The handle http://hdl.handle.net/1887/36146 holds various files of this Leiden University dissertation.

Author: Henriksson, Patrik John Gustav
Title: Evaluating European imports of Asian aquaculture products using statistically supported life cycle assessments
Issue Date: 2015-11-12
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>Coefficient of variation, the standard deviation divided by the mean</td>
</tr>
<tr>
<td>Dispersions</td>
<td>Any form of range around a variable, resulting from inherent uncertainty, spread or unrepresentativeness</td>
</tr>
<tr>
<td>eFCR</td>
<td>Economic feed conversion ratio (FCR), total weight of feed in/wet-weight of fish out</td>
</tr>
<tr>
<td>FCR</td>
<td>Feed conversion ratio, a measurement of weight gain efficiency with several different definitions. Please see eFCR</td>
</tr>
<tr>
<td>Fish</td>
<td>Collective term for finfish, molluscs, crustaceans and other aquatic animals</td>
</tr>
<tr>
<td>Inherent uncertainty</td>
<td>Uncertainties related to the inaccuracies of measurements or model at no level of horizontal averaging</td>
</tr>
<tr>
<td>LULUC</td>
<td>Land-use and land-use change (LULUC)</td>
</tr>
<tr>
<td>PCR</td>
<td>Product Category Rules</td>
</tr>
<tr>
<td>Primary data</td>
<td>Data collected specifically for the intended study and representing relevant suppliers (UNEP 2011)</td>
</tr>
<tr>
<td>Secondary data</td>
<td>Previously published data describing processes for the intended study at different levels of aggregation and representativeness (UNEP 2011)</td>
</tr>
<tr>
<td>Spread</td>
<td>Variability around an average resulting from horizontal averaging</td>
</tr>
<tr>
<td>Unit process</td>
<td>Smallest element considered in the life cycle inventory analysis for which input and output data are quantified</td>
</tr>
<tr>
<td>Unrepresentativeness</td>
<td>Uncertainty resulting from the level of representativeness</td>
</tr>
</tbody>
</table>

Beltran A, Guinée J, Heijungs R (2014) A statistical approach to deal with uncertainty due to the choice of allocation methods in LCA. 9th Int. Conf. LCA Food. San Fransisco, USA, p 10

CEC (2013c) China Electricity Council—the electrostatic precipitator technology will become mainstream to reduce the PM2.5 from thermal power. http://www.cec.org.cn/xinwenpingxi/2013-08-01/106702.html. Accessed 1 Jan 2013

FAO (2014a) The State of World Fisheries and Aquaculture 2014. Rome, Italy

FAO (2010a) The state of world fisheries and Aquaculture 2010. Rome, Italy

Henriksson PJG, Guinée JB, Kleijn R, de Snoo GR (2012c) Life cycle assessment of Aquaculture
systems—a review of methodologies. *Int J Life Cycle Assess* 17:304–313. doi: 10.1007/s11367-011-0369-4

ISO 14040 (2006) ISO. Geneva, Switzerland

ISO 14067 (2012) Greenhouse gases — Carbon footprint of products — Requirements and
guidelines for quantification and communication. Geneva, Switzerland

Pettersen J, Hertwich EG (2008) Critical review: Life-cycle inventory procedures for long-term...

Treyer K, Bauer C (2013) Life cycle inventories of electricity generation and power supply in

Patrik JG Henriksson

Personal information

Date of birth: 14 November 1979

Place of birth: Lidingö Municipality, Stockholm County, Sweden

Patrik Henriksson's background is in marine biology, which he first studied at Lund University (Sweden), and later at University of British Columbia (Canada) and Bangor University (Wales). Patrik wrote his master thesis at the Department of System Ecology, Stockholm University. The focus of the MSc thesis was to evaluate the energy use in tropical aquaculture using Life Cycle Assessment. He started his PhD research in January 2010.

Undergraduate Studies

Marine Biology, University of British Columbia, Canada, 6 months. 2006.

System Ecology, Stockholm University, Sweden, 6 months. 2007.

Marine Biology, Bangor University, Wales, UK, 1 year. 2007-2008.

MSc

Awards

First Place - Student Oral Presentation Award, World Aquaculture Society’s AQUA 2012 conference, Prague, Czech Republic

Publications, Peer-reviewed

Publications, Others

Acknowledgements

This thesis would not have been possible without the scientific and mental support of the following people, as well as the many whom I forget to mention.

Annick Lang, Mikael Printz and Nathalie Bax for directly contributing to the aesthetics of this thesis

Jeroen Guinée, Reinout Heijungs, Geert R de Snoo, René Kleijn, Arjan de Koning, Andreu Rico, Wenbo Zhang, Sk Ahmad-Al-Nahid, Richard Newton, Lam T Phan, Froukje Kruijsen, Jesper Clausen, Zongfeng Zhang, Jintana Jaitiang, Hai M Dao, Tran Phu, Phuong Nguyen, David Little, Francis Murray, William Leschen, Liping Liu, Qigen Liu, Ranjan Das, Abdul Wahab, Mohammad Haque, Kriengkrai, Arlene Satapornvanit, Peter van Bodegom, Darren Green, Douglas Waley, Ingrid Kelling, Oai Li Chen, Meen Che Hong, reviewers, committee members and all others who directly helped with this research.

Max Troell, Michael Phillips, Malin Jonell, Nathan Pelletier, Peter Tyedmers, Friederike Ziegler, Sara Hornborg, Angel Avadi, Ian Vázquez–Rowe, Marc Metian, Jeffrey Richards, Rat-tanawan Mungkung, Joel Aubin, Erik Skontorp Hognes, Robert Parker, Steve Prescott, Aaron Shafer, Gustav Engström, Stephan Barthel, Britt Stikvoort, Carl Folke, other colleagues at the Beijer Institute, WorldFish and Stockholm Resilience Centre, and all others who gave me scientific support and inspiration.

Atiyo Ghosh, Fatima Drubi, Coen van der Giesen, Stefano Cucurachi, Laura Bertola, Jeroen Admiraal, Jiali Rui, Cilia Grebenstein, Angelica Mendoza, David Font, Benjamín Sprecher, Krijn Trimbos, Edi Wiloso, Sebastiaan Deetman, Lan Song, Oleksandra Ieromina, Kai Fang, Wenji Liao, Ether Philips, Jory Sjardijn, Susan van den Oever, Arnold Tukker, Natasha Järviö and all other CML staff.

Lastly I would like to thank all the farmers and non-farmers in Asia who took their valuable time to share their knowledge with me.