Date: 2015-12-03

Chapter 8

Distances between algebraic functions

Let K = k(t). In section 8.1 we give a lower bound for the distance tetween two roots of a polynomial $f \in k[t][X]$, and in section 8.3 we derive such a lower bound between roots of different polynomials. We follow [9], [10] where similar results have been derived over number fields.

8.1 Root separation of polynomials

Let K = k(t) and let $f \in K[X]$ be a polynomial of degree $n \ge 4$ with splitting field L and non-zero discriminant. Assume that $f = a \prod_{i=1}^{n} (X - \gamma_i)$ with $a \in K^*$ and $\gamma_i \in L$ for i = 1, ..., n. Let S be a finite set of valuations on K and let T be the set of valuations on L above those in S. For each $\nu \in S$ fix a prolongation of $|\cdot|_{\nu}$ to L, also denoted by $|\cdot|_{\nu}$. Define

$$\Delta_S(f) := \prod_{\nu \in S} \min_{1 \leqslant i < j \leqslant n} \frac{|\gamma_i - \gamma_j|_{\nu}}{\max(1, |\gamma_i|_{\nu}) \max(1, |\gamma_j|_{\nu})}.$$

Since L/K is a Galois extension, this quantity $\Delta_S(f)$ is independent of the choices of the extensions of $|\cdot|_{\nu}$ to L. To be specific, by (1.4.3) we have

for $\omega \in \mathcal{A}(\nu)$ and $\sigma \in \mathcal{E}(\omega|\nu)$ that

$$\min_{1 \leqslant i < j \leqslant n} \frac{|\gamma_i - \gamma_j|_{\omega}}{\max(1, |\gamma_i|_{\omega}) \max(1, |\gamma_j|_{\omega})}$$

$$= \left(\min_{1 \leqslant i < j \leqslant n} \frac{|\sigma(\gamma_i - \gamma_j)|_{\nu}}{\max(1, |\sigma(\gamma_i)|_{\nu}) \max(1, |\sigma(\gamma_j)|_{\nu})} \right)^{g_{\nu}}$$

$$= \left(\min_{1 \leqslant i < j \leqslant n} \frac{|\gamma_{\sigma(i)} - \gamma_{\sigma(j)}|_{\nu}}{\max(1, |\gamma_{\sigma(i)}|_{\nu}) \max(1, |\gamma_{\sigma(j)}|_{\nu})} \right)^{g_{\nu}}$$

$$= \left(\min_{1 \leqslant i < j \leqslant n} \frac{|\gamma_i - \gamma_j|_{\nu}}{\max(1, |\gamma_i|_{\nu}) \max(1, |\gamma_j|_{\nu})} \right)^{g_{\nu}} ,$$

since $\sigma \in \operatorname{Gal}(L/K)$ acts on $1, \ldots, n$ as a permutation and $g_{\nu} = [L_{\omega} : K_{\nu}]$ is independent of ω . Hence

$$\Delta_S(f) = \prod_{\omega \in T} \left(\min_{1 \leqslant i < j \leqslant n} \frac{|\gamma_i - \gamma_j|_{\omega}}{\max(1, |\gamma_i|_{\omega}) \max(1, |\gamma_j|_{\omega})} \right)^{1/[L:K]}. \tag{8.1.1}$$

Put $H(f) = \prod_{\nu \in M_K} |f|_{\nu}$. Then clearly $H(f) \geqslant 1$.

Theorem 8.1.1. Let $c_4(n) = \exp(\frac{(n-1)((n+11)\#S-5)}{20+1/n})$. We have

$$\Delta_S(f) \geqslant c_4(n)^{-1} H(f)^{-n+1+\frac{n}{40n+2}}$$

Proof. Homogenize $f = a_0 X^n + a_1 X^{n-1} + \cdots + a_n$ and choose

$$F(X,Y) = b(a_0X^n + a_1X^{n-1}Y + \dots + a_nY^n)$$

with $b \in K^*$ such that

$$|b|_{\infty} = |f|_{\infty}^{-1} H(f), |b|_{\nu} = |f|_{\nu}^{-1} \text{ for } \nu \neq \nu_{\infty}.$$

The existence of b is guaranteed because $\prod_{\nu \in M_K} |f|_{\nu}^{-1}H(f) = 1$. So we get $F \in \mathcal{O}_S[X,Y], |F|_{\infty} = H(f)$ and hence

$$H^*(F) = \max(1, |F|_{\infty}) = H(f).$$

Factor F in L as $F = \prod_{i=1}^{n} (\alpha_i X + \beta_i Y)$. Then $\gamma_i = -\frac{\beta_i}{\alpha_i}$. Put

$$\delta_{\omega} = \min_{1 \leq i < j \leq n} \frac{|\alpha_i \beta_j - \alpha_j \beta_i|_{\omega}}{|\alpha_i, \beta_i|_{\omega} |\alpha_i, \beta_j|_{\omega}} \ (\omega \in T).$$

Then

$$\Delta_S(f) = \prod_{\omega \in T} \delta_{\omega}^{1/[L:K]}.$$

Let $F^*(X,Y) = F(aX + bY, cX + dY)$ with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathcal{O}_S)$ be such that F^* is reduced. Then $F^*(X,Y) = \prod_{i=1}^n (\alpha_i^*X + \beta_i^*Y)$ where $(\alpha_i^*, \beta_i^*) = (\alpha_i, \beta_i) \begin{pmatrix} a & b \\ c & d \end{pmatrix}, i = 1, \ldots, n$.

Now for $\omega \in T$ put $f_{i\omega} := |\alpha_i, \beta_i|_{\omega}, f_{i\omega}^* := |\alpha_i^*, \beta_i^*|_{\omega}$ and $\zeta_{ij\omega} := |\alpha_i\beta_j - \alpha_j\beta_i|_{\omega}$. Then $\prod_{i=1}^n f_{i\omega} = |F|_{\omega}, \prod_{i=1}^n f_{i\omega}^* = |F^*|_{\omega}$ and $\prod_{1 \le i < j \le n} \zeta_{ij\omega} = |D(F)|_{\omega}^{1/2}$.

By the ultrametric inequality we have $\zeta_{ij\omega} \leqslant f_{i\omega}f_{j\omega}$, and

$$\zeta_{ij\omega} = |ad - bc|_{\omega}^{-1} |\alpha_i^* \beta_i^* - \alpha_i^* \beta_i^*|_{\omega} \leqslant |ad - bc|_{\omega}^{-1} f_{i\omega}^* f_{i\omega}^*,$$

So

$$\zeta_{ij\omega} \leqslant \min(f_{i\omega}f_{j\omega}, |ad - bc|_{\omega}^{-1}f_{i\omega}^*f_{j\omega}^*) \text{ for } 1 \leqslant i < j \leqslant n, \omega \in T.$$
(8.1.2)

We are going to bound δ_{ω} from below for each $\omega \in T$. Let $\omega \in T$, and assume, without loss of generality, that $\delta_{\omega} = \frac{\zeta_{12\omega}}{f_{1\omega}f_{2\omega}}$. Then

$$\delta_{\omega} \geqslant \frac{\zeta_{12\omega}}{f_{1\omega}f_{2\omega}} \prod_{\substack{1 \leqslant i < j \leqslant n \\ (i,j) \neq (1,2)}} \frac{\zeta_{ij\omega}}{\min(f_{i\omega}f_{j\omega}, |ad - bc|_{\omega}^{-1}f_{i\omega}^*f_{j\omega}^*)} = \frac{|D(F)|_{\omega}^{1/2}}{\Lambda_{\omega}},$$

with
$$\Lambda_{\omega} = f_{1\omega} f_{2\omega} \prod_{\substack{1 \leq i < j \leq n \\ (i,j) \neq (1,2)}} \min(f_{i\omega} f_{j\omega}, |ad - bc|_{\omega}^{-1} f_{i\omega}^* f_{j\omega}^*).$$

We claim that

$$\Lambda_{\omega} \leqslant |F|_{\omega} |F^*|_{\omega}^{n-2} |ad - bc|_{\omega}^{-n(n-2)/2}.$$
 (8.1.3)

Then

$$\delta_{\omega} \geqslant \frac{|D(F)|_{\omega}^{1/2}|ad - bc|_{\omega}^{n(n-2)/2}}{|F|_{\omega}|F^*|_{\omega}^{n-2}}.$$

By the Main Theorem, we have

$$|D(F)|_S^{1/2} \geqslant H^*(F^*)^{n/(40n+2)} e^{\frac{(1-n)((n+11)\#S-5)}{20+1/n}}.$$
 (8.1.4)

Using $ad - bc \in \mathcal{O}_S^*$, $H_S(F) \leqslant H^*(F)$, $H_S(F^*) = H^*(F^*) \leqslant H^*(F) = H(f)$, we deduce that

$$\Delta_{S}(f) \geq \left(\prod_{\omega \in T} \frac{|D(F)|_{\omega}^{1/2}|ad - bc|_{\omega}^{n(n-2)/2}}{|F|_{\omega}|F^{*}|_{\omega}^{n-2}}\right)^{1/[L:K]}$$

$$= \frac{|D(F)|_{S}^{1/2}}{H_{S}(F)H_{S}(F^{*})^{n-2}}$$

$$\geq \exp\left(-\frac{(n-1)\left((n+11)\#S - 5\right)}{20 + 1/n}\right) \frac{1}{H(f)} H^{*}(F^{*})^{\frac{n}{40n+2} - n + 2}$$

$$\geq \exp\left(-\frac{(n-1)\left((n+11)\#S - 5\right)}{20 + 1/n}\right) H(f)^{-n+1 + \frac{n}{40n+2}}. \quad (8.1.5)$$

Finally, to prove (8.1.3), we have to distinguish two cases. First let $n \ge 4$ be even. Take $I = \{(1, 2), \dots, (n - 1, n)\}$. Then

$$\Lambda_{\omega} \leqslant \prod_{i=1}^{n} f_{i\omega} \prod_{\substack{1 \leqslant i < j \leqslant n \\ (i,j) \notin I}} |ad - bc|_{\omega}^{-1} f_{i\omega}^{*} f_{j\omega}^{*}$$

$$= \prod_{i=1}^{n} f_{i\omega} \left(\prod_{i=1}^{n} f_{i\omega}^{*} \right)^{n-2} |ad - bc|_{\omega}^{-n(n-2)/2}$$

$$= |F|_{\omega} |F^{*}|_{\omega}^{n-2} |ad - bc|_{\omega}^{-n(n-2)/2}.$$

Next let $n \ge 5$ be odd. Take

$$I = \{(1,2), \dots, (n-2,n-1), (n-2,n), (n-1,n)\}.$$

Then

$$\Lambda_{\omega} \leqslant \prod_{i=1}^{n-3} f_{i\omega} \prod_{n-2 \leqslant i < j \leqslant n} \left(f_{i\omega} f_{j\omega} f_{i\omega}^* f_{j\omega}^* | ad - bc|_{\omega}^{-1} \right)^{1/2} \prod_{\substack{1 \leqslant i < j \leqslant n \\ (i,j) \notin I}} |ad - bc|_{\omega}^{-1} f_{i\omega}^* f_{j\omega}^*$$

$$= \prod_{i=1}^{n} f_{i\omega} \left(\prod_{i=1}^{n} f_{i\omega}^* \right)^{n-2} |ad - bc|_{\omega}^{-n(n-2)/2}$$

$$= |F|_{\omega} |F^*|_{\omega}^{n-2} |ad - bc|_{\omega}^{-n(n-2)/2}.$$

8.2. Two lemmas 133

As a direct consequence, we obtain the following result on simultaneous root separation for various absolute values.

Corollary 8.1.2. We have

$$\prod_{\nu \in S} \min_{1 \le i < j \le n} |\gamma_i - \gamma_j|_{\nu} \ge \exp\left(\frac{-(n-1)\left((n+11)\#S - 5\right)}{20}\right) H(f)^{-n+1 + \frac{n}{40n+2}}.$$

Proof. Since the denominator of $\Delta_S(f)$ is at least 1, this is a direct consequence of Theorem 8.1.1 and the fact $|x|_S^{[L:K]} = |x|_T$.

Corollary 8.1.3.

$$\Delta_S(f) \geqslant \exp\left(-\frac{n-1}{100}\left(5n(n+7)\#S + \frac{2g_L-1}{[L:K]}\right)\right)H(f)^{-n+1+\frac{n}{42}}.$$

Proof. It is similar with proof of Theorem 8.1.1, but replace (8.1.4) by using Theorem 5.3.2.

8.2 Two lemmas

We need some preparations for the next section where we consider distances between algebraic function that are roots of different polynomials.

Let
$$K=k(t)$$
. Let $H^*(\gamma)=\prod_{\omega\in M_L}\max(1,|\gamma|_\omega)^{1/[L:K]}$ for any $\gamma\in L$ algebraic over K . This is independent of the choice of L .

Let ξ, η be distinct and algebraic over K. Let $L = K(\xi, \eta)$ and T a finite set of valuations on L. Define

$$\Delta_T(\xi,\eta) := \left(\prod_{\omega \in T} \frac{|\xi - \eta|_{\omega}}{\max(1,|\xi|_{\omega}) \max(1,|\eta|_{\omega})}\right)^{1/[L:K]}.$$

Then clearly

$$\Delta_{T}(\xi, \eta) = \left(\prod_{\omega \notin T} \frac{\max(1, |\xi|_{\omega}) \max(1, |\eta|_{\omega})}{|\xi - \eta|_{\omega}} \right)^{1/[L:K]} H^{*}(\xi)^{-1} H^{*}(\eta)^{-1}$$

$$\geqslant H^{*}(\xi)^{-1} H^{*}(\eta)^{-1}.$$

This is a type of Liouville-type inequality. Recall that for a matrix $A = (a_{ij})_{i,j}$, we have defined its ν -value $|A|_{\nu} = \max_{i,j} (|a_{ij}|_{\nu})$ for $\nu \in M_K$. In this way, we also define

$$H_S(A) = \prod_{\nu \in S} |A|_{\nu}.$$

Lemma 8.2.1. Let $F(X,Y) \in \mathcal{O}_S[X,Y]$ be a binary form of degree $n \geq 3$ with non-zero discriminant. Then for any $U \in GL(2,\mathcal{O}_S)$, we have

$$\frac{H_S(F_U)}{H_S(F)} \leqslant H_S(U) \leqslant (H_S(F)H_S(F_U))^{3/n}.$$

Proof. Let T be the set of valuations on the splitting field L lying above the valuations in S, write $F(X,Y) = a_0 \prod_{i=1}^n (\alpha_i X + \beta_i Y)$ with $a_0 \in K^*$, $\alpha_i, \beta_i \in \mathcal{O}_T$ and $F_U(X,Y) = a_0 \prod_{i=1}^n (\alpha_i^* X + \beta_i^* Y)$ with

$$(\alpha_i^*, \beta_i^*) = (\alpha_i, \beta_i)U, i = 1, \dots, n.$$

Let $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then

$$\begin{cases} a\alpha_i + c\beta_i = \alpha_i^* \\ b\alpha_i + d\beta_i = \beta_i^* \end{cases} \text{ for } i = 1, \dots, n.$$

From the non-archimedean property, it easily follows that

$$\max(|\alpha_i^*|_{\omega}, |\beta_i^*|_{\omega}) \leq |U|_{\omega} \max(|\alpha_i|_{\omega}, |\beta_i|_{\omega}) \text{ for } \omega \in T,$$

hence by Gauss' lemma we have

$$H_T(F_U) \leqslant |U|_T H_T(F),$$

which gives

$$H_S(F_U) \leqslant |U|_S H_S(F).$$

Take any three indices i, j, l and consider the system of equations

$$A\mathbf{x} = \mathbf{0},\tag{8.2.1}$$

8.2. Two lemmas 135

where $\mathbf{x} = (x_1, \dots, x_7)^{\mathrm{T}}$ and

$$A = \begin{pmatrix} \alpha_i & \beta_i & 0 & 0 & \alpha_i^* & 0 & 0 \\ 0 & 0 & \alpha_i & \beta_i & \beta_i^* & 0 & 0 \\ \alpha_j & \beta_j & 0 & 0 & 0 & \alpha_j^* & 0 \\ 0 & 0 & \alpha_j & \beta_j & 0 & \beta_j^* & 0 \\ \alpha_l & \beta_l & 0 & 0 & 0 & 0 & \alpha_l^* \\ 0 & 0 & \alpha_l & \beta_l & 0 & 0 & \beta_l^*. \end{pmatrix}$$

Put $X = \begin{pmatrix} x_1 & x_3 \\ x_2 & x_4 \end{pmatrix}$. Then

$$-x_5(\alpha_i^*, \beta_i^*) = (\alpha_i, \beta_i)X,$$

$$-x_6(\alpha_j^*, \beta_j^*) = (\alpha_j, \beta_j)X,$$

$$-x_7(\alpha_l^*, \beta_l^*) = (\alpha_l, \beta_l)X.$$

However, $D(F) \neq 0$, so X maps three pairwise non-parallel vectors to three other pairwise non-parallel vectors. Such a matrix X is unique up to a scalar if it exists. But we already know that X = U with $x_5 = x_6 = x_7 = -1$ is a solution, therefore the solution space of (8.2.1) is one-dimensional and hence for any solution there exists λ such that $U = \lambda X$. Let Δ_s be the determinant of the matrix obtained by removing the s-th column of A. We claim that $(\Delta_1, -\Delta_2, \ldots, \Delta_7)$ is a solution of the system of linear equations. To see this, we make an extra seventh row by copying an row and thus obtain a square matrix with determinant 0. By Laplace's formula, expanding this determinant along the seventh row, we immediately get the result. So $U = \lambda \begin{pmatrix} \Delta_1 & \Delta_3 \\ -\Delta_2 & -\Delta_4 \end{pmatrix}$. By the ultrametric inequality and again Laplace's formula, it is easy to see that

$$|\Delta_r|_{\omega} \leqslant \prod_{s=i,j,h} \max(|\alpha_s^*|_{\omega}, |\beta_s^*|_{\omega}) \max(|\alpha_s|_{\omega}, |\beta_s|_{\omega}), \omega \in M_L \text{ for } r = 1, 2, 3, 4.$$

Hence

$$|U|_{\omega} \leqslant |\lambda|_{\omega} \prod_{s=i,j,h} \max(|\alpha_s^*|_{\omega}, |\beta_s^*|_{\omega}) \max(|\alpha_s|_{\omega}, |\beta_s|_{\omega}) \ (\omega \in M_L).$$

Therefore, by taking the product over $\omega \in M_L$,

$$\prod_{\omega \in M_L} |U|_{\omega} \leqslant \prod_{s=i,j,h} H_L(\alpha_s, \beta_s) H_L(\alpha_s^*, \beta_s^*).$$

By taking the geometric means over all triples (i, j, h) and going back from L to K, we obtain that

$$\prod_{\nu \in M_K} |U|_{\nu} = \left(\prod_{\omega \in M_L} |U|_{\omega} \right)^{1/[L:K]}$$

$$\leqslant \left(H_K(F) H_K(F_U) \right)^{\binom{n-1}{2}/\binom{n}{3}}$$

$$= \left(H_K(F) H_K(F_U) \right)^{3/n}.$$

Since $U \in GL(2, \mathcal{O}_S)$, we have $|U|_{\nu} = 1$ for $\nu \notin S$. Further, $F, F_U \in \mathcal{O}_S[X, Y]$. Hence

$$H_S(U) \leqslant \left(H_S(F)H_S(F_U)\right)^{3/n}$$
.

Lemma 8.2.2. Let L be a finite extension of K of degree n and T the set of valuations on L above those in S. For $x \in L$, denote by σ_i , i = 1, ..., n the K-embeddings of L into its algebraic closure, with σ_1 the identity. Then for $x \in K^*$, there exists $\alpha, \beta \in \mathcal{O}_T$ such that $\frac{\alpha}{\beta} = x$ and for $F = \prod_{i=1}^n (\sigma_i(\alpha)X + \sigma_i(\beta)Y)$ we have

$$e^{-\frac{2g_L}{n}}H_S(F)^{\frac{1}{n}} \leqslant H^*(x) \leqslant H_S(F)^{\frac{1}{n}}.$$

Proof. First pick $\alpha', \beta' \in L$ such that $x = \frac{\alpha'}{\beta'}$. By Lemma 3.2.3, there is $\theta \in L^*$ such that

$$|\theta|_{\omega} \leqslant \min(\frac{1}{|\alpha'|_{\omega}}, \frac{1}{|\beta'|_{\omega}}) \text{ for } \omega \not\in T$$

 $|\theta|_{\omega} \leqslant A_{\omega} \text{ for } \omega \in T,$

where $A_{\omega} \in e^{\mathbb{Z}}, \omega \in T$ satisfy $\prod_{\omega \in T} A_{\omega} = e^{2g_L} \prod_{\omega \notin T} \max(|\alpha'|_{\omega}, |\beta'|_{\omega}).$

8.2. Two lemmas 137

Let $\alpha = \theta \alpha', \beta = \theta \beta'$. Then $\alpha, \beta \in \mathcal{O}_T$ and so $F \in \mathcal{O}_S[X, Y]$ and $x = \frac{\alpha}{\beta}$. Also, we have

$$1 \geqslant \prod_{\omega \notin T} \max(|\alpha|_{\omega}, |\beta|_{\omega})$$

$$= \prod_{\omega \notin T} |\theta|_{\omega} \prod_{\omega \notin T} \max(|\alpha'|_{\omega}, |\beta'|_{\omega})$$

$$= \frac{1}{\prod_{\omega \in T} |\theta|_{\omega}} \prod_{\omega \notin T} \max(|\alpha'|_{\omega}, |\beta'|_{\omega})$$

$$\geqslant \frac{1}{\prod_{\omega \in T} A_{\omega}} \prod_{\omega \notin T} \max(|\alpha'|_{\omega}, |\beta'|_{\omega})$$

$$= e^{-2g_{L}}. \tag{8.2.2}$$

Let M be a normal extension of K containing L, and U the set of valuations above those in S. By Lemma 1.4.1 we have

$$\prod_{\nu \notin S} |F|_{\nu} = \left(\prod_{\omega \notin U} |F|_{\mu} \right)^{\frac{1}{[M:K]}}$$

$$= \left(\prod_{\mu \notin U} \prod_{i=1}^{n} \max(|\sigma_{i}(\alpha)|_{\mu}, |\sigma_{i}(\beta)|_{\mu}) \right)^{\frac{1}{[M:K]}}$$

$$= \left(\prod_{\mu \notin U} \max(|\alpha|_{\mu}, |\beta|_{\mu}) \right)^{\frac{n}{[M:K]}}$$

$$= \left(\prod_{\omega \notin T} \max(|\alpha|_{\omega}, |\beta|_{\omega}) \right)^{\frac{n[M:L]}{[M:K]}}$$

$$= \prod_{\omega \notin T} \max(|\alpha|_{\omega}, |\beta|_{\omega}). \tag{8.2.3}$$

Combining (8.2.2) with (8.2.3) we derive that

$$e^{-2g_L} \leqslant \frac{H(F)}{H_S(F)} \leqslant 1.$$

By the product formula we have

$$H^*(x) = \left(\prod_{i=1}^n H^*(\sigma_i(x))\right)^{\frac{1}{n}}$$

$$= \left(\prod_{i=1}^n \prod_{\omega \in M_L} \max(|\sigma_i(\alpha)|_{\omega}, |\sigma_i(\beta)|_{\omega})\right)^{\frac{1}{n[L:K]}}$$

$$= \left(\prod_{\omega \in M_L} |F|_{\omega}\right)^{\frac{1}{n[L:K]}}$$

$$= H(F)^{\frac{1}{n}}.$$

This implies that

$$e^{-\frac{2g_L}{n}}H_S(F)^{\frac{1}{n}} \leqslant H^*(x) \leqslant H_S(F)^{\frac{1}{n}}.$$

8.3 A symmetric improvement of the Liouvilletype inequality

Theorem 8.3.1. Suppose ξ, η are algebraic over K. Let $L = K(\xi, \eta)$ and assume

$$[K(\xi):K] \geqslant 3, [K(\eta):K] \geqslant 3, [L:K] = [K(\xi):K][K(\eta):K].$$

Let S be a finite set of valuations on K, T_0 the set of valuations on L lying above those in S and $T \subset T_0$ such that

$$\varpi := \max_{\nu \in S} \frac{1}{[L:K]} \sum_{\substack{\omega \mid \nu \\ \omega \in T}} [L_{\omega}:K_{\nu}] < \frac{1}{3}.$$

Let g_1, g_2 be the genera of $K(\xi)$ and $K(\eta)$ respectively. Then

$$\Delta_T(\xi,\eta) \geqslant C_5^{-1} \big(H^*(\xi) H^*(\eta) \big)^{-1+\vartheta},$$

where $\vartheta = \frac{1-3\varpi}{717(1+3\varpi)}$ and

$$C_5 = \exp\left(\frac{422(m+n-5+2g_1+2g_2)}{717} + (4m+4n+433)\frac{\#S}{717} + (m+n)(m+n-5)(1-\vartheta)\right).$$

Proof. Assume $[K(\xi):K]=m, [K(\eta):K]=n$. Then [L:K]=mn. Without loss of generality, suppose $\nu_{\infty} \in S$. For if $\nu_{\infty} \notin S$, then adding ν_{∞} to S does not affect ϖ . Let $\sigma_1, \ldots, \sigma_m$ and τ_1, \ldots, τ_n be the K-isomorphic embeddings of $K(\xi)$ and $K(\eta)$ respectively into M.

By Lemma 8.2.2 there are $\alpha, \beta \in K(\xi)$ and $\gamma, \delta \in K(\eta)$ that are integral over \mathcal{O}_S such that $\xi = \frac{\alpha}{\beta}, \eta = \frac{\gamma}{\delta}$, and the corresponding binary forms $F(X,Y) = \prod_{i=1}^{m} (\sigma_i(\alpha)X + \sigma_i(\beta)Y), G(X,Y) = \prod_{j=1}^{n} (\tau_j(\gamma)X + \tau_j(\delta)Y)$ satisfy

$$e^{-\frac{2g_L}{m}} H_S(F)^{\frac{1}{m}} \leqslant H^*(\xi) \leqslant H_S(F)^{\frac{1}{m}},$$

$$e^{-\frac{2g_L}{n}} H_S(G)^{\frac{1}{n}} \leqslant H^*(\eta) \leqslant H_S(G)^{\frac{1}{n}}.$$
(8.3.1)

Moreover, the assumption implies that ξ, η are not conjugate over K and hence F, G are irreducible and FG is square-free. By Theorem 7.5.1, there exists $U \in GL(2, \mathcal{O}_S)$ such that

$$|R(F,G)|_S \geqslant C' H_S(G_U)^{\frac{m}{717}} H_S(F_U)^{\frac{n}{717}},$$
(8.3.2)

where

$$C' = \exp\left(-\frac{422mn(m+n-5+2g_1+2g_2)}{717} - mn(4m+4n+433)\frac{\#S}{717}\right).$$

Notice that

$$F_U(X,Y) = \prod_{i=1}^{m} (\sigma_i(\alpha')X + \sigma_i(\beta')Y),$$

$$G_U(X,Y) = \prod_{j=1}^{n} (\tau_j(\gamma')X + \tau_j(\delta')Y),$$

where

$$(\alpha', \beta') = (\alpha, \beta)U, (\gamma', \delta') = (\gamma, \delta)U.$$

Let $V \in GL(2, \mathcal{O}_S)$ be the inverse of U. Then

$$\alpha\delta - \beta\gamma = (\det V)(\alpha'\delta' - \beta'\gamma'),$$

$$\max(|\alpha|_{\omega}, |\beta|_{\omega}) \leq |V|_{\omega} \max(|\alpha'|_{\omega}, |\beta'|_{\omega}),$$

$$\max(|\gamma|_{\omega}, |\delta|_{\omega}) \leq |V|_{\omega} \max(|\gamma'|_{\omega}, |\delta'|_{\omega}).$$

For $\omega \in M_L$, put

$$\Delta_{\omega}(\xi, \eta) := \frac{|\xi - \eta|_{\omega}}{\max(1, |\xi|_{\omega}) \max(1, |\eta|_{\omega})},$$

$$\Delta'_{\omega}(\xi, \eta) := \frac{|\alpha'\delta' - \beta'\gamma'|_{\omega}}{\max(|\alpha'|_{\omega}, |\beta'|_{\omega}) \max(|\gamma'|_{\omega}, |\delta'|_{\omega})}.$$

Then $\Delta_{\omega}(\xi,\eta) \leq 1, \Delta'_{\omega}(\xi,\eta) \leq 1$. From what we mentioned above we have

$$\Delta_{\omega}(\xi, \eta) = \frac{|\alpha\delta - \beta\gamma|_{\omega}}{\max(|\alpha|_{\omega}, |\beta|_{\omega}) \max(|\gamma|_{\omega}, |\delta|_{\omega})}$$

$$\geqslant \frac{|\det V|_{\omega} |\alpha'\delta' - \beta'\gamma'|_{\omega}}{|V|_{\omega}^{2} \max(|\alpha'|_{\omega}, |\beta'|_{\omega}) \max(|\gamma'|_{\omega}, |\delta'|_{\omega})}$$

$$= \frac{|\det V|_{\omega}}{|V|_{\omega}^{2}} \Delta'_{\omega}(\xi, \eta)$$

$$= \frac{|\det V|_{\nu}^{[L_{\omega}:K_{\nu}]}}{|V|_{\nu}^{2[L_{\omega}:K_{\nu}]}} \Delta'_{\omega}(\xi, \eta).$$

Since $|\det V|_{\nu} \leq |V|_{\nu}^2$ for any $\nu \in M_K$ and $V \in \mathrm{GL}(2,\mathcal{O}_S)$, we derive that

$$\prod_{\omega \in T} \Delta_{\omega}(\xi, \eta) \geqslant \prod_{\nu \in S} \prod_{\substack{\omega \in T \\ \omega \mid \nu}} \left(\frac{|\det V|_{\nu}}{|V|_{\nu}^{2}} \right)^{[L_{\omega}:K_{\nu}]} \prod_{\omega \in T} \Delta'_{\omega}(\xi, \eta)$$

$$\geqslant \prod_{\nu \in S} \left(\frac{|\det V|_{\nu}}{|V|_{\nu}^{2}} \right)^{[L:K]\varpi} \prod_{\omega \in T} \Delta'_{\omega}(\xi, \eta)$$

$$= \frac{1}{H_{S}(V)^{2[L:K]\varpi}} \prod_{\omega \in T} \Delta'_{\omega}(\xi, \eta).$$

By Lemma 8.2.1 we have

$$H_S(V) \leqslant (H_S(F_U)H_S(F_{UV}))^{3/m}$$

= $(H_S(F)H_S(F_U))^{3/m}$,

and

$$H_S(V) \leqslant (H_S(G)H_S(G_U))^{3/n},$$

and from these inequalities we deduce that

$$\prod_{\omega \in T} \Delta_{\omega}(\xi, \eta) \geqslant \left(\frac{1}{H_{S}(F)^{1/m} H_{S}(G)^{1/n} H_{S}(F_{U})^{1/m} H_{S}(G_{U})^{1/n}}\right)^{3[L:K]\varpi} \prod_{\omega \in T} \Delta_{\omega}'(\xi, \eta).$$

By taking $\varepsilon = \frac{1}{717(1+3\varpi)} < 1$ and

$$H = H_S(F)^{1/m} H_S(G)^{1/n}, H' = H_S(F_U)^{1/m} H_S(G_U)^{1/n},$$

we conclude that

$$\prod_{\omega \in T} \Delta_{\omega}(\xi, \eta) \geqslant (HH')^{-3[L:K]\varepsilon\varpi} \prod_{\omega \in T} \left(\Delta_{\omega}(\xi, \eta)^{1-\varepsilon} \Delta_{\omega}'(\xi, \eta)^{\varepsilon} \right)
\geqslant (HH')^{-3mn\varepsilon\varpi} \prod_{\omega \in T_0} \left(\Delta_{\omega}(\xi, \eta)^{1-\varepsilon} \Delta_{\omega}'(\xi, \eta)^{\varepsilon} \right) (8.3.3)$$

However, since $[L:K] = [K(\xi):K][K(\eta):K]$ we have

$$R(F,G) = \prod_{i=1}^{m} \prod_{j=1}^{n} \left(\sigma_i(\alpha) \tau_j(\delta) - \sigma_i(\beta) \tau_j(\gamma) \right) = N_{L/K}(\alpha \delta - \beta \gamma).$$

This implies that

$$|R(F,G)|_{\nu} = \prod_{\omega|\nu} |\alpha\delta - \beta\gamma|_{\nu} \text{ for } \nu \in M_K.$$

Similarly to (8.2.3), we have $H_S(F) = H_{T_0}(\alpha, \beta)^{\frac{m}{[L:K]}}, H_S(G) = H_{T_0}(\gamma, \delta)^{\frac{n}{[L:K]}}$.

Combining this with (8.3.2) we deduce that

$$\prod_{\omega \in T_{0}} \Delta_{\omega}(\xi, \eta) = \frac{|R(F,G)|_{S}}{H_{T_{0}}(\alpha, \beta)H_{T_{0}}(\gamma, \delta)}$$

$$= \frac{|R(F,G)|_{S}}{\left(H_{S}(F)^{1/m}H_{S}(G)^{1/n}\right)^{[L:K]}}$$

$$\geqslant \exp\left(-\frac{422mn(m+n-5+2g_{1}+2g_{2})}{717} - mn(4m+4n+433)\frac{\#S}{717}\right) \times \frac{H_{S}(G_{U})^{\frac{m}{717}}H_{S}(F_{U})^{\frac{n}{717}}}{\left(H_{S}(F)^{1/m}H_{S}(G)^{1/n}\right)^{[L:K]}}$$

$$= \exp\left(-\frac{422mn(m+n-5+2g_{1}+2g_{2})}{717} - mn(4m+4n+433)\frac{\#S}{717}\right) \times \left(\frac{\left(H_{S}(G_{U})^{\frac{1}{n}}H_{S}(F_{U})^{\frac{1}{m}}\right)^{\frac{1}{717}}}{H_{S}(F)^{1/m}H_{S}(G)^{1/n}}\right)^{mn} \times \left(\frac{\left(H_{S}(G_{U})^{\frac{1}{n}}H_{S}(F_{U})^{\frac{1}{m}}\right)^{\frac{1}{717}}}{H_{S}(F)^{1/m}H_{S}(G)^{1/n}}\right)^{mn} . \tag{8.3.4}$$

Similarly, we have

$$\prod_{\omega \in T_{0}} \Delta'_{\omega}(\xi, \eta) = \frac{|R(F_{U}, G_{U})|_{S}}{H_{T_{0}}(\alpha', \beta') H_{T_{0}}(\gamma', \delta')}$$

$$= \frac{|R(F, G)|_{S}}{\left(H_{S}(F_{U})^{1/m} H_{S}(G_{U})^{1/n}\right)^{[L:K]}}$$

$$\geqslant \exp\left(-\frac{422mn(m+n-5+2g_{1}+2g_{2})}{717} - mn(4m+4n+433)\frac{\#S}{717}\right) \times$$

$$\times \left(\frac{\left(H_{S}(G_{U})\frac{1}{n} H_{S}(F_{U})\frac{1}{m}\right)^{\frac{1}{717}}}{H_{S}(F_{U})^{1/m} H_{S}(G_{U})^{1/n}}\right)^{mn}.$$
(8.3.5)

Substituting (8.3.4) and (8.3.5) into (8.3.3), we conclude that

$$\begin{split} \prod_{\omega \in T} \Delta_{\omega}(\xi, \eta) &\geqslant (HH')^{-3mn\varepsilon\varpi} \frac{H'^{\frac{mn}{717}}}{H^{mn(1-\varepsilon)}H'^{mn\varepsilon}} \times \\ &\times \exp\left(-\frac{422mn(m+n-5+2g_1+2g_2)}{717} - mn(4m+4n+433)\frac{\#S}{717}\right) \\ &= \exp\left(-\frac{422mn(m+n-5+2g_1+2g_2)}{717} - mn(4m+4n+433)\frac{\#S}{717}\right) H^{mn(-1+\vartheta)} \\ &\geqslant \exp\left(-\frac{422mn(m+n-5+2g_1+2g_2)}{717} - mn(4m+4n+433)\frac{\#S}{717}\right) \times \\ &\times \left(H^*(\xi)H^*(\eta)e^{2g_L(\frac{1}{m}+\frac{1}{n})}\right)^{mn(-1+\vartheta)}. \end{split}$$

where the equality is because of the choice of ε , which makes the exponent of H' to be 0, and the last inequality is due to (8.3.1). This implies that

$$\Delta_T(\xi,\eta) \geqslant D^{-1} \Big(H^*(\xi) H^*(\eta) \Big)^{-1+\vartheta},$$

where

$$D = \exp\left(\frac{422(m+n-5+2g_1+2g_2)}{717} + (4m+4n+433)\frac{\#S}{717} + 2g_L(\frac{1}{m} + \frac{1}{n})(1-\vartheta)\right).$$

Notice that $\vartheta < 1$ and by (5.1.4),

$$\frac{2g_L - 2}{mn} \leqslant m + n - 6,$$

we conclude that $D \leq C_5$ where

$$C_5 = \exp\left(\frac{422(m+n-5+2g_1+2g_2)}{717} + (4m+4n+433)\frac{\#S}{717} + (m+n)(m+n-5)(1-\vartheta)\right).$$