The handle http://hdl.handle.net/1887/36535 holds various files of this Leiden University dissertation

Author: Jing Shen
Title: Electrocatalytic reduction of CO2 and nitrate on immobilized metal porphyrins
Issue Date: 2015-12-09
Chapter 3

DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

ABSTRACT

The electrochemical reduction of CO₂ is a promising way to store renewable energy in fuels or other chemicals. However, the high overpotential and low efficiency of the reaction hinder the development of the area. More work is needed on the investigation of the mechanism in order to obtain new insights into developing effective catalysts. We report here a density functional theory (DFT) study of the electrochemical reduction of CO₂ on a cobalt porphyrin. The CO₂ anion adduct is demonstrated to be the key intermediate formed only when the cobalt center of the complex is in the CoI oxidation state. We find that formic acid can be produced as minor product through [Co(P)-(OCHO)]⁺ as intermediate, while CO is the main product through a decoupled electron-proton transfer. CH₄ is produced as minor product from subsequent CO reduction by concerted proton-coupled electron transfer assumed at each electrochemical step. Our theoretical interpretations are consistent with the experimental results presented in Chapter 2, and give deeper insights into the mechanism of the CO₂ electrochemical reduction on cobalt porphyrin complexes.

This chapter has been submitted as: Jing Shen, Manuel J. Kolb, Adrien J. Göttle and Marc T.M. Koper. J. Phys. Chem.C.
3.1. Introduction

In nature, carbohydrates are produced from CO$_2$ from the atmosphere by utilizing sunlight through photosynthesis. The fossil energy crisis and current excess emissions of CO$_2$ urgently call for a new utilization of CO$_2$. Mimicking natural photosynthesis, the electrochemical reduction of CO$_2$ is a promising method to store renewable energy such as sunlight and wind into small organic molecules. Different kinds of products can be produced, such as carbon monoxide (CO), formic acid (HCOOH), formaldehyde (HCHO), methanol (CH$_3$OH), methane (CH$_4$) and even ethylene (C$_2$H$_4$) in aqueous solution1,4, or oxalate (C$_2$O$_4^{2-}$) mainly in aprotic solvents. However, there are still challenges in the electrochemical reduction of CO$_2$. One important challenge is that the reaction requires considerable overpotentials, especially those reactions yielding products that need the transfer of more than 2 electron5. The other challenge is that the hydrogen evolution reaction is a competing reaction with CO$_2$ reduction, which often leads to hydrogen as dominant product (as hydrogen is a 2-electron product).

Different kinds of catalysts have been utilized for the electrochemical reduction of CO$_2$ in order to reduce the reaction overpotential. Hori et al. have made a comprehensive investigation on different metal catalysts which give different products depending on the nature of the metal and the experimental conditions6. Copper, for which a reasonable understanding of the mechanism has been obtained, is an exceptional catalyst which gives CH$_4$, C$_2$H$_4$ and ethanol (CH$_3$CH$_2$OH) as main products7,9. Metal complexes, especially with phthalocyanine, porphyrin and cyclam ligands$^{10-12}$, have also been used as catalysts for the electrochemical reduction of CO$_2$ and mainly lead to 2-electron transfer products, such as CO, HCOOH and C$_2$O$_4^{2-}$ (in aprotic solvents). The speculation on the first intermediate is that it is either a CO$_2^-$ anion radical which gains a proton or a CO$_2$ that inserts into metal hydride to form -OCHO9. Tripkovic et al.13 have performed first-principles density functional theory calculations on the possible product spectrum of the electrochemical reduction of CO$_2$ and CO on metal-functionalized porphyrin-like graphene surfaces. HCOOH was found by them as an end product whereas CO is a precursor for more reduced products like methanol and methane. They claim that M-COOH is the key intermediate for
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

further reaction, which is competing with M-H. Nielsen and Leung et al.¹⁴,¹⁵ have investigated in detail the formation of CO on a Co-based porphyrin. Their mechanism involves the [Co(P)-(CO₂)]²⁻ intermediate which is subsequently protonated to give [Co(P)-(COOH)]⁻. The latter species readily decomposes to give CO. In Chapter 2 we studied the pH dependence of the electrochemical reduction of CO₂ on a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode¹⁶. From our results, we proposed a mechanism in which a CO₂⁻ anion adduct forms first. The CO₂⁻ anion adduct will subsequently be protonated by a water molecule to give the [Co(P)-(COOH)]⁰ intermediate. The [Co(P)-(CO)]⁰ intermediate which is formed next will either form CO as a product or be further reduced to CH₄ through a series of concerted proton-electron transfer reactions.

In this Chapter, we report on a theoretical study using DFT calculations of the electrochemical reduction of CO₂ on cobalt porphyrin complex (the simplest porphyrin ligand) in aqueous solution. Our calculations emphasize the anionic character of the CO₂ when bound to the reduced [Co¹P]⁻ complex. This is due to the charge transfer from the metal center to the substrate upon binding. The formation of CO takes place through the [Co(P)-(COOH)]⁰ intermediate. The [Co(P)-(OCHO)] intermediate, which gives formic acid as minor product, competes with the formation of the [Co(P)-(COOH)] intermediate. The formation of CH₄ and CH₃OH is studied assuming concerted proton-electron transfer steps.

3.2. Computational Method

DFT calculations have been performed with the Amsterdam Density Functional program (ADF 2014.06)¹⁷. The revised version of Perdew-Burke-Ernzerhof exchange-correlation functional RPBE¹⁸ was used together with Grimme’s dispersion correction D3¹⁹. For all atoms, a Slater type basis set of triple-ζ quality including a polarization function has been used (TZP)²⁰. Geometries have been fully optimized with the conductor-like screening model (COSMO)²¹-²³ to account for solvation effects (water). We have considered both the low spin and high spin electronic configurations for each geometry. In all cases, the energy of the low spin configuration is the lowest except for the [Co(P)-(OCHO)]⁻ intermediate. The [Co(P)-(CH₂)]⁻ intermediate is only stable at high spin state (shown in Appendix B
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

Table 1). Frequency calculations have been performed to check that the optimized geometries are actual minima on the potential energy surface and also to obtain Gibbs free energies. Since the analytical frequencies are not available in ADF when using D3 dispersion corrections, we used the finite temperature and entropic contributions computed from geometries optimized at the RPBE/TZP/COSMO calculation level and added these contributions to the energy computed with RPBE-D3. The standard equilibrium potentials of electrochemical steps were computed using the computational hydrogen electrode (CHE) model. This model allows treating electrochemical reactions as if they were chemical by making use of the definition of the standard hydrogen electrode. However, the CHE model is restricted to steps in which an equal number of protons and electrons are transferred (concerted proton-electron transfer). The values of the corresponding potentials for concerted proton-electron transferred reactions are calculated as:

$$E^0 = -\Delta G/e$$

Where ΔG is the free energy change of the reaction, e is the elementary charge, and E^0 is the standard equilibrium potential.

3.3. Results and Discussion

3.3.1. Activation of CO₂ to CO and HCOOH

In our recent work, we found that the onset potential of both the CO₂ reduction and hydrogen evolution reaction (-0.5 V) is very close to the redox potential of the Co²⁺/Co¹⁺ couple (-0.6 V). This strongly indicates that the catalytic reaction is triggered by the initial reduction of the catalyst. We also concluded that CO₂ is activated by its association with the reduced catalyst [Co¹⁺P]. Based on literature and their own DFT calculations, Nielsen and Leung et al. have also concluded that CO₂ binds to the Co¹ oxidation state of the porphyrin. In the adduct [Co(P)-(CO₂)]⁺ that is formed, we assumed that CO₂ is bound as a CO₂⁻ anion which explains the basicity of this species. Therefore, in the mechanism we proposed from the experiment, the first electro-proton pair addition goes through a
DFT Study on the Mechanism of the Electrochemical Reduction of CO$_2$ Catalyzed by Cobalt Porphyrin

decoupled electron transfer-proton transfer (ET-PT) mechanism. The corresponding sequence of reactions proposed is therefore:

\[[\text{CoP}]^0 + e^- \rightarrow [\text{CoP}]^- \] (1)

\[[\text{CoP}]^- + \text{CO}_2 \rightarrow [\text{Co(P)}-(\text{CO}_2)]^- \] (2)

We have investigated the basic character of the [Co(P)-(CO$_2$)]0 and [Co(P)-(CO$_2$)]$^-$ adduct as they are the key point to explain the pH dependence of the CO$_2$ reduction observed experimentally. To do so, we have performed a Mulliken charge analysis of [CoP]0 and [CoP]$^-$ intermediates to know where the additional charge is localized after reduction of the catalyst (eq. 1), and of the [CoP-CO$_2$]$^-$ adduct to address how the charge is redistributed upon the binding of CO$_2$ to the reduced catalyst (eq. 2). Both [CoP]0 and [CoP]$^-$ complexes have a planar structure. The Co-N distance in [CoP]$^-$ is 1.976 Å which is slightly shorter than in [CoP]0, which is 1.994 Å. The Mulliken charge on cobalt center is +0.87 for [CoP]0 and +0.47 for [CoP]$^-$, respectively, while the charges on nitrogen atoms are -0.52 for both molecules. Therefore, in the negatively charged porphyrin, a significant amount of the extra negative charge is located on cobalt atom. We have tried to optimize CO$_2$ adduct with both the neutral and negatively charged complex. Any attempt to optimize CO$_2$ adduct with the neutral complex failed, which indicates that the neutral CO$_2$ adduct is not stable (no minimum on the potential energy surface). By contrast, we managed to optimize the negatively charged CO$_2$ adduct, [Co(P)-(CO$_2$)]$. It is important to note that the negatively charged CO$_2$ adduct is not stable without solvation. This can be explained by the fact that a significant charge transfer from the cobalt atom to the CO$_2$ adduct occurs upon the binding process, and the presence of a polar solvent is crucial to stabilize this charge transfer process. However, the binding process is almost thermoneutral (see Table 1). The structure of [Co(P)-(CO$_2$)]$^-$ complex is shown in Figure 1(a) and some relevant parameters have been collected in Table 1. In the [Co(P)-(CO$_2$)]$^-$ molecule, the distances of Co-N bonds are 1.991 Å which are elongated compared to the bare [CoP]$^-$ molecule. This may indirectly indicate that the electronic state of cobalt center has been changed upon CO$_2$ binding, back to the length of the Co-N bonds corresponding to the neutral [CoP]0 complex.

43
with CoII oxidation state. The bond angle of O-C-O of adsorbed CO$_2$ is 134°. Compared to the bond angle of O-C-O of the CO$_2$ gas-phase molecule (180°), adsorbed CO$_2$ is bent. The calculated bond angle of O-C-O for CO$_2^-$ in the gas phase is 133.2°. The Mulliken charge analysis for [Co(P)-(CO$_2$)]$^-$ and gas-phase CO$_2$ molecule shows that the charge on the cobalt atom in [Co(P)-(CO$_2$)]$^-$ molecule is +0.62, and the total charge on CO$_2$ molecule is -0.61 with +0.56 on the C atom and -0.59 on the two O atoms. Compared to the charge centered on cobalt atom of [CoP] (+0.47) and on the carbon and oxygen atoms of gas CO$_2$ molecule, +0.87 and -0.44, respectively, we conclude that there is partial charge transfer from cobalt atom to CO$_2$ in [Co(P)-(CO$_2$)]$^-$ complex. In order to understand the origin of this charge transfer, we have analyzed the interaction between the cobalt and CO$_2$ using the molecular orbitals. Figure 1b shows the space representation of the HOMO-2 orbital which is responsible for most of the interaction between the cobalt and CO$_2$ in the [Co(P)-(CO$_2$)]$^-$ molecule. In Appendix B Figure 2, we also show the space representations of the first four highest occupied molecular orbitals (HOMO to HOMO-3). From Appendix B Figure 2 we can see that HOMO and HOMO-1 orbitals show no interaction between cobalt atom and CO$_2$ adduct, while HOMO-2 and HOMO-3 orbitals contribute to the interaction with different orientation. Therefore, we mainly focus on the HOMO-2 orbital to obtain an insight into the charge transfer. From Figure 1b we see that this orbital consists of the mixing of a hybrid metallic orbital (d_{z^2} (ca. 20%) and $d_{x^2-y^2}$ (ca. 40%)) with the antibonding π* orbital (ca. 40%) of CO$_2$. Therefore, the orbital interaction between the Co d state and the CO$_2$ π* orbital leads to a net charge delocalization from the cobalt to the CO$_2$. A similar conclusion was reached by Meshtisuka et al. who suggested that the occupied d_{z^2} orbital of the metal atom of a phthalocyanine complex plays an important role in the activation of CO$_2$.

To unravel the details of the mechanism of the CO$_2$ reduction to CO, we have first computed the equilibrium potential of the reaction step where the binding of the substrate and both the proton and electron addition are concerted (shown in Table 2).

$$[\text{CoP}]^0 + \text{CO}_2 + \text{H}^+ + e^- \rightarrow [\text{CoP-COOH}]^0$$

(3)
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

Table 1: Binding of CO₂ to [CoP] including solvation.

<table>
<thead>
<tr>
<th>ΔG/ eV</th>
<th>q_CO₂ *</th>
<th>q_Co *</th>
<th>θ_COO/° *</th>
<th>r_Co-N/Å *</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>-0.61 (0)</td>
<td>0.62 (0.47)</td>
<td>134 (180)</td>
<td>1.991 (1.976)</td>
</tr>
</tbody>
</table>

* The numbers in the brackets correspond to the value of the CO₂ gas molecule and [CoP]⁻ in their non-bonded state.

Figure 1 Optimized geometries of intermediates: (a) CO₂ anion adduct on [CoP]⁻, i.e., [Co(P-(CO₂)]⁻; (b) spatial representation of HOMO orbital of [Co(P)-(CO₂)]⁻; (c) negatively-charged [Co(P)-(COOH)]⁻ intermediate; (d) negatively charged [Co(P)-(OCHO)]⁻ intermediate.

The computed equilibrium potential of this reaction (-0.43 V, shown in Table 2) is similar to the onset potential found experimentally (-0.5V). Therefore, we will refer to this potential as E_onset. This indicates that the concerted pathway can proceed, based on its thermodynamics, for E_onset and more negative potentials. As mentioned, any attempts to try to optimize the neutral [Co(P)-(CO₂)]⁻ adduct invariably resulted in the dissociation of CO₂ from the complex. In contrast, we managed to optimize the anionic [Co(P)-(CO₂)]⁻ adduct.
Furthermore, we have checked how the energy of the neutral and anionic complexes
[Co(P)-(CO$_2$)] varies as the CO$_2$ approaches the metallic center at large Co-C(CO$_2$) distances
(shown in Appendix B Figure 1). To do so, we have created constrained structures
 corresponding to the optimized structure of the [Co(P)-(CO$_2$)]$^-$ adduct for which the Co-
C(CO$_2$) distance is elongated by 1 Å and decreased step by step the Co-C(CO$_2$) distance to its
 initial value while all other parameters were fully relaxed at each step (relaxed scan). The
 corresponding energy profiles are reported in Appendix B (Figure 1). For the anionic
 complex, the energy continues to decrease as the CO$_2$ approaches the cobalt. The binding of
 CO$_2$ to the reduced catalyst (eq. 2) is therefore a barrierless process. In contrast, the energy
 increases for the neutral complex following the same reaction coordinate ($\Delta E \sim 0.7$ eV
 when Co-C distance is elongated by 0.5 Å from its optimized value in [Co(P)-(CO$_2$)]$^-$). This
 suggests that for the neutral complex the activation energy for the concerted pathway is
 large as the transition state of this step necessarily requires the approach between CO$_2$
 and the catalyst. As a result, although the concerted pathway is possible based on its
 thermodynamics when $E_{\text{applied}} \leq -0.43$ V, it is kinetically slow or even hindered at room
temperature due to a large thermal activation barrier. In contrast, as the association of CO$_2$
 with the reduced catalyst has no thermal activation barrier (though we emphasize that this
 “barrier” is not a free energy barrier since no entropy corrections were included), the
 formation of the [Co(P)-(CO$_2$)]$^-$ adduct can readily proceed whenever the applied potential
 is suitable. The conclusion from our calculations is in agreement with what we proposed
 from the experimental results with the formation of the [Co(P)-(CO$_2$)]$^-$ intermediate.
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

Table 2: Computed equilibrium potentials for indicated reactions.

<table>
<thead>
<tr>
<th>Reaction Equation</th>
<th>E⁰/V<sub>RHE</sub> With solvation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction (3) [CoP]<sup>0</sup> + CO₂ + H<sup>+</sup> + e⁻ → [Co(P)-(COOH)]<sup>0</sup></td>
<td>-0.43</td>
</tr>
<tr>
<td>Reaction (5) [Co(P)-(CO₂)]<sup>-</sup> + H<sup>+</sup> + e⁻ → [Co(P)-(COOH)]<sup>-</sup></td>
<td>-1.01</td>
</tr>
<tr>
<td>Reaction (6) [Co(P)-(COOH)]<sup>0</sup> + H<sup>+</sup> + e⁻ → [Co(P)-(CO)]<sup>0</sup> + H₂O</td>
<td>0.16</td>
</tr>
<tr>
<td>Reaction (7) [Co(P)]<sup>0</sup> + CO₂ + H<sup>+</sup> + e⁻ → [Co(P)-(OCHO)]<sup>0</sup></td>
<td>-0.92</td>
</tr>
<tr>
<td>Reaction (8) [Co(P)-(CO₂)]<sup>-</sup> + H<sup>+</sup> + e⁻ → [Co(P)-(OCHO)]<sup>-</sup></td>
<td>-0.21</td>
</tr>
<tr>
<td>Reaction (10) [Co(P)-(OCHO)]<sup>-</sup> + H<sup>+</sup> + e⁻ → [CoP] + HCOOH</td>
<td>-0.07</td>
</tr>
<tr>
<td>Reaction (11) [Co(P)-(OCHO)]<sup>-</sup> + H<sup>+</sup> + e⁻ → [Co(P)-(OCH₂O)]<sup>-</sup></td>
<td>-1.79</td>
</tr>
<tr>
<td>Reaction (12) [CoP]<sup>-</sup> + H<sup>+</sup> + e⁻ → [Co(P)-(H)]<sup>0</sup></td>
<td>-0.23</td>
</tr>
<tr>
<td>Reaction (13) [CoP]⁻ + H<sup>+</sup> + e⁻ → [Co(P)-(H)]<sup>-</sup></td>
<td>-0.10</td>
</tr>
</tbody>
</table>

After the formation of [Co(P)-(CO₂)]⁻, the next step can be either the protonation or the hydrogenation of this reaction intermediate:

[Co(P)-(CO₂)]⁻ + H⁺ → [Co(P)-(COOH)]⁰ (4)

[Co(P)-(CO₂)]⁻ + H⁺ + e⁻ → [Co(P)-(COOH)]⁻ (5)

The structure of the [Co(P)-(COOH)]⁻ intermediate is displayed in Figure 1c. [Co(P)-(COOH)]⁰ has a similar structure as the negatively charged complex. The latter has a shorter Co-C_(COOH) bond length than the former which indicates a stronger interaction between the cobalt atom and the C_(COOH) in [Co(P)-(COOH)]⁻. Reaction step (5) has a relatively negative equilibrium potential (-1.01 V, see in Table 2), much more negative than the onset potential (-0.5 V). Therefore, the formation of the [Co(P)-(COOH)]⁻ intermediate is unlikely if the applied potential is close to the onset potential. Therefore, after formation of [Co(P)-(CO₂)]⁻, reaction (4) is likely to occur to form the neutral [Co(P)-(COOH)]⁰.
DFT Study on the Mechanism of the Electrochemical Reduction of CO$_2$ Catalyzed by Cobalt Porphyrin

intermediate. The sequence of reactions predicted by our calculations (1), (2) and (4) matches the decoupled ET-PT mechanism we proposed from the experimental results16.

After the formation of the [Co(P)-(COOH)]0 intermediate, it can be subsequently undergo the following concerted electron-proton transfer step:

\[
[\text{Co}(P)-(\text{COOH})]^0 + \text{H}^+ + e^- \rightarrow [\text{Co}(P)-(\text{CO})]^0 + \text{H}_2\text{O} \tag{6}
\]

The equilibrium potential of this reaction step is 0.16 V which indicates that it should spontaneously occur at applied potentials $E \leq E_{\text{onset}}$. The [Co(P)-(CO)]0 intermediate can either desorb CO (the binding energy of CO is -0.26 eV) or the bound CO can be further reduced to CH$_4$ (see below).

Apart from the formation of the “carboxyhydroxyl” [Co(P)-(COOH)]0 and [Co(P)-(COOH)]$^-$ intermediates, “formate-type” intermediates [Co(P)-(OCHO)]0 and [Co(P)-(OCHO)]$^-$ (the structure of [Co(P)-(OCHO)]$^-$ is shown in Figure 1d) can be produced through alternative competing reaction pathways. We assume this “formate-type” intermediate can be produced through the following reaction steps:

\[
[\text{CoP}]^0 + \text{CO}_2 + \text{H}^+ + e^- \rightarrow [\text{Co}(P)-(\text{OCHO})]^0 \tag{7}
\]

\[
[\text{CoP-CO}_2]^+ + \text{H}^+ + e^- \rightarrow [\text{Co}(P)-(\text{OCHO})]^- \tag{8}
\]

Like reaction (3), reaction step (7) is associated with the concerted substrate binding and electron-proton transfer. Its equilibrium potential is significantly negative (-0.92 V). In contrast, the equilibrium potential of reaction (8) is much less negative (-0.21 V). It is noteworthy that any attempts to optimize, from a premade structure, a [Co(P)-(OCHO)] adduct where the CO$_2$ is bonded by one oxygen to the Co center, failed and invariably resulted in the dissociation of the CO$_2$ for both neutral and anionic charge state. Like for the formation of [Co(P)-(COOH)]0 through the fully concerted pathway (reaction (3)), reaction (8) is probably kinetically hindered by a large thermal activation barrier due to the switching of the binding mode of the CO$_2$ from C-bonded to O-bonded to form [Co(P)-
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

(OCHO)]⁻. After the formation of [Co(P)-(OCHO)]⁻, the next possible steps can be either the protonation (reaction (9)) or the concerted electron-proton transfer (reaction (10)) to form formic acid as final product:

\[
[\text{Co(P)}(\text{OCHO})]^- + \text{H}^+ \rightarrow [\text{CoP}]_0 + \text{HCOOH} \tag{9}
\]

\[
[\text{Co(P)}(\text{OCHO})]^- + \text{H}^+ + e^- \rightarrow [\text{CoP}]^- + \text{HCOOH} \tag{10}
\]

Or, if no desorption occurs, the concerted electron-proton transfer can form the intermediate [Co(P)-(OCH₂O)]⁻:

\[
[\text{Co(P)}(\text{OCHO})]^- + \text{H}^+ + e^- \rightarrow [\text{Co(P)}(\text{OCH₂O})]^- \tag{11}
\]

The equilibrium potential of reaction (11) is -1.79 V which is much more negative than the experimental onset potential. This indicates that this reaction is unlikely to occur in the potential range we investigated (0 V~ -1.5 V). This is consistent with the results obtained for the electrochemical reduction of formic acid by combining on-line electrochemical mass spectroscopy (OLEMS) and cyclic voltammetry (CV) which show that this species cannot be further reduced and is thus an end product.

CO₂ could also insert into metal hydride to form the [Co(P)-(OCHO)] intermediate. The formation of the neutral and negatively charged metal hydride is through the following reactions:

\[
[\text{CoP}]^0 + \text{H}^+ + e^- \rightarrow [\text{Co(P)}(\text{H})]^0 \tag{12}
\]

\[
[\text{CoP}]^- + \text{H}^+ + e^- \rightarrow [\text{Co(P)}(\text{H})]^- \tag{13}
\]

As shown in Table 2, the equilibrium potentials for reaction (12) and (13) are -0.23 V and -0.10 V, respectively. This indicates that metal hydride is thermodynamically easy to form at \(E_{\text{onset}} \). After the formation of metal hydride, H₂ could be produced spontaneously through a concerted proton-electron transfer process with the equilibrium potential of 0.23 V and 0.10 V for the neutral and negatively charged metal hydride, respectively.
Simultaneously, CO$_2$ could insert into metal hydride as a competing reaction through a chemical step; the free energies (ΔG) for the formation of the [Co(P)-(OCHO)]0 and [Co(P)-(OCHO)]$^-$ intermediate from the final states ort reaction (12) and (13) are 0.69 eV and 0.20 eV, respectively.

Finally, as far as the competition between the formation of CO and formic acid is concerned, when the applied potential is close to the onset potential the selectivity between the two products is governed by the relative efficiencies of the reaction pathways that leads to their formation: the sequence of reactions (1), (2), (8) and (9) or (10) for formic acid formation and sequence of reactions (1), (2), (4) and (6) for CO formation. Since reaction (8) is presumably kinetically slow due to the switching of the CO$_2$ binding mode, the formation of formic acid is less competitive than the formation of CO. This is consistent with our experimental work in which we found that formic acid is produced as a minor product.

3.3.2. Reduction of CO to CH$_4$

In the previous section, we studied the formation of [Co(P)-(COOH)] which will form the [Co(P)-(CO)] as the next intermediate. This weakly bonded CO can either be released from complex to form the main product CO or be further reduced to produce CH$_4$ as minor final product. We speculate that the formation of CH$_4$ involves concerted proton-coupled electron transfer at each step. Therefore, pathways for CH$_4$ formation have been calculated using the CHE model. Figure 2 shows the most favorable pathway at two different potentials. The intermediate [Co(P)-(CO)] is first hydrogenated by proton-electron transfer to form [Co(P)-(CHO)], which will be further hydrogenated to form [Co(P)-(OCH$_2$)]. Experimentally, we confirmed that formaldehyde is probably an intermediate for CH$_4$ formation as the electrochemical reduction of formaldehyde and CO$_2$ under same conditions both give methane. [Co(P)-(OCH$_2$)] is subsequently hydrogenated to form the [Co(P)-(OCH$_3$)] intermediate. Thermodynamically [Co(P)-(OCH$_3$)] prefers to form methanol as product as compared to [Co(P)-(O)] and CH$_4$ as Tripkovic et al. have shown previously. In our experiments, no significant amount of methanol was detected. In order
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

to make sure if methanol could be an intermediate for CH₄ formation from the CO₂ electrochemical reduction, the electrochemical reduction of methanol was studied under the same conditions as CO₂ reduction in Chapter 2 by combining CV (Cyclic Voltammetry) with OLEMS. The result is shown in Figure 3, showing that hydrogen is the main product but with CH₄ as minor by-product, which must be the result of methanol reduction. Therefore, we conclude that at sufficiently negative potential methanol may be reduced to CH₄. According to our DFT calculations, application of a potential of -0.51 V (vs RHE) makes the whole pathway from CO₂ to methane downhill, as shown by the brown line in Figure 2. This applied potential of -0.51 V is the onset potential for the potential-determining step in the mechanism, which agrees quite well with the onset potential we observe in experiment. At this potential, [Co(P)-(O)] is unstable and methanol will be reduced to methane.

Competing pathways have also been calculated, as shown in Figure 2, in addition to the most favorable pathway. The formation of [Co(P)-(COH)] is a competing reaction with [Co(P)-(CHO)] formation. The free energy change calculated for [Co(P)-(COH)] formation is 2.34 eV (with a corresponding potential of -2.34 V), which indicates that [Co(P)-(COH)] formation is thermodynamically unfavorable. [Co(P)-(CH₂O)] is a competing intermediate with [Co(P)-OCH₃]. The free energy difference for the reaction from [Co(P)-(CHO)] to [Co(P)-(CH₂O)] is -0.45 eV indicating a thermodynamically favorable reaction. The subsequent protonation of [Co(P)-(CH₂O)] will sequentially form the [Co(P)-(CH₂OH)] and [Co(P)-(CH₃)] intermediates. The free energy changes for these two reactions are 0.77 eV and 0.81 eV, respectively. The high free energy changes for both intermediates indicate that the further reduction of [Co(P)-(CH₂O)] is not thermodynamically favorable. Therefore we consider [Co(P)-(CH₂O)] an unlikely intermediate in a pathway toward methane formation, though ultimately the calculation of the free energy barrier will be necessary to determine which intermediate leads to [Co(P)-(OCH₃)] and finally to methane. Both [Co(P)-(OCH₃)] and [Co(P)-(CH₂O)] may dissociate from the complex to form formaldehyde. The free energy changes for those two processes are -0.93 eV and -0.03 eV, respectively. Note that, in the CHE method, application of a potential U pulls down the free energy change of each electrochemical step by eU eV, but has no effect on the energetics of a chemical reaction.
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

Figure 2 The possible pathways for CH₄ formation from [Co(P)-(CO)]. The Figure shows the most favorable pathway with applied potential $U = 0 \text{ V}$ (orange line), and the most favorable pathway with applied potential $U = -0.51 \text{ V}$ (brown lines), which makes each step downhill. Competing pathways are shown in blue lines.
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

Figure 3 OLEMS measurements of the electrochemical reduction of methanol in 0.1 M HClO₄ solution with cyclic voltammetry, the concentration of methanol is 0.05 mol/L. (a) Cyclic Voltammetry, scan rate: 1 mV s⁻¹; (b) H₂ formation measured using OLMES, m/z=2; (c) CH₄ formation measured using OLEMS, m/z=15, the signal is not corrected from methanol. The OLEMS signal has been normalized by dividing the signal with the highest ion current. All experimental conditions as in ref16.
3.4. Conclusions

In Chapter 2, we concluded that during electrocatalytic CO\textsubscript{2} reduction a CO\textsubscript{2} anion bound to a Co-porphyrin is produced and acts as a Bronsted-base abstracting a proton from a nearby water molecule to form the [Co(P)-(COOH)] intermediate. Our DFT calculations presented here show that the CoI oxidation state is the catalytically active state for [Co(P)-(CO\textsubscript{2})]+ formation, in agreement with previous work by Nielsen and Leung14-15, and consistent with our conclusions from the experiments. In the [Co(P)-(CO\textsubscript{2})]+ complex, there is effective electron transfer from the Co atom to the CO\textsubscript{2} through the interaction between the hybrid d\textsubscript{x}2-y2 and d\textsubscript{z}2 orbital of the Co and the \(\pi^*\) antibonding orbital of the CO\textsubscript{2} such that the CO\textsubscript{2} resembles a CO\textsubscript{2} anion and Co regains some of its CoII character. Proper solvation correction appears to be very important for obtaining reliable energetics, underscoring the charge transfer character of the complex.

The formation of the [Co(P)-(COOH)]n (n=0 or -1) intermediate through the concerted electron-proton transfer step is not favorable. The equilibrium potential of the formation of [Co(P)-(COOH)]0 is slightly less negative than the experimental onset potential. However, CO\textsubscript{2} does not adsorb on the [CoP]0 intermediate. The formation of [Co(P)-(COOH)]+ has a large negative equilibrium potential, which makes it is thermodynamically unfavorable. Therefore, the formation of the [Co(P)-(COOH)]n (n=0 or -1) goes through a decoupled electron-proton transfer process, with [Co(P)-(CO\textsubscript{2})]+ as an intermediate. The [Co(P)-(COOH)]0 intermediate reacts with a further electron and proton to produce [Co(P)-(CO)], which subsequently leads to either the formation of CO or to the transfer of more electrons and protons to produce the 8-electron transfer product CH\textsubscript{4}.

The formation of the [Co(P)-(CHO)] intermediate undergoing a concerted electron-proton transfer step is a competing reaction with the formation of the [Co(P)-(COOH)] intermediate. The formation of [Co(P)-(CHO)]0 is thermodynamically difficult as the equilibrium potential of the reaction is significantly negative (-0.92V). In contrast, the equilibrium potential of the formation of the [Co(P)-(CHO)]+ intermediate is less negative than experimental onset potential. However, it is probably kinetically slow as the
binding atom of CO$_2$ changed from C-bounded to O-bounded. The formic acid can be produced from the hydrogenation or protonation of the [Co(P)-(OCHO)] intermediate. Therefore, the formic acid is a minor product compared to the CO. The further reduction of [Co(P)-(OCHO)] is difficult because of the negative equilibrium potential for the formation of [Co(P)-(OCH2O)]$, -1.79$ V. From our experiments, we indeed found only a minor amount of formic acid formation and that the formic acid was not further reduced.

The formation of CH$_4$ from CO reduction was studied using the CHE model. Formaldehyde and methanol are the competing intermediates and products with methane. Formaldehyde has already been confirmed as the intermediate for the CH$_4$ formation in our prior experiments. The formation of methanol is more favorable than the formation of CH$_4$ from our calculations at low potential, due to the weak bonding of atomic oxygen to the [CoP]. However, at more negative potential, methane is the thermodynamically preferred. The electrochemical reduction of methanol conducted by combining CV and OLEMS indeed shows the formation of CH$_4$ from methanol.

In conclusion, DFT calculations suggest a relatively consistent mechanism for the electrochemical reduction of CO$_2$ with good agreement between theory and experiment. These new insights offer opportunities to design new catalysts for the CO$_2$ electrochemical reduction.

3.5. Acknowledgements

J.S. acknowledges the award of a grant of the Chinese Scholarship Council (CSC). This work was supported by the TOP grant from the Netherlands Organization for Scientific Research (NWO). This work is part of the programme ‘CO$_2$ neutral fuels’ of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by NWO, co-financed by Shell Global Solutions International B.V..
DFT Study on the Mechanism of the Electrochemical Reduction of CO₂ Catalyzed by Cobalt Porphyrin

REFERENCES

DFT Study on the Mechanism of the Electrochemical Reduction of CO2 Catalyzed by Cobalt Porphyrin

DFT Study on the Mechanism of the Electrochemical Reduction of CO$_2$ Catalyzed by Cobalt Porphyrin