The handle http://hdl.handle.net/1887/35896 holds various files of this Leiden University dissertation.

Author: Viana de Carvalho, Rafael
Title: Computational modeling of mycobacterium infection and innate immune response in zebrafish
Issue Date: 2015-10-15
2 Modeling innate immune response to early *Mycobacterium* infection

Based on:

Abstract

In the previous chapter we presented a survey of the importance of modeling biological system and the aspects involved in the process of designing a model. In this chapter we start the modeling process by defining the biological problem, the model objective and formulate the first model based on the information collected so far. In this chapter we present a simplified model that represents only part of the biological problem. The result points out the direction of the next steps in the modeling process, and how to extend the model in order to create a more accurate model of the biological problem here defined.
2.1 Introduction

Tuberculosis (TB) is an infectious disease responsible for million deaths annually. About one third of the world’s population is infected with the pathogen that causes this disease, *Mycobacterium tuberculosis* (Mt) [129]. Most infections are controlled by the host’s immune system and remain asymptomatic. However, the Mt is capable to persist in the host inside granulomas, highly organized structures characterized by the presence of differentiated macrophages, lymphocytes and other immune cells that contain, but fail to eradicate, the pathogen [36, 81]. The key to success of Mt infection lies, at least in part, with the ability of the bacteria to proliferate inside host macrophages despite the antimicrobial properties of these cells. Some of the infecting bacteria can survive for extended periods within macrophages and in a granuloma. They establish long-term infections that may resurface later, for example when the host’s immune system is compromised due to malnutrition, HIV co-infection, or immunosuppressive treatment. Insight in the mechanisms that contribute to this long and complex relationship between pathogen and host is essential to the understanding of the fundamental aspects of TB [26].

Various animal models are used to mimic Mt pathogenesis in humans, each having their specific strengths as well as limitations. In recent years, the zebrafish has emerged as a valuable addition to mammalian models. They are genetically tractable and have an immune system with innate and adaptive branches, very similar to the human immune system. A particularly useful property is the transparency of the embryos, which allows for real-time imaging of the interaction between pathogens and host immune cells [30, 32, 80, 117]. *Mycobacterium marinum* (Mm), one of the closest relatives of Mt, is used to study mycobacterial pathogenesis in zebrafish. It causes a systemic tuberculosis-like infection in zebrafish, with the formation of structured granulomas that closely resemble those in human TB. The use of this model has recently contributed important insights into the function of the granuloma in expansion and dissemination of mycobacteria during the early stages of infection [82].

Mathematical and computational modeling provides an important additional avenue for the further exploration of disease dynamics. It offers powerful and complementary tools for the study of the host pathogen interaction. Gathering and analyzing the information from the animal model in a computational modeling process, makes it possible to describe, simulate, analyze and predict the mechanism and interactions behind the infection process in intuitive and easily analyzable terms. Agent Based Model (ABM) are a computational formalism based on rules that govern autonomous agents [7]. It can be used to model discrete as well as stochastic events in biology. Pappalardo et al. have implemented and simulated models using ABM and Cellular Automata to study the vaccine administration and immune response to cancer in mice [4, 92, 93]. Kirschner et al. have utilized ABM to model and simulate the Mt disease and the host-pathogen interaction [65, 66, 72]. They
suggest ABM as an appropriate method for exploring complex spatiotemporal systems such as granuloma formation [108]. The PN formalism has already been successfully applied on case studies in biology to create, verify and validate models. Stochastic Active Networks (SAN) forms an extended Petri net model that uses probabilistic time, and is in particular useful for performance evaluation. Tsavachiou et al. [118] have used SAN in modeling and quantitative evaluation of the biological pathways involved in menopause. They use biological pathways and experimental data in an accurate quantitative model to simulate and compare to in vivo/in vitro experiments. Peleg et al. [94] have used Colored Hierarchical Petri nets to study effects of mutations in tRNA on the protein translation. They define qualitative models of molecular function at different levels of granularity. The application domain of tRNA was chosen due the abundant literature on tRNA molecular structure as well as the diseases that relate to abnormal structure.

Regarding the mycobacterial infection process, the interaction with host-pathogen is complex and much remains unknown. Significant specific immune factors present on the mycobacterial infection process still poorly understood. To date, mathematical and computational models applied to mycobacterial infection have been used to explore specific aspects at various biological scales (e.g. intracellular, cell-cell interactions, and cell population dynamics) [65, 72, 108]. The mycobacterial infection process thus is composed of numerous sub-processes, some of which are mutually dependent; giving rises to a very complex set of interactions. A model describing the process at a dynamic level that can connect such sub-processes is missing. Therefore we take the construction of a model of the infection mechanism at a higher level of granularity as a starting point for our modeling efforts and explorations. The availability of such a model enables to connect and visualize the whole infection process. This top-down approach allows identifying, modeling and testing of the lower level processes in both qualitative and quantitative manner. The input for these lower level processes can be obtained from both empirical research and literature data.

The zebrafish model of mycobacterium infection, based on Mm infection, has been identified as very useful in the understanding of host-mycobacteria interactions during early stages of infection. This model system is used to generate experimental data that elucidate the pathogenesis as well as to transfer the findings to the human case. The perspective of analysis from in vivo/in vitro studies requires an integration layer. Therefore, experimental data can be understood in the range of complex interactions that are underlying the infection process. We intend to construct such integration layer from an in silico perspective using the Petri net formalism as a modeling method to simulate bacteria-host interactions in early stages of tuberculous granuloma formation. As indicated, our starting point is to construct such a model from a higher level of abstraction. We, therefore, have designed a PN by first identifying the dynamics of the infection process; i.e., phagocytosis of mycobacteria by macrophages, the migration of infected macrophages to deeper tissue, the growth of mycobacteria within individual macrophages, and the granuloma formation and maturation [82].

The zebras...
These processes were represented in a colored qualitative Petri net (QPNC) using the Snoopy software [54], a tool for modeling and animating/simulating hierarchical graph-based formalisms.

In our approach, we design the elements involved in the dynamics of the infection process by describing their causal relations. We have identified entities such as the zebrafish, the macrophage, the granuloma and the bacteria, in this manner the phases of the infection process are addressed. For the moment, time and probability are not considered. In this manner, our model explores the disease on a high level of abstraction, modeling the factors that are crucial to visualize the mycobacterial infection process and the early immune response. Complex processes involving cell-cell or cell-bacteria communication can be modeled in small scale process and incorporated into the model as a hierarchical layer. The model shows the cause-effect relations that trigger the infection process through a graphical representation in a manner biologists can grasp immediately. Now, as the model incorporates the process of infection, the toolbox of the biologist is extended with an approach that allows to perform “what-if” as part of the experimentation whereas, at the same time new experimental findings can be added to the model in a close collaboration between empirical and modeling scientists.

The remainder of this paper is structured as follows. In Section 2.2 we discuss the pathogenesis of the mycobacterium infection in Zebrafish in more detail and next we introduce the building blocks of the QPNC and the software that we have used to build the model. In Section 2.3 as a result, we provide a series of design considerations to come to an implementation of the model. Finally in Section 2.4 we present the conclusion and discussion.

2.2 Materials and methods

2.2.1 The zebrafish model of mycobacterial pathogenesis

The zebrafish is naturally susceptible to infections caused by \textit{Mycobacterium marinum} (\textit{Mm}), genetically closely related to \textit{Mycobacterium tuberculosis} (\textit{Mtb}). The \textit{Mm} infection shares pathological hallmarks with \textit{Mtb} infection. Like other pathogenic mycobacteria, \textit{Mm} causes chronic infection of macrophages resulting in tuberculous granulomas, making it a useful model to study mycobacterial pathogenesis [8]. Zebrafish embryos have functional innate immune cells (macrophages and neutrophils), while their adaptive immune system is not yet functional. Injected bacteria into the blood circulation or into tissue initiate the experimental infection of zebrafish embryos. Macrophages that are attracted to the site of infection take up the mycobacteria by a process called phagocytosis. Real-time imaging of infected zebrafish embryos has allowed the direct observation of the arrival of phagocytes at the infection site and their uptake of bacteria. The
macrophages are the primary cell type infected with Mm, however also infected neutrophils have been observed [6, 8] and were recently shown to play an important role in Mm infection control [130]. In Figure 2.1 an Mm infection in a zebrafish is depicted.

Figure 2.1: Microscope image of a zebrafish larva infected with Mycobacterium marinum by injection used for the study on infection progression and immune system response. Image is obtained with a Leica Stereo Fluorescence Microscope commonly used in zebrafish research. Here the microscope image is depicted with an overlay of a fluorescent channel (red) in which the bacteria are visualized. The arrows indicate granulomas that have developed after an induced infection with Mycobacterium marinum.

Inside the macrophage, bacteria can be exposed to bactericidal mechanisms and degraded in lysosomes. However, intracellular mycobacteria are predominantly distributed between the early and late phagosomal compartments, with some also escaping into the cytoplasm [22, 23]. Similar to Mtb, Mm escapes from lysosome degradation and its survival inside macrophages is facilitated through the dynamic modulation of a range of cellular processes. These include inhibition of pathways involved in the fusion of the phagosome with lysosomes, antigen presentation, apoptosis, and the activation of bactericidal responses [104, 113, 114]. Mycobacterial interference with the host signaling machinery severely compromises the immune defenses. Therefore, mycobacteria multiply inside the macrophage over time causes its death, thereby enabling further spreading of the infection.

Once it has become infected with mycobacteria, the macrophage starts to induce recruitment of uninfected macrophages. Studies have established an important role for a mycobacterial virulence factor, the ESX-1 secretion system, in the recruitment of new macrophages to granulomas and the expansion of infected macrophages [5, 25, 26]. These macrophages efficiently find and phagocytosis infected macrophages and bacteria that are released from dead cells. In this process these macrophages are getting infected too and the aggregated macrophages become activated. A transformation reflected by an increase in their size and subcellular organelles, ruffled cell membranes and enhanced phagocytic and microbicidal capabilities. A common feature of all mycobacterium granulomas is the further differentiation of the macrophages into epithelioid cells. They have tightly interdigitated cell membranes in zipper-like arrays linking adjacent cells. Those aggregates grow into organized structures that are referred to as granulomas, lumps of immune cells that surround the infection [114].
Primary granulomas are capable of disseminating infection throughout the body by egression of infected macrophages. This process suggests that granuloma macrophages constitute the major mechanism for dissemination of the infection [32]. These granulomas are the hallmark of the tuberculosis disease in both human and animal models. In Figure 2.2 a schematic representation is depicted of the early stages of the mycobacterial of the pathogenesis infection process.

![Figure 2.2](image)

Figure 2.2: Schematic representation of the early stages of the immune response to the early stages of the mycobacterial infection process. Figure is an authors’ rendition adapted from [71]

2.2.2 Computational model

Experimental research has generated a tremendous amount of insights into host-pathogen interactions that occur during mycobacterial infections. Mathematical and computational models can offer powerful and complementary methods in support for better understanding the mechanisms behind the infection process in intuitive and easily analyzable terms. Amongst these methods we can refer to modeling approaches such as Brane Calculi [15], π-Calculus [99], Agent Based Modeling (ABM) [108] and Petri nets (PN) [98]. These modeling methods can be used to describe, simulate, analyze and predict the behavior of biological system by turning what is known about the biology into equations and/or rules to describe and ultimately understand the system. Previously, we proposed a system for modeling, simulating and visualizing the *Mycobacterium* infection and granuloma formation. We discussed the basic layout and the modeling challenges for this approach.
Moreover, evaluated between computational methods the Petri net as an appropriate method for the modeling of the infection process [18].

In order to create a flexible, compact and parameterizable model, we decided to use a QPNC to model the early stages of the infection process and granuloma formation. Although standard Petri nets can be used to model parts of our problem, such as reaction processes and biochemical components, it becomes impractical to represent different levels of abstraction, when in addition, other aspects have to be taken into account such as the physical and spatial organization of the organism, from the intracellular to the intercellular level and beyond (molecular, cellular, tissues). Colored Petri nets allow the description of several similar network structures in a concise and well-defined way, providing a flexible template mechanism for network designers. In Colored Petri nets, tokens can be distinguished by their colors. This allows one to discriminate levels (molecules, metabolites, proteins, secondary substances, genes, etc.). In addition, the tokens colors can be used to distinguish between sub-populations of a species in different locations (cytosol, nucleus and so on). A formal definition of the Colored Petri nets can be found in Appendix C.

2.2.3 Software and hardware platform

Several tools are available to model biological systems using Petri nets, simulate their dynamic behavior and analyze their structure. The Snoopy software provides an extensible, adaptive and multiplatform framework to design, animate and simulate Petri nets [54]. Its design facilitates the modular implementation of our QPNC model allowing future extensions to be added through hierarchical organization of Petri nets. We have used the Snoopy software to implement and animate our net with two different operating systems (OS): Windows 7 (HP Intel core i7, 4 Gb RAM) and Mac OS 10.6 (MacBook Pro Intel core i7, 4 Gb RAM). The main difference between the two platforms is the additional features in the user-interface for the Windows implementation. The QPNC model runs with the same accuracy on both OS-versions. This illustrates the platform independency of the Snoopy software framework.

2.3 Results

We have modeled the role of the innate immune system in the early stages of a mycobacterial infection. Our approach is to provide a large-scale model that drives the infection behavior using Colored Petri net. We have defined the color sets Σ, places P, transitions T, and the initial marking I present in our $\text{QPN}^\text{C} = (\Sigma, P, T, A, C, G, E, I)$.
2.3.1 Set of color sets \(\Sigma \)

We have defined five simple color sets: Position, Individual, Status and Count; and four compound color sets: Macrophage, Bacteria, Proliferation, Granuloma composed of the basic colors sets. They represent empirical information from the infection process:

- **position**: is an integer value representing the location of a macrophage, bacteria and/or granuloma;
- **individual**: is a string value (mm, mac) used to identify bacteria and macrophages;
- **status**: is a Boolean value, it can represent the infection status (healthy/infected) of a macrophage or the saturation of a proliferation;
- **count**: is an integer value representing a threshold for the simulation;
- **Macrophage**: is composed of Position, Individual and Status colors and represents host macrophage immune cells;
- **Bacteria**: is composed of Position and Individual colors and represents \(M.\ Marinum \) bacteria that will be injected;
- **Proliferation**: is composed of Count, Individual and Status colors and represents the amount of infected aggregated macrophages;
- **Granuloma**: is composed of Position, Individual and Count colors and represents granulomas with the amount of macrophages.

2.3.2 Set of places \(P \)

The set of places of our QPN\(^C\) is defined as:

\[
P = \{ \text{Infection, ImmuneSystem, Phagocytosis, Migration, BactGrowth, Checkpoint, Condition, DeadMacrophage, RecruitmentCount, AggregationAmount, StopSignaling, Maturation, Dissemination} \}
\]

They represent population of cells and multicellular complexes that are part of our model:

- **C(Infection)={Bacteria}**: a place with the mycobacteria that intrude the host;
- **C(ImmuneSystem)={Macrophage}**: a place containing the immune cells (healthy macrophages) that will react to an infection signaling;
- **C(Phagocytosis)={Macrophage}**: a place containing the infected macrophages;
- **C(Migration)={Macrophage}**: **C(BactGrowth)={Proliferation}**: places containing information about the bacterial replication within one macrophage and its movement;
- **C(DeadMacrophage)={Macrophage}; C(AgregationAmount)={Granuloma}**: places containing dead macrophages and the aggregation of recruited healthy macrophages (granuloma);
• \(C(\text{Maturation}) = \{\text{Macrophage}\}; \quad C(\text{Dissemination}) = \{\text{count}\}:\) places containing information about the infected aggregated macrophages (intracellular bacterial spread) and the control of the infection dissemination;

• \(C(\text{Checkpoint}) = \{\text{status}\}; \quad C(\text{Condition}) = \{\text{status}\}; \quad C(\text{RecruitmentCount}) = \{\text{count}\}; \quad C(\text{StopSignaling}) = \{\text{count}\}:\) places controlling the flow of the simulation.

2.3.3 Set of transitions \(T\)

The set of transitions of our model is defined as:

\[
T = \{ \text{BacSignalling, MacSignalling, IntracellularSpread, Spread, t1, t2, t3, t4} \}
\]

They describe important events that govern the infection process, refer to the molecular interaction, signaling reaction and intracellular changes; they also regulate some thresholds that control the simulation:

• \(\text{BacSignalling}:\) represents the signaling process when bacteria reach the host;

• \(\text{MacSignalling}:\) represents the signaling process of an infected macrophage after its death (recruitment of healthy macrophages);

• \(\text{IntracellularSpread}:\) represents the bacterial replication among the aggregated macrophage in the granuloma;

• \(\text{Spread}:\) represents the dissemination of granuloma infection;

• \(t1, t2, t3 \text{ and } t4:\) represent the control-thresholds of the simulation.

2.3.4 Initial marking \(I\)

The initial marking in our model determines for each place the number and type of colored tokens initially present in the places. We have the condition markings that are fixed and used to control the process, and the example markings, which are used in our example and can be modified without changing the workflow. They are defined as:

Condition markings:

• \(I(\text{Checkpoint}) = 1'(\text{true}):\) initialized for checking if the bacterial replication inside the macrophage reaches its limits;

• \(I(\text{RecruitmentCount}) = 1'(0):\) initialized for counting the number of macrophages recruited to aggregate into the dead macrophage;

• \(I(\text{BactGrowth}) = 1'(1, \text{mm, true}):\) initialized to trigger replicating the bacteria inside the macrophage;

• \(I(\text{Dissemination}) = 1'(0):\) initialized to keep count of the dissemination of the granuloma.
• \(I(\text{Condition})=1'(\text{true}) \): initialized to enable one infected macrophage become dead and start the signaling process.

Example markings:
• \(I(\text{Infection})=1'(1,\text{mm}) + 1'(2,\text{mm}) + 1'(3,\text{mm}) \): defines the initial concentration of the mycobacteria that will intrude the host. We have defined three different positions to represent different injection sites;
• \(I(\text{ImmuneSystem})=1'(1,\text{mac},\text{false}) + 1'(2,\text{mac},\text{false}) + 1'(3,\text{mac},\text{false}) + ... + 1'(10,\text{mac},\text{false}) \): defines the initial concentration of healthy macrophages in the host. The positions and amount of healthy macrophages are empirical and used just to represent their presence in the host;

All other places are initially empty, i.e. there are no tokens at the onset.

2.3.5 Implementation and execution of the model

Our model is motivated by the biological problem discussed in Section 2.2 and it specifically focuses on the process of granuloma formation and infection dissemination. The environment of the model represents the innate immune response based on the \textit{Mycobacterium marinum} infection process in the zebrafish embryo. Although at this level, the QPNC model can be used to describe the early immune response to any kind of mycobacterial infection process. The elements of the Colored Petri net described in the previous sections represent key factors involved in the processes of infection, innate immune response, and granuloma formation. The rules of the model represent the biological interactions as described in Section 2.2.1, i.e.:

• Signaling of intruding bacteria detected by healthy macrophages followed by phagocytosis;
• Migration and intracellular bacterial replication within infected macrophages and their death;
• Recruitment and migration of healthy macrophages in response to the dead macrophage signals;
• The aggregation process and granuloma formation;
• The bacterial spread in the aggregate macrophage and the infection dissemination.

\textbf{Figure 2.3} shows the prototype model in a Colored Petri net implemented using the Snoopy. Arrows labeled with a black dot as an arrow head are so called testing arcs: they represent two arcs in opposite directions between the place and transition with an identical arc expression, however, the tokens are not consumed, just tested for their presence.
As initial conditions to our model, we have defined some numbers as boundaries to check the behavior of the net using the simulation mode in the Snoopy software. The intracellular bacterial spread is limited to a concentration of 255 bacteria. In the literature no specific information was found about the capacity of a macrophage or about its absolute position. In early stages of the zebrafish embryos it is known where the macrophages are not present [30]. For this reason we have defined 10 relative positions to represent the presence of macrophages and their movement during the infection process and granuloma formation. In order to keep the model straightforward, we also limit the concentration of aggregated macrophages (cf. Fig. 2.5). Next, we have defined a threshold concerning the infection dissemination; i.e. we limit the concentration of dissident macrophages that are released from the granuloma. Although from in vivo/in vitro experiments it seems that the dissemination is regulated by the adaptive immune system [5, 15], we have not considered this to be in the scope of our model.

The infection starts when the mycobacteria intrude the host. In our model we concentrate on three different positions of the mycobacteria \((1, \text{mm}), (2, \text{mm}), (3, \text{mm})\). Each position represents different injection sites used in the experiments with the zebrafish animal model (yolk, caudal vein or hindbrain ventricle). In our example, the bacteria are detected by the innate immune system by signals to immune cells. The model describes healthy macrophage \((1, \text{mac}, \text{false}), (2, \text{mac}, \text{false}),\)
(3, mac, false) … (10, mac, false), to take up the bacteria (phagocytosis). Figure 2.4 shows this process.

![Figure 2.4: Screenshot of the infection detection and phagocytosis process.](image)

After phagocytosis, the bacteria start to proliferate and move within the macrophage; the macrophage changes its position, moving to deep tissue while the bacteria replicate inside the macrophage. The intracellular growth of mycobacteria is modeled as bacterial multiplication until a concentration of 255; causing the death of the macrophage. Figure 2.5 depicts this process.

![Figure 2.5: Screenshot of the migration and bacterial replication within macrophage causing its death.](image)

A dead macrophage starts to signal, recruiting new healthy macrophages to take up the infected macrophage and the bacteria. In this way aggregates of immune cells are formed. The aggregates contain the bacteria but are unable to get rid of them. This process is visualized in Figure 2.6 where
a dead macrophage $1'(10, \text{mac, true})$ is recruiting new macrophages to aggregate. The recruitment of macrophages is controlled by the MacSignalling transition that stops when four healthy macrophages are recruited. The numbers of macrophages that are recruited are set such that a minimal number will give rise to the formation of a granuloma. The latter is important in the development of the infection and the disease in general. The number can be increase if a particular scenario for an in silico experiments so requires. It will not alter the general layout of the net rather create different balances. The place RecruitmentCount controls that.

![Figure 2.6: Screenshot of the dead macrophage signaling and aggregation process.](image)

As these aggregates grow, structures develop that are referred to as tuberculous granulomas, lumps of immune cells that surround the infection. Figure 2.7 shows the representation of this process in our model, where one granuloma is formed at the position 10 with a concentration of five macrophages $1'(10, \text{mac, 5})$.

![Figure 2.7: Screenshot of the granuloma formation process.](image)
The intracellular mycobacterial spread in the granuloma is visualized in our model by the process depicted in Figure 2.8. There, all five immune cells that form the granuloma on the position 10 \{5'(10, \text{mac, true})\} get infected and start the process of dissemination.

In the dissemination process, an infected macrophage leaves the granuloma structure \{3'(10, \text{mac, true})\} and starts another infection. The process repeat: moving, hosting an intracellular mycobacterial replication, dying and repeating the granuloma formation process on another position. This process is visualized in Figure 2.9.

The outcome of our model reproduces the early stages of the mycobacterial process and the innate immune response. We used the animation mode available in the Snoopy software to verify the dynamic behavior of our model. This property allows to animate the token-flow of the net as well as to observe the causality of the model and its behavior. For inspection and perusal, the animation sequence can be found at http://bio-imaging.liacs.nl/galleries/cpn-mmarinum.

2.4 Conclusion and discussion

The aim of this work is to introduce a modeling approach new to the modeling of the innate immune response in a model; this model represents the dynamic behavior of the mycobacterial infection
process. We consider our model to represent a high level of abstraction in which the infection process can be visualized in a large-scale model. We use the Petri net formalism as a formal modeling method because of its extensible, modular, easy and intuitive construction properties different from other and more broadly used modeling frameworks [49]. We have developed a high level abstraction of the infection process by designing a PN by acknowledging the major processes of the mycobacterium infection together with the basic actors that are involved in these processes.

As a result we have delivered a QPNC model that expresses, at a high level of abstraction, the details that are involved in the early stage of mycobacterial infection. Information about the mycobacterial infection process, the innate immune response and the infection dissemination can be observed in our model. Through a parameterizable net, the model assembles information about the host-pathogenesis interaction phases. It provides a visualization of the structure and dynamics of the infection process. The scalability of our model allows extension on different levels of abstraction providing the aggregation of independent and related model hierarchically i.e., gene expression pathways, molecular process, cell-to-cell interaction events, etc. In this manner allowing experiments that simultaneously track molecular, cellular, tissue, organism and population scale events. Biologists have greatly appreciated the visualization of the processes through the animation of the PN.

Several reliable tools have been developed to create and investigate qualitative and quantitative properties of Petri nets by structural analysis, simulation of time-dependent dynamic behavior and model checking. In the research presented here we have chosen the Snoopy software [54] to implement and animate our model. This software is extensible, and adaptive through support of simultaneous use of several models. Moreover, it is platform-independent. Further extensions are to investigate the quantitative properties of the process. Such can be accomplished using the Charlie tool [38] so as to verify and validate the net and further analyze our model.

A systems biology approach, integrating both modeling and experimental aspects, has much to contribute to the study of host-pathogen interactions. Biological processes that are relevant to the immune response occur at different scales or levels of resolution: i.e., molecular, cellular and tissue level [39, 40]. Development of multi-scale, multi-compartment models based on \textit{in vivo/in vitro} experimental data is essential to create a computational system that reflects this biological behavior [77]. Starting from the abstract model of the global infection process as presented in this work, future extensions can be modeled. Therefore, sub-models representing processes on tissue, cellular and molecular scale will hierarchically connect as a single model. In close collaboration with the empirical scientist and using the model, we intend to perform \textit{in silico} experiments that are otherwise impractical or not feasible \textit{in vivo} or \textit{in vitro}. Thereby, predicting results of new experiments and generate further hypotheses about the immune system response to mycobacterial infection. The QPNC model presented in this paper is the cornerstone of that process.
In summary, we have developed a straightforward model to explore the early mycobacterial infection and the immune response. Modeling the steps that regulate the infection process require further testing on both theoretical and experimental level. The results of these *in silico* experiments/findings can become the input for further analysis. It will support, for example, identification of key parameters or mechanisms, interpretation of data, or comparison of the capability of different mechanisms to (re)generate the observed data. Finally, a model that successfully describes existing experimental data may be used in the prediction of results from new experiments. It can generate further hypotheses about the immune system response to mycobacterial infection, helping to unravel the mechanisms of TB infection [91]. As indicated from the design of our QPNC, the next steps in the development of the net are to add lower level processes representing the tissue, cellular and molecular interactions relevant to the infection process. The QPNC accommodates this as hierarchical layers. Along with these layers numerical data will become available that will allow to elaborate on the quantitative aspects of this process. The interplay of hierarchical levels and quantitative information has the potential to develop to a powerful tool for the research in tuberculosis disease. Hopefully it will further mature in a paradigm for integrated research to infection diseases.