ACKNOWLEDGEMENTS

Chapter 1: The larger part of section 1.4 will also appear in Kroonenberg (1983, in press).

Chapter 2: Sections 2.1-2.4 will also appear in Kroonenberg (forthcoming); sections 2.5-2.10 are based on Kroonenberg (1981a).

Chapter 4: Sections 4.3-4.6 are based on Kroonenberg & De Leeuw (1980) reproduced by permission of the Psychometric Society.

Chapter 6: Sections 6.1-6.6 have been submitted for publication; Section 6.8 will also appear in Kroonenberg (forthcoming) in a slightly revised form.

Chapter 7: The data used in this chapter were collected within the framework of the project on TV-violence "Kritische waarneming van TV-geweld" (SVO-project 0543; principal investigator Dr. T.H.A. van der Voort). This project was supported financially by the 'Stichting voor Onderzoek van het Onderwijs (SVO)' and the 'Nederlandse Omroep Stichting (NOS)'.

Chapter 8: The material in this chapter will also appear as part of Kroonenberg (forthcoming).

Chapter 9: This chapter contains material from Osgood & Luria (1954) reproduced by permission of the American Psychological Association.

Chapter 10: This chapter contains material from Van der Kloot & Kroonenberg (1982), reproduced by permission of the editor of Multivariate Behavioral Research.

Chapter 13: The data for the Hospital Study were collected and prepared for analysis by Ms. Drs. W. Docter-de Leeuw within the framework of the project "Onderzoek naar de relatie tussen de groei van de ziekenhuisorgani-
satie en de ontwikkeling van de directiestructuur en personeelssamenstelling" (principal investigators: prof. dr. C.J. Lammers and prof. dr. H. Philipsen). This project (nr. 50-6) was supported financially by the 'Nederlandse Stichting voor Zuiver Wetenschappelijk Onderzoek (ZWO)'.

Chapter 15: I am very grateful to Mr. J. Verhoeven, registered estate agent in Leiden, who was so kind to supply the estimates for Fig. 15.3.

Appendices: The appendices will also appear in Kroonenberg (1983, in press).
APPENDICES

A.1 CLASSIFICATION OF THEORETICAL THREE-MODE PAPERS

Primarily three-mode analysis

Constrained T3 - Carroll, Pruzansky & Kruskal (1980).

Three-mode scaling - Tucker (1972a, b, 1975).

Weighted model (ALSCOMP3) - Sands (1978), Sands & Young (1980).

Closely related models/methods

CANDELINC - Carroll, Pruzansky & Kruskal (1980).

Three-mode path analysis - Lohmöller & Wold (1980).

Vaguely related models

Double principal component analysis - Bourouche & Dussaix (1975).

A.2 CLASSIFICATION OF APPLICATIONS: SUBJECT MATTER

Advertising

Buying behavior - Belk (1979)
Effectiveness for specific groups - Vavra (1972)
Product perception - Vavra (1973)
Viewer perception of advertising - Lastovicka (1981)

Developmental psychology

Changes in inkblot technique factors - Witzke (1975)
Changes in semantic differential - Lilly (1965)

Education

Achievement concepts - Knobloch (1972)
Aviation students - F.W. Snyder (1969)
Computer assisted instruction - Moonen (1978)
Educational careers - Stoop (1980)
Media usage - Lohmöller & Oerter (1979)
Multiple-cue learning - Montanelli (1972)
Novelty - Bernstein & Wicker (1969)
Serial learning - Love & Tucker (1970)
Stressful university situations - Kjerulff & Wiggins (1976)
Task solving strategies - Rowe (1979)

Evoked potentials; EEGs
- Donchin et al. (1972)
Various basic aspects of EEGs - Bartussek (1980)
Activity situations and EEGs - Bartussek & Gräser (1980), Bartussek et al. (1972)
Personality factors sensu Eysenck - Rösler (1972, 1975)

Geology
Organic extracts and elements - Hohn (1979)
Cations - Hohn & Friberg (1979)

Geography
Changes in land use - Bearwald (1976)
Changes in location of manufacturing - Cant (1971)
Spatial-temporal analysis - Chojnicki & Czyż (1976)

Law
Juvenile delinquents - Meijs (1980)

Occupational and organizational psychology; business administration
Administrative tasks - F.W. Snyder (1969)
Airline reservation agents - Inn, Hulin & Tucker (1972)
Job classification - Cornelius, Hakel & Sackett (1979)
Organizational behaviour - Frederiksen (1972), Frederiksen et al. (1972)

Personality and social psychology
<table>
<thead>
<tr>
<th>Topic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achievement concepts</td>
<td>Knobloch (1972)</td>
</tr>
<tr>
<td>Anxiousness</td>
<td>Levin (1965), Tucker (1965)</td>
</tr>
<tr>
<td>Assertiveness</td>
<td>Firth & Snyder (1979), Leah, Law & Snyder (1979)</td>
</tr>
<tr>
<td>Functional relations</td>
<td>Groves (1978)</td>
</tr>
<tr>
<td>Gift giving</td>
<td>Belk (1979)</td>
</tr>
<tr>
<td>Person stimuli</td>
<td>Davis & Grobstein (1966)</td>
</tr>
<tr>
<td>Personality trait profiles</td>
<td>Stewart (1971, 1974)</td>
</tr>
<tr>
<td>Personality traits</td>
<td>Schmitt, Coyle & Saari (1977)</td>
</tr>
<tr>
<td>Reversible figures</td>
<td>Gräser (1977)</td>
</tr>
<tr>
<td>Self-conception</td>
<td>Tzeng (1977b)</td>
</tr>
<tr>
<td>Social judgment</td>
<td>Hirshberg (1980)</td>
</tr>
<tr>
<td>Social perception</td>
<td>Imada & London (1979)</td>
</tr>
<tr>
<td>Social structure</td>
<td>MacCallum (1974b)</td>
</tr>
<tr>
<td>Subjective culture</td>
<td>Triandis (1972)</td>
</tr>
<tr>
<td>Phonetics</td>
<td></td>
</tr>
<tr>
<td>Confusion of consonants</td>
<td>Kroonenberg & De Leeuw (1980)</td>
</tr>
<tr>
<td>Politics</td>
<td></td>
</tr>
<tr>
<td>American</td>
<td>Sands (1978), Sands & Young (1980), Shikiar (1974a,b)</td>
</tr>
<tr>
<td>German</td>
<td>Rösler (1979)</td>
</tr>
<tr>
<td>Swedish</td>
<td>Sjöberg (1977)</td>
</tr>
<tr>
<td>US Senate</td>
<td>Wainer, Gruveaus & Zill (1973)</td>
</tr>
<tr>
<td>Psychiatry</td>
<td></td>
</tr>
<tr>
<td>Heart conditions</td>
<td>Walter (1976)</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>Leichner (1975)</td>
</tr>
<tr>
<td>Schizophrenicity</td>
<td>Mills & Tucker (1966)</td>
</tr>
<tr>
<td>Psychophysics</td>
<td></td>
</tr>
<tr>
<td>Size-weight illusion</td>
<td>Groves (1978)</td>
</tr>
<tr>
<td>Synesthetic thinking</td>
<td>Wicker (1966, 1968)</td>
</tr>
<tr>
<td>Sound quality</td>
<td>Gabrielsson & Sjögren (1974/75)</td>
</tr>
</tbody>
</table>
Religion

Religious attitudes - Muthén et al. (1977)

Semantic differential studies

Affective meaning systems - Snyder & Wiggins (1970)
Affective and denotative meaning - Tzeng (1972, 1975, 1977a)
Cross-cultural - Tzeng & Landis (1978)
Thesaurus - Snyder (1967)
Developmental changes - Lilly (1965)

Stimulus scaling

Adjective similarity - Tucker (1972), MacCallum (1976b)
Confusions of consonants - Kroonenberg & De Leeuw (1980)
Personality traits - Van der Kloot & Kroonenberg (1982)
Soft drinks - Cooper (1973)
Sound quality - Gabrielsson & Sjögren (1974/75)

Various psychology

Adjective similarity - Tucker (1972a), MacCallum (1976b)
Road research - Snyder & Law (1981)
Soft drinks - Cooper (1973)
Word association - Rychlak, Flynn & Burger (1979)

A.3 CLASSIFICATION OF APPLICATIONS: DATA TYPES

Semantic (or behavioral) differential scales

Time series data

Similarity type data

A.4 REFERENCES TO COMPUTER PROGRAMS

ALS/PLS

Analysis of Covariance approach
- Bentler & Lee (1978, 1979)

Orlik's Summax method
- Kohler (1980)

Three-mode scaling
- SOUPAC (1973), Redfield (1978)

Tucker's (1966a) Method I

Tucker's (1966a) Method II

Tucker's (1966a) Method III
REFERENCES

Bentler, P.M. Structural equation models in longitudinal research. In S.A. Mednick & M. Harway (Eds.), Longitudinal research in the United States, 1980.

Bus, A.G. & Kroonenberg, P.M. Reading instruction and learning to read: A longitudinal study. SOL-reeks, SOL/82-08, Department of Education, University of Groningen, Groningen, The Netherlands, 1982 (submitted for publication).

Cattell, R.B. "Parallel proportional profiles" and other principles for determining the choice of factors by rotation. Psychometrika, 1944, 9, 267-283.

Harshman, R.A. PARAFAC2: Mathematical and technical notes. UCLA Working Papers in Phonetics, 1972, 22, 31-44(a). (Reprinted by Xerox University Microfilms, Ann Arbor, Mi.; order no. 10,085)

Harshman, R.A. Determination and proof of minimum uniqueness conditions for PARAFAC1. UCLA Working Papers in Phonetics, 1972, 22, 111-117(b). (Reprinted by Xerox University Microfilms, Ann Arbor, Mi.; order no. 10,085)

Horan, C.B. Multidimensional scaling: Combining observations when individuals have different perceptual structures. Psychometrika, 1969, 34, 139-165.

Kohler, A., Das Trimod-Programm-System (TRIPSY) zur Berechnung der dreimodalen Faktorenanalyse nach Orlik, (manuscript in preparation).

Nishisato, S. Analysis of categorical data: Dual scaling and its applications. Toronto, Canada: University of Toronto Press, 1980.

Schönemann, P.H. An algebraic solution for a class of subjective metrics models. Psychometrika, 1972, 37, 3-27.

Tucker, L.R. Relations between multidimensional scaling and three-mode factor analysis. Psychometrika, 1972, 37, 3-27(a).

Van der Heijden, P. Het analyseren van verkiezingsuitslagen met behulp van correspondentieanalyse. Kwantitatieve methoden, 1982, 3(8), 19-34.

Vavra, T.G. Factor analysis of perceptual change. Journal of Marketing Research, 1972, 9, 193-199(b).

Wainer, H., Gruvaeus, G. & Blair, M. TREBIG: A 360/75 FORTRAN program for three-mode factor analysis designed for big data sets. Behavioral Research Methods and Instrumentation, 1974, 6, 53-54.

Reference notes

2. Harshmann, R.A. & DeSarbo, W.S. Connotative congruence analysis: An application of PARAFAC to the selection of appropriate spokesmen for a given brand (manuscript in preparation).

AUTHOR INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuff, 314</td>
<td></td>
</tr>
<tr>
<td>Ainsworth, 202, 204, 205, 210, 212, 213, 217, 224, 225</td>
<td></td>
</tr>
<tr>
<td>Anderson, 287</td>
<td></td>
</tr>
<tr>
<td>Appelbaum, 315</td>
<td></td>
</tr>
<tr>
<td>Aratie, 44, 56</td>
<td></td>
</tr>
<tr>
<td>Arch, 244</td>
<td></td>
</tr>
<tr>
<td>Bakker, 70</td>
<td></td>
</tr>
<tr>
<td>Bargmann, 154</td>
<td></td>
</tr>
<tr>
<td>Barnett, 172, 175</td>
<td></td>
</tr>
<tr>
<td>Bartho, 142, 143, 155, 156, 162, 294, 330</td>
<td></td>
</tr>
<tr>
<td>Bauer, 87, 88, 94</td>
<td></td>
</tr>
<tr>
<td>Bekker, 182</td>
<td></td>
</tr>
<tr>
<td>Bellman, 79</td>
<td></td>
</tr>
<tr>
<td>Bentler, 47, 49, 61, 64-67, 71, 72, 287, 288</td>
<td></td>
</tr>
<tr>
<td>Bernzetti, 165, 329</td>
<td></td>
</tr>
<tr>
<td>Berenbaum, 65, 288, 296</td>
<td></td>
</tr>
<tr>
<td>Bethlehem, 329</td>
<td></td>
</tr>
<tr>
<td>Bishop, 169, 327, 331</td>
<td></td>
</tr>
<tr>
<td>Blehar, 202</td>
<td></td>
</tr>
<tr>
<td>Bloom, 3, 20, 47, 49, 61, 63, 64, 66, 71, 72, 78</td>
<td></td>
</tr>
<tr>
<td>Bock, 71, 290</td>
<td></td>
</tr>
<tr>
<td>Bradley, 175</td>
<td></td>
</tr>
<tr>
<td>Birdgman, 288</td>
<td></td>
</tr>
<tr>
<td>Bruner, 244</td>
<td></td>
</tr>
<tr>
<td>Bus, 4, 60, 314-316, 322, 323</td>
<td></td>
</tr>
<tr>
<td>Campbell, 4</td>
<td></td>
</tr>
<tr>
<td>Carmone, 73, 330</td>
<td></td>
</tr>
<tr>
<td>Carroll, J.B., 277</td>
<td></td>
</tr>
<tr>
<td>Carroll, J.D., 3, 8-10, 37, 48, 50, 53, 55, 56, 67, 71, 73, 112, 115, 140, 163, 165, 256, 270, 330</td>
<td></td>
</tr>
<tr>
<td>Castle, 20, 53, 74, 142, 143, 149, 277, 296</td>
<td></td>
</tr>
<tr>
<td>Chang, 3, 9, 10, 50, 53, 55, 73, 112, 115, 150, 163, 256, 330</td>
<td></td>
</tr>
<tr>
<td>Chastel, 286</td>
<td></td>
</tr>
<tr>
<td>Cheadle, 228</td>
<td></td>
</tr>
<tr>
<td>Clift, 163, 247</td>
<td></td>
</tr>
<tr>
<td>Coben, 58, 113</td>
<td></td>
</tr>
<tr>
<td>Cook, 4</td>
<td></td>
</tr>
<tr>
<td>Corallia, 48, 146, 287</td>
<td></td>
</tr>
<tr>
<td>Croston, 137</td>
<td></td>
</tr>
<tr>
<td>Cronbach, 132</td>
<td></td>
</tr>
<tr>
<td>D'Enge, 91</td>
<td></td>
</tr>
<tr>
<td>De Grujitter, 26-28, 32, 34, 60, 99, 100</td>
<td></td>
</tr>
<tr>
<td>De Rivi, 149, 327, 331</td>
<td></td>
</tr>
<tr>
<td>DeSarbo, 48, 169, 190</td>
<td></td>
</tr>
<tr>
<td>Djikstra, 68</td>
<td></td>
</tr>
<tr>
<td>Dingman, 119, 274</td>
<td></td>
</tr>
<tr>
<td>Dixon, 272, 278, 332</td>
<td></td>
</tr>
<tr>
<td>Domm, 163</td>
<td></td>
</tr>
<tr>
<td>Einhorn, 212</td>
<td></td>
</tr>
<tr>
<td>Falkenberg, 165</td>
<td></td>
</tr>
<tr>
<td>Fiesberg, 149, 327, 331</td>
<td></td>
</tr>
<tr>
<td>Fischer, 290</td>
<td></td>
</tr>
<tr>
<td>Fisher, 137</td>
<td></td>
</tr>
<tr>
<td>Fong, 72</td>
<td></td>
</tr>
<tr>
<td>Gabriel, 138, 165</td>
<td></td>
</tr>
<tr>
<td>Gabrielson, 148</td>
<td></td>
</tr>
<tr>
<td>Gibson, 314</td>
<td></td>
</tr>
<tr>
<td>Gift, 33, 137, 138, 165, 328, 329, 331</td>
<td></td>
</tr>
<tr>
<td>Gilbert, 137</td>
<td></td>
</tr>
<tr>
<td>Glass, 4, 274, 286</td>
<td></td>
</tr>
<tr>
<td>Gnanadesikan, 138, 148, 170-172, 174-176, 191, 195</td>
<td></td>
</tr>
<tr>
<td>Gollob, 155-157, 142, 146</td>
<td></td>
</tr>
<tr>
<td>Goossens, 60, 202, 205, 208, 209, 212, 216</td>
<td></td>
</tr>
<tr>
<td>224, 225</td>
<td></td>
</tr>
<tr>
<td>Gottman, 6, 286</td>
<td></td>
</tr>
<tr>
<td>Gower, 139-141, 270, 276, 339</td>
<td></td>
</tr>
<tr>
<td>Grader, 148</td>
<td></td>
</tr>
<tr>
<td>Graybill, 137</td>
<td></td>
</tr>
<tr>
<td>Green, 73, 330</td>
<td></td>
</tr>
<tr>
<td>Gregory, 98</td>
<td></td>
</tr>
<tr>
<td>Grossman, X, 211</td>
<td></td>
</tr>
<tr>
<td>Grossman, K.R., 211</td>
<td></td>
</tr>
<tr>
<td>Gruveaas, 166</td>
<td></td>
</tr>
<tr>
<td>Gutman, 33, 34, 290</td>
<td></td>
</tr>
<tr>
<td>Hahn, 288</td>
<td></td>
</tr>
<tr>
<td>Haberman, 327</td>
<td></td>
</tr>
<tr>
<td>Hakstian, 287</td>
<td></td>
</tr>
<tr>
<td>Haml, 315</td>
<td></td>
</tr>
<tr>
<td>Hanke, 288</td>
<td></td>
</tr>
<tr>
<td>Harris, 146</td>
<td></td>
</tr>
<tr>
<td>Marshall, 10, 50, 53, 55, 59, 61, 65, 73, 131, 146, 143, 149, 150, 163, 208, 296</td>
<td></td>
</tr>
<tr>
<td>Harttong, 314</td>
<td></td>
</tr>
<tr>
<td>Hattie, 131</td>
<td></td>
</tr>
<tr>
<td>Hawkins, 175</td>
<td></td>
</tr>
<tr>
<td>Headrick, 314</td>
<td></td>
</tr>
<tr>
<td>Heirn, 314</td>
<td></td>
</tr>
<tr>
<td>Heise, 229</td>
<td></td>
</tr>
<tr>
<td>Heizer, 34, 71</td>
<td></td>
</tr>
<tr>
<td>Henry, 320</td>
<td></td>
</tr>
<tr>
<td>Hill, 138</td>
<td></td>
</tr>
<tr>
<td>Hogan, 315</td>
<td></td>
</tr>
<tr>
<td>Hohn, 60, 148, 166</td>
<td></td>
</tr>
<tr>
<td>Holland, 149, 327, 331</td>
<td></td>
</tr>
<tr>
<td>Horsam, 3</td>
<td></td>
</tr>
<tr>
<td>Householder, 105</td>
<td></td>
</tr>
<tr>
<td>Huber, 211</td>
<td></td>
</tr>
<tr>
<td>Hull, 288</td>
<td></td>
</tr>
<tr>
<td>Hull, 180</td>
<td></td>
</tr>
<tr>
<td>Hurley, 277</td>
<td></td>
</tr>
<tr>
<td>In, 288</td>
<td></td>
</tr>
<tr>
<td>Israel, 329</td>
<td></td>
</tr>
<tr>
<td>Isrealson, 10, 50</td>
<td></td>
</tr>
<tr>
<td>Jackson, 175</td>
<td></td>
</tr>
<tr>
<td>Jansen, K.E., 329</td>
<td></td>
</tr>
<tr>
<td>Jansen, G.G.H., 314-316, 322, 323</td>
<td></td>
</tr>
<tr>
<td>Johnson, 137</td>
<td></td>
</tr>
<tr>
<td>Jones, 60, 132</td>
<td></td>
</tr>
<tr>
<td>Jooskog, 2, 48, 66, 68, 71, 72, 276, 287, 290</td>
<td></td>
</tr>
<tr>
<td>Kaiser, 70, 155</td>
<td></td>
</tr>
<tr>
<td>Kapteljn, 73</td>
<td></td>
</tr>
<tr>
<td>Karney, 98</td>
<td></td>
</tr>
<tr>
<td>Kendall, 137</td>
<td></td>
</tr>
<tr>
<td>Kettenring, 138, 148, 170-172, 174, 175</td>
<td></td>
</tr>
<tr>
<td>Kevner, 314</td>
<td></td>
</tr>
<tr>
<td>Kroonenberg, 4, 22, 23, 70, 71, 80, 83, 84, 86, 89, 91, 92, 95, 110, 112, 142, 152, 165, 228, 244-246, 315, 323</td>
<td></td>
</tr>
<tr>
<td>Kruskal, 33, 56, 67, 71, 128-133, 136, 143, 146, 148-150, 272</td>
<td></td>
</tr>
<tr>
<td>Lamers, 4, 60, 288, 298</td>
<td></td>
</tr>
<tr>
<td>Landis, 48</td>
<td></td>
</tr>
<tr>
<td>Lastovicka, 73</td>
<td></td>
</tr>
<tr>
<td>Law, 61, 65, 131, 288</td>
<td></td>
</tr>
<tr>
<td>Lazarfeld, 330</td>
<td></td>
</tr>
<tr>
<td>Lee, 47, 49, 61, 64-67, 71, 72</td>
<td></td>
</tr>
<tr>
<td>Lewis, C., 71</td>
<td></td>
</tr>
</tbody>
</table>
SUBJECT INDEX

A
Abative centring, 142
Absolute difference, mean, 100
Accumulation point, 51, 92
Additive
models, 136, 322
mixed models with ~ terms, 128, 136-142, 314-
316, 323
Additivity, tests for non-, 137
Adjective ratings, 263-269
Adjective set, cola study, 148, 256, 259, 269
Adjusted residuals, 327
Algorithm
alternating least squares, 8, 72, 73, 89-92,
95, 96, 111, 112, 115, 116
CANDECOMP, 115, 116
non-singular transformation, 115, 116
orthonormal transformation, 111, 112
TUCKALS2, 96-99, 112
TUCKALS3, 73, 89-92
ALS (see alternating least squares)
ALSICAL, 3, 69, 256-263
average subject weight, 259
comparison with TUCKALS (SINDSCAL, 257-263
external analysis, 69, 270
4, 270
ALSCOMP, external analysis, 69, 270
Alternating least squares,
advantages, 23, 67, 68, 153, 154
algorithms, 8, 72, 73, 89-92, 95, 96, 111, 112,
115, 116
and analysis of covariance structures, 67
confirmatory, 68
exploratory, 68
inclusion of extensions, 68-71
Tucker2, 95, 96
Tucker3, 76, 86-92
ANACOR, 331
Analysis of covariance structures, 4, 8, 9-60-
66, 276, 284, 287, 293
advantages, 67, 68
Analysis of variance, 179, 314
data (anova-data), 130-132, 151, 195
decomposition of squared residuals, 82, 178,
186-189, 194-195
-first approach, 195
interactions, 137-140, 160, 195
models, 138
repeated measures, 195
residuals from, 136, 147, 172, 187, 194-196,
317, 322
and three-mode pca, 194-195
three-way main effects model, 139, 187
two-way main effects model, 322
without replications, 136-142, 195
Angles between components, 55, 109, 118, 119, 122-
124, 218-221, 240
Anova (see analysis of variance)
Approximate
decomposition of data matrix, 22, 79, 80, 173

best, 79, 80, 113
fit, 20
solution, 79, 80, 82-84
ARIMA model, 4, 286
Artificial subjects (see theoretical subjects,
246
Aspects of perceived reality, 180
Asymmetric similarity data, 3, 4, 27, 32, 41, 243-
254, 257
Attachment study, 59, 93, 132, 202-225
Autocorrelation, 286, 287
Autoregression,
first-order, 290, 292, 296, 298, 307, 310
models, processes, 71, 286, 288-298, 304-307
second-order, 296, 306, 307, 310
as structural model, 73, 292
and three-mode analysis, 294-297, 304-310
Average frontal plane in extended core matrix,
34, 37, 143, 146, 266
Average subject weight (in ALSICAL, INDSCAL,
TUCKALS) 259, 260

B
Badness-of-fit, as dependent variable, 195
Bartussek scaling, 155, 156, 162, 163, 294, 310
Bauer-Rutheburger method 87-89, 94
Bentler & Lee models, 49, 64
Between conditions covariance matrix, 67
Bilinear methods, 131
Binary marginal table, 331
Binary variable response variable, 314
Biplot graphical display, 138, 165
Bipolar scales, 3, 134, 146, 229
Bisartimism rotation, 277, 282
Blom's model, 49, 63, 64
covariance form of, 63, 65
BRAT
RIMED17, 278
AF, 278
AF, 332
AF, 263, 272
IR, 307
Body diagonal core matrix, 53, 115, 159, 297
Rounded function, 81

C
CANDECOMP, 9, 10, 49-51, 56, 57, 112, 113
algorithm, 115, 116
and correspondence analysis, 330
loss function and diagonalization, 112-117,
123
and msc-data, 132
n-mode, 73
and PARAFAC, 57-60, 69, 109, 140-141, 159
versus PARAFACI, 53, 132
Tucker's special case of, 58-60
uniqueness of solution, 56
Canonical discriminant analysis, 4, 212, 213
Canonical correlation, 269, 271, 272
Canonical regression, 263
individual differences, 270
Canonical variates, 263, 272
Cartesian product, 7
Causal modelling, 297
three-mode path analysis, ~models, 72, 287
289
Ceiling effect, 301, 319
Centering, 26, 59, 129, 135-149
combinations of, 149
comparing different, 149
consequences, 143-146
double, 26, 27, 162, 143, 147, 148, 246, 257,
259, 270, 272
interaction with standardization, j′, jk′, jk, ik′, etc., q.v.
and loglinear models, 334
and outliers, 108
overall, 142,146,148,180
reasoned, 148
reasons for, 130
recommendations, 146
and standardization, 148,149,151
types of, 142-144
Centroid, 130,146
Change processes, estimation of, 304
Changing dimensions, 247
Children, 5
normal, 277,283
pre-school, 277
primary school, 5,180,315
retarded, 277,283,284
two-year olds, 205
χ²-distance, 329
χ²-plots of residuals, 176
Chi-term, 327-330,334-339
Chronological, 177
Circular configuration, 247,251,253
Circumplex, 34
Classical MDS, 257
Clusters of individuals and rotation, 156
Cola study, 109,152,155-172
adjective set, 59,148,256,263-269
and similarity set, 269-272
Columnwise orthonormal, 22,52,55,77,82-85,152,174,175
Combination components, 293-295,308-310
variation explained by, 294
Combination mode, 7,19,144
Covariance matrix, 8,10
matrix, 7,9
Combining multivariate information, 209
Common (factor analysis), 207,287
model, 49
three-mode, q.v.
Communalities, 61,290
Compact set, 81
Completely crossed design, 68,195
Component(s), 10,12,31,145
analogue of covariance matrix, 72
correlations between (see components, oblique)
derived from different centring, 146,149
interpretations, 154-156,254
labelling, 154,161,162,209
models, 49,52-57
two-way reduced, 49-51,54-57,76,152
three-way reduced, 49-54,76,152
number of, 32,22
oblique, 55,109,118-124,277-281,340
scaling of, 155,310
simple structure in, 108,155
Component scores, 24,41,42,162,165-167
in applications, 62,219,220
and joint plots, 24,166
and longitudinal data, 24,165,310
and mixed-mode matrices, 167
Component weights, 10,152-154
standardized, 11,12,35,154,158
Concept (semantical differential), 228,229
distances, 230
correlation, 238-240
Conditional approach to interpreting core matrices, 161
Conditional least squares, 67,86
Confidence bands in joint plots, 190-192,252
Confirmatory models, 51
Constraints on parameters, 61,64,71,72
Contingency tables, 325-343
analysis of, 138,326
correspondence analysis of, 138,325-343
independence models for, 327,339
interactions in, 160,326-343
loglinear analysis, 326-343, q.v.
multi-way, 171,326,330
three-way, 326-341
two-way, 327
Continuity of measurement, 69
Continuous function, 81,88,89,91
Continuous rating scale, 263
Contribution to SS(Fit) of,
Combination components, 294
components, 152
core elements, 35,158
Convergence,
criterion, 96
iterative standardization q.v.
three-way, 91,92
TUCKALS algorithm q.v.
Covariance matrix (see latent covariation matrix), 65,293
Core matrix, 7,12,16,22,35,30,153
in applications, 36,214,237,250,304,320
Bartlett’s scalar, 162,163,294
body diagonal, 53,115,159,297
conditional approach to interpretation, 161
diagonal, 50,57-60,160
and direction cosines, 157
estimation of, 77
explained variation, 35,78,157-159,213
extended, q.v.
idealized elements, 16,17,157,161-163,216
interpretation of, 36,157-163,213-216,297
off-diagonal elements, interpretation of, 53,157,25
latent covariances, 157,196
restrictions on, 64
scaling, 35,36,153,158,159,162,163,294
signs of elements, 160
simple structure, 108,156,157,159,160
and singular values, 20
size of, 50
sums of squares interpretation, 35,158-159
(three-mode) interactions 17,43,157,159,215
three-way identity, 50
three-way symmetric, 97
Tucker2 (see extended core matrix)
uniqueness of, 80
Core plane,
anti-diagonal, 160
diagonal, 50,57-60,160
diagonaization
Tucker2 model, 108-120
Tucker3 model, 58,59,108
Correlation(s),
averages of, 151
between components, 55,109,118-124,277-281,304
Correlation matrices, 25,119
three-mode analysis of, 119-122,273-284
and simplex structure, 289
Correlational approach to longitudinal data, 287,288
Correspondence analysis, 165
and CARDECOMP, 330
interpretation of, 329
and joint plot, 329
three-mode, way generalization, 329-343
two-mode, 328-329,333
Counted variables, 298,314
Counter-rotations, 52,108
Covariance matrix, 23,289
observed, 294,297
of combination mode 8,10
component analogue, 72
latent 144,145
Covariance structure models, 4, 49, 60-66, 71-73, 76, 288

compared with component models, 66-68
Cronbach's alpha, 132
Cross-lag correlation, -covariation, 297, 308
Cross-product matrices, 77, 94, 155
and input scaling, 25, 155

D

data box, 74

data, n-mode

data points, number of in three-mode models, 150

data, three-mode, 15, 48

data types, 130-133, 147, 150, 151, 177, 195

degrees of freedom in

equilibrar models, 327, 332-333

three-mode models, 140
two-mode interactions, 140

dependence, analysis of, 137, 171

design

matrix, 72, 180

variables, 195

detrended normal plot, 191

developmental processes, 287, 310

deviation scores, 146

diagonally

frontal planes, 50, 57-60, 160

diagonality problem ON, 109

algorithm, 111, 112

definition, 110

proof, 110, 111

solution, 110, 111

special case of NS, 115

diagonality problem NS, 109

algorithm, 115, 116

definition, 113

proof, 114, 115

solution, 113-116

standardization of transformations, 115

diagonality problem, true, 117-119

diagonization

core matrix, 58, 59, 108

extended core matrix, 107-124, 281

loss due to, 119, 120

generality Tucker3 model, 57-60

differential growth, 310, 318-321

differential growth curves, 310, 319-321

direction in correspondence analysis, 329

direction cosines, 37, 38, 163, 294, 295, 308-310, 320

core angles, 37, 38, 53, 55, 56, 163, 320

and combination components, 294, 295, 308-310

correlations, 37, 38, 163

equal, 50, 55, 56

discreteness of measurement, 69

discriminant analysis, 4, 212, 213

discriminant functions, 213

dissimilarities disadvantages for three mode analysis, 257

distant concept, 230

distance in correspondence analysis, 329

distance in joint plots, 24, 164, 166

distance models, 48

distributional assumptions and three-mode analysis, 67

double centering, 26, 27, 24, 142, 143, 147, 149, 246, 257, 259, 270, 272

double standardized data, 150

dual scaling, 138

E

ecological ordination data, 135

Eigenproblem, 9, 14

Eigenvalues, 12, 20, 23, 155

and component weights, 153, 154

and-zero and ALS algorithms, 89, 112

Eigenvalue-eigenvector decomposition, 9, 14, 51, 77, 78, 87, 163

Elections, 330

Element of a mode, 7

number of, 12, 22

Elementwise matrix product, 113, 114

EPA-structure, 229, 234, 238

Equal direction cosines in PARAFAC2, 50, 55, 56

Error(s)

increasing influence of (propagation), 96, 98-102

standard deviation of, 131

structure, 99-101

evectors, 82

Estimated (fitted) data, 153, 179

Estimating unique variances separately, 62, 63

Euclidean distance, 48

models, 48

Euclidian norm, 11

Exact solution of Tucker3 model, 79, 84, 85, 93

Existence of minimum of Tucker3 loss function, 80, 81

Expected normal distribution, 191, 192

Explained variation, 10, 78, 93, 146, 177

and combination components, 295, 308, 310

and core elements, 35, 38, 157-158, 213

eigenvalues, 153

in Tucker methods, 78

Exploratory

trough confirmatory analysis, 71

models, 51, 61

Exposure, 170, 171

Extended core matrix, 7, 10, 12, 23, 36, 54, 56, 216

in applications, 37, 217, 227, 251, 286, 281

304, 303, 357, 339

average frontal plane, 39, 37, 143, 164, 266

conditional approach to interpretation, 161

diagonal, 109, 115

diagonal elements, 37, 38, 251, 260, 280

diagonalization of, 107-124, 281

direction cosines, 37, 38, 163, 294, 295

explained variation, 36, 153, 216

interpretation of, 216-218, 297

and latent covariation, 293

and off-diagonal elements, 50, 157, 251, 259, 266, 280, 281

simple structure, 70, 108, 109

size of, 50

External analysis, 48, 69, 70

ALSICAL, 69, 270

ALSCOMP3, 69, 270

dimensional scaling, 270

TUCKALS2, 70, 270

TUCKALS3, 70

unfolding, 69, 270

External averaging, 265, 325

External variables, 176, 179, 291, 292

Factor analysis

an analogue of PARAFAC1, 65

common, 70, 287

longitudinal, 48

second-order models, 66

simultaneous in several populations, 48, 276

third-order models, 66, 78

three-mode, q.v.

time series analysis, 287

Factor analysis of variance, 135-138

three-mode generalization of, 138-142

Factor differentiation, 277, 280-284

Factor scores 63, 287

391
Inverse transformation, 52, 108, 118
J
J-cenring, 26, 60, 142, 144, 147, 205
J-normalization, 60, 298, 307
J-standardization, 150
J×-cenring, 26, 60, 142, 144, 147
J×-normalization, 60, 150, 307
J×-standardization, 150
J, J×-cenring, 26, 60, 142-144, 147, 149, 151
J-mode, 11
Joint plots, 24, 61, 163-165, 257
in applications, 61, 182, 183, 218, 219, 239, 265, 267, 268, 300, 321, 335, 336, 339-341
and component scores, 24, 166
construction of, 24, 164, 165
and correspondence analysis, 329
d and dissimilarities, 257
distances in, 24, 164, 166
interpretation, 164, 165, 219, 269
measuring closeness, 24, 164, 166
in TUCKALS, 24, 166
vectors in, 165, 219, 269, 339, 341
K
K-mode, 11
K×-standardization, 151, 259
Kronecker product, 11, 79
L
Labelling of components, 154, 161, 162, 209
Lag-one correlation, 296, 308
Lagrange multipliers, 111
Latent class model, 330
Latent covariance matrix, 144, 145
Latent covariation matrix, 65, 72, 73, 144, 145, 288, 292-297, 307-310
and autoregressive models, 294-297
null hypothesis for, 297
observed covariation matrix, 297
restrictions on, 72
and longitudinal data, 294-297, 306-310
Latent predictors, 174, 175, 195
Latent space, 154, 155
Latent variables, 2, 15, 16, 19, 154, 161, 162, 292-295, 307-310
labelling of, 154, 161, 162, 209
and theoretical constructs, 154, 155
Lateral plane, 34, 36
Learning curves, 314-323
average 316-318, 323
Learning-to-read study, 4, 5, 132, 315-323
Least squares
alternating, 8, 72, 73, 89-92, 95, 96, 111, 112, 115, 116
conditional (see alternating), 67, 86
estimates, 23, 77, 139, 306, 316
generalized, 64, 66
loss functions, 22, 23, 71, 79-81, 110, 113, 117, 118, 173
partial (see alternating), 8, 68
residuals, 172-176
simultaneous estimation with, 30, 148
Least upper bound of SS(FIT), 30
Linear combinations of latent elements, 15, 16-18, 20
nested sets of, 78
Linear models, 180
LISREL, 66, 68
Loading, 10, 32, 145, 155
Local minimum, 93
Logistic regression, 314, 316, 322, 323
Loglikelihood ratio, 327, 322, 333
Loglinear models, 171, 343
hierarchical models, 332
interactions, 326-336
main effects, 328
margin fixed by design, 331
non-saturated, 327
notation for effects, 326, 327
permissible models, 332
saturated, 326, 328, 331
Longitudinal factor analysis, 48
Longitudinal multivariate data, 4, 73, 285-311
autoregressive models, 73
and component scores, 24, 165, 310
correlational approach, 287, 288
three-mode analysis, 288, 292-298
time series, 4, 287, 297
Loss due to diagonalization, 119-122
Loss functions, 173
minimization, 71, 80, 81
of orthoormal diagonalization, 110, 117, 118
of non-singular diagonalization, 113, 117, 118
of Tucker3 model, 23
of Tucker3 model, 22, 79-81
Lagrange multiplier, 111

M
MANOVA, 180
Matrix-conditional, 147, 151, 177, 180, 259, 261
centrering, 151
data, 151
standardization, 151
Marginal distribution, 331
Maximization of SS(FIT), 82
Maximum likelihood estimation, 8, 64, 66
MSPRED, 165
MDS (see multidimensional scaling)
Mean absolute difference, 160
Means
a posteriori, 137
a priori, 136, 137
arbitrary, 133, 134
comparable, 134
incomparable, 26, 135, 134, 147
influence on components, 133
interpretable, 135-142
modelling separately, 134-142
population means in covariance structure
models, 64
as primary psychological constructs, 137
scaling off, 133-149
uninterpretable, 36
Measured predictors, 174-176, 195
Measurement characteristics, 68, 128, 134
Measurement conditionality, 69
Measurement levels, 48, 69
Measurement models, 71, 72, 292
and structural models, 71, 72, 292
Measurement process, 69
Mental age, 277
Meta-analysis, 274
Method of Bauer-Futinhausser, 87-89, 94
Metric data, 48
Midpoints of scale, centring of, 60,129,130, 148,180,232,263

Minimization of loss functions, 22,70,80,81,111,114 of SE(Res), 82
Missing data, 48,58,69
Mixed additive and multiplicative models, 128,136-142,314,316,323
Mixed-mode matrices, 166,167
Mode, 8,15
number of different, 50
number of reduced, 50
Model (see → model)
Modelling interactions, 137
Modified Tucker model, 141
Monte Carlo study, 76,98
Moving average models, 286
Multidimensional scaling (MDS), 32,33,71,170
classical, 257
data (mds-data), 130-133,147,151,177
individual differences, q.v.
methods for, 256
review of models for, 56
under constraints, 71
Multi-mode data, 74
Multiple personality, 228
Multiplicative interactions, 137,139,314
Multiplicative models with additive terms, 128,136-143,314,316,323
Multitrait-multimethod matrix, 9,67
Multivariate-multiconditional matrix, 9,67
Multivariate (→ see →)
Multi-way tables, 171,326,330

N
Neutral scale point, 133,148,232
Hecting of components, 23,34,92,93
→mode, analysis, data, etc., 73,74
Nominal measurement level, 69
Non-additivity, tests for, 137
Non-linear problems, 86
Non-linear programming, 91
Non-reliability procedure, 87
Non-singular transformations (rotations) in applications, 119-124,257-262
of components, 52,70,121,128,279
core of matrix, 57
of extended core matrix, 59,112-124
interpretational problems, 109,118
Non-stationarity, 206,308
Non-uniqueness of solutions, 89,98,112,119,122
Non-zero eigenvalues and ALS-algorithms, 85, 112
Normal children, 277,283
Normal distribution, 191,192
Normal probability plot, 176,191
Normalization, 60,129,148,150
Normative centring, 142
Rotation of book, 11
Rot-fitted principal components, 172,173,175
NS-algorithm, 115,116

O
Oblique components, 55,109,118-124,277-281,340
Orthogonal core element, 53,117,251,259,266, 280,281
OH-algorithm, 111,119
Optimal scaling, 138,257
phase in ALS, 68,69
Ordinal level of measurement, 69
Organization of book, 5,6
Origin as multihypothesis in correspondence analysis, 329
Orthogonal transformation of components, 70
Orthogonal polynomials, 156,303,315
Orthormality, 81
columnwise, q.v.
transformations of components (rotation), 84,85
core matrix, transformations of diagonality, 58,59,108
extended core matrix transformations to diagonality, 110-112, 116-124
in applications, 119-124,257-262
algorithm, 133,135,136
and statistical independence, 81
Orthogonal INDSCAL, 132
Orthormalization in ALS algorithm, 96
Outliers, 38,138,148,171
and centring, 148
in designed experiments, 171,175
detection of, 172,175,176,191
interactions between, 171
Output
interpretation of, 151-167
postprocessing, 126,151,152
scaling, 155,156,158,162,163
Overall
centring, 142,146,148,180
critique on, 148
standardization, 96,133,151

PARAFAC1, 10,49,50,53,54,73,130,131,296
and Bentler & Lee models, 65
CARDECOMP model, 57-60,69,109,140,141,159
versus CARDECOMP, 53,132
covariance form, 65
factor analysis form, 65
and longitudinal data, 296
psa-data, 132
twice-order identity matrix, 53
Tucker2 as a special case of, 58-60

PARAFAC2, 10,49,50,53,54,163
parallel solutions, 55
proportional private spaces, 55
unique model, 55
uniqueness of solution, 55
Parallelogram, 30,25,56
Parallel projections, 53,65
factor analysis (see PARAFAC)
Partial Least Squares (PLS) (see alternating least squares), 8,68
Party preference group, 27
Party similarity study, 26-43,132
Partitioning
of fitted sum of squares, 35,82,158,159,213
of residual sum of squares, 82,157
total sum of squares, 25,67,77,79,81,82
PATH, 1.1,1.1, 5,6
Pattern matrix, 72
PCA (see principal component analysis)
Perceived reality study, 118,122-124,132,167
residual analysis for, 184-194
Perfect congruence approach, 276
Performative centring, 142
Personality, 228
trait adjectives, 245
traits, 70,224
Perturbation, 99-101
PLS (see partial least squares)
Point of view analysis, 48
Point-to-set map, 89,92
Political parties, 4,26-43,330
Polynomials
multivariate, 86
orthogonal as target, 156,303,315

Positive definite, 88, 89, 92
Postprocessing of output, 126, 151, 152
Precincts, 331
Predictors
latent, 174, 175, 195
measured, 174-176, 195
Principal component analysis
data (pca-data), 131-133, 147, 150
-first approach to three-mode data, 194, 195
not-fitted principal components, 172, 173, 175
in ALS, 175
’Q’-PCA, 19, 20
residuals from, 172-175
separate, private, individual PCAs, 240, 275, 278, 281-284
standard, 2, 9, 14, 15, 19, 20, 25, 35, 70, 73, 77, 94, 135, 145, 155, 156, 159, 172-174, 215, 276, 287, 288
three-mode, q.v.
Procrustes rotation, 270, 272, 276, 277, 339, 340
Probability plotting
x², 176
normal, 192
and residuals, 176, 178, 179
Profile similarity, 43
Proportional SS(Fit), 262, 263
Prototype conditions, 15, 16, 154, 161, 162
Pupils, 5, 180, 181
Q
’Q’-PCA, 19, 20
Quality of fit, 79, 94, 189
of three-mode solution, 177
Quantification, 329
Quantile plot, 178, 179
Random
mode, 8
start matrices, 97
variable vector, 8, 61
vector, 82, 283
Range equalization of, 129, 133, 315
Rank correlation, 324, 318
Rao’s distance measure, 174, 177
Rating scales, continuous, 263
Ratio level of measurement, 69
Real estate values in Leiden, 336, 337
Real matrices, 11
Reduced mode, 49, 50
Reference curves, 314
-missing data, 68
Relative SS(Fit), 25, 37, 95, 262, 263
Relative SS(Res), 25, 178, 188-191
Repeated measures
in ANOVA, 195
in time series, 286, 287
Replicated model, 69
Residual(s), 23, 25, 170-195, 316
adjusted, 327
analysis scheme, 177-180, 184, 186, 191
from ANOVA, 136, 147, 172, 187, 194, 316, 317, 322
in contingency tables, 327
versus data plots, 179, 194
distribution of, 191, 193
-first-order analysis of, 171, 175
-goals of analysis, 171
-informal analysis of, 171
-least squares, 172-176
-multidimensional, multivariate, 172, 175
plots of, 176, 179
from principal components, 172-175
and probability plots, 176, 178, 179
from regression, 171
squared, 176-178, 194
ANOVA of, 82, 178, 186-189, 194, 195
standardized, 327, 328, 334, 338
statistical analysis of, 171
structured samples of, 176-178, 189, 195
summary measures for, 176
three-mode, 170, 176, 180, 194, 195
two-mode, 135, 170, 172-175
unstructured samples of, 176, 179, 191
variables, 63
Residual/fit ratio, 189-191, 252, 253
Residual sum of squares - SS(Res), 11, 175, 178
-distribution of, 178, 186-186, 223
-minimization of, 82
-partitioning, 82, 177
-relative, 25, 178, 188-191
and SS(Fit), 25, 32
in sum-of-squares plot, 25, 178
Response curves, 314
Restrictions on configurations, 48, 64, 68, 70, 71
core matrix, 64
models, 66
parameters, 61, 64, 71, 72
Retarded children, 277, 283, 284
RSQ (squared correlations in ALSCAL), 262, 263
Robustness, 99-101
Rotation (see transformation)
S
Salience, 55, 120, 259, 281
Saturated linear model, 326
Scale midpoints, 60, 129, 130, 148, 180, 232, 263
Scalar product, 48, 147
-form of distance models, 48
Scalar product models, 76
Scaling, 128
Bartruss, 155, 156, 162, 163, 284
centering, q.v.
of components, 155, 156
centroid, 115
-of core matrix, 35, 36, 153, 158, 159, 162, 163, 294
-of input, q.v.
multidimensional, q.v.
overall variation, 96
reasons for, 130
-standardization, q.v.
types of, 129
School grades, 180
Second-order factor model, 66
Selection of type of scaling, 129-131
Semantic differential, 134, 148, 227-241
Serial dependence, 286-288, 295
modeling of, 287
and variable dependence, 228, 295, 298
Sensory perception, 272
-smell and taste, 255-272
sounds, 272
Separate pca’s, 240, 278
Similarity, -ties, 396
advantage over dissimilarities, 257
-data, 3, 23, 26, 48, 101, 163, 255-272
asymmetric, 3, 4, 27, 32-41, 243-254, 257
three-mode, 3, 264
dissimilarities, 257
Similarity set, 257-263
Simple structure, 108, 109
-of components, 108, 155
-in core matrix, 108, 156, 157, 159, 160
-in extended core matrix, 70, 108, 109
Simplex, 289,302,303,306
correlation matrix, 289
equidistant, 290
Markov, 290
and principal components, 290
quasi, 289
similarity matrix, 32,33,34
Winner, 290
Simulation studies, 289,294
Simultaneous diagonalization of core planes, 57-58,107-124
Simultaneous iteration method, 87-89
Simultaneous least squares estimation, 30,148
Simultaneous factor analysis in several populations, 48,276
Simultaneous solution of eigenproblems, 84
SIMD, 256,258-263
Single-degree-of-freedom test for non-additivity, 137
Singularity matrices, 89,98,112,119,122
Singularity value(s) and component weights (eigenvalues), 20,
35,139
and core matrix, 20
and extended core matrix, 20
and principal component analysis, 20
and correlation analysis, 20
Learning curves, 314
three-mode principal component analysis, 10
Skewness, 298
Snedecor's unique-variances model, 49,62,63
SPSS, 180,191
MANOVA, 239,340
Stability, 295-297,303,306-308
overall, 296
Standard errors, 66
Standard principal component analysis, q.v.
Standard reduction equation, 136
Standard scores, 25
Standardization, 26,59,129,130,135,138,139,
in combination with centring, 148,149,151
normalization, 150
order, 149,150
interaction with centring, 146,149,151
iterative, 149,150
problems with, 149,150
reasons for, 150
recommendations for, 150
Standardized
core matrix, 35,36,153,158,159
component weights, 11,12,35,153,158
data, double-, 150
extended core matrix, 36,153,216
residuals, 327,328,334,338
sum of squares, 11,30,40
State-like, 296
Stationarity, 111,295-298,308
non-, 296,308
Stationary point, 86,86,92
Statistical
analysis of residuals, 171
models, 51
package, 179
stability, 61,67
Steepest-leaf dissolv, 178,184,185
Stimulus-scale interaction, 246
Stochastic
mode, 49,287,293
models, 71,72
two modes, 49
Strange situation, 202
Stress in ALSCAL, 263
Stretching and shrinking of common space, 53,
165,251

Structural model, 71,73,292
autoregressive model as, 73,292
and measurement model, 71,72,292
and three-path model, 72,287,289
Structured samples of residuals, 116-178,194,
195
Subject weights, average in INDSCAL, ALSCAL,
TUCKALS, 255-261
Subjective intercorrelations, 55
Sum of squares
fitted, 11,25,30,38,82,94,145,206
partitioning, 25,82
residual 25,30,82,174,206
and fitted, 25,82
standardized, 11,30,40
total, 25,30,38,82,174,206
Summarization, 170,171
Sums-of-squares plot, 25,30,39,40,188-191,221-
223
in applications, 41,188-191,221,252
'trustiness' bands in, 190-192,252
Supernormal distribution of residuals, 176,191
Symmetric
discrete distribution, 99,100
frontal planes of extended core matrix, 10,
50,53,55,97,119
similarities, 257-263
three-mode models, 53,56
Symmetrization of matrices, 32
Systematic trends, unmodelled, 172

Tails of distribution of residuals, 191-194
Target matrix for rotation, 71
with procrustes rotation, 270,272,275,277,
with orthogonal polynomials, 156,303,315
Testing of hypotheses, 137
non-additivity, 137
significance of principal components, 140,
195
about structure in analysis of covariance structures, 61
in latent covariation matrix, 297
Theorem
approximate solution of Tucker3 model, 83,84
due to d'Esopo, 91,92
extact solution of Tucker3 model, 84,85
fixed point, 91
due to Meyer, 92
non-singular transformation extended core
orthonormal transformation extended core
matrix, 110
separation, 105
SS(Tot) = SS(Fit) + SS(Res), 81,103,104
upper bound SS(Fit), 94,105
due to Wierstra, 91
Theoretical constructs and latent variables, 134,155
Theoretical subjects, 244-254
as aid to interpretation, 250,253
as a priori information, 247
Third-order factor analysis, 20,28
Three-mode causal modelling, 48,71-73
Three-mode data, 15,48
matrix, 7,11,20,22
types of, 131-133
Three-mode factor analysis, 49,60-66
Bentler & Lee models, 49,64
Blixen's model, 49,63,64
common (Tucker's model), 10,60-62
as covariance structure model, 60,61,65
versus principal component models, 66-68
Snyder's model, 49,62,63
Three-mode matrix (array), 8,20
Three-mode models without core matrix, 48
Bentler & Lee model, 49, 64
PARACFAC, 65
Three-mode path models, 72, 287, 289
algorithm, 72
Three-mode point of view model, 48
Three-mode principal component model (*analysis*)
and autoregressive models, 294-297, 306-310
comparison with separate PCA s, 240, 275, 281-286
and correlation matrices, 273-284
and correspondence analysis, 329-343
extensions, 68-74
external analysis, 69-70
versus three-mode factor analysis, 66-68
-first approach vs ANOVA-first, 194, 195
-formal descriptions of, 21-23, 76-85
-as generalization of singular value decomposition, 20, 21, 35, 158, 159, 315, 330
and generalized learning curves, 315
-informal descriptions of, 14-21
-and individual differences scaling, 48
and longitudinal data, 285-311
-number of parameters, 50
-under constraints, 71
Three-mode scaling, 10, 49, 50, 52, 53, 113, 147, 163
Three-way ANOVA, 139, 187
Three-way contingency tables, 5, 326-343
Three-way main effects model, 139, 187
Three-way unfolding, 48
Time-mode
-component analysis of, 289, 290, 296
-components (*trends*), 156, 298, 300, 301, 308, 319
-gain component, 290, 302
-level component, 290, 302
-Time series, 4, 287, 297
-and factor analysis, 287
Total sum of squares = SS(Tot), 11, 25, 178
distributions, 178, 184-186, 223
-equalization of large, 120, 147, 189
-partitioning of, 25, 67, 77, 79, 81, 82
-and standardization of SS, 25
Trace, 11
Trait-like, 296, 308
Transformational freedom, 52
CANDECOMP, PARAFAC, 56
INDSCAL, 57, 66
PARAFAC2, 55
Tucker2 model, 108
Tucker3 model, 108
Transformation procedures (rotations)
-core matrix, 58, 39, 108
-components, 24, 76, 108, 135, 209, 231, 282
-extended core matrix, 95
-comparison of SS and MS, 116-124
-orthonormal (OR), 117
-non-singular (NS), 108, 117
-Transition matrix, 292
-Trends (*t*ime components), 298
-Treppen Iteration, 87
 Trotsky, 7
-Transfer models, 131
-Triple centring, 139, 142, 143, 145
-Three personality study, 132, 227-241
TUCKALS2 (T), 23, 29, 95, 96, 142
algorithm, 95, 96
-core matrix (see extended core matrix)
-external analysis, 70, 270
-implementation, 152
-and individual differences scaling, 256-263
-optimal scaling, 69
TUCKALS3 (T), 22, 29, 142, 143
algorithm, 89, 92
-accuracy, 76, 96-98
-convergence, 76, 90-92
-correctness, 97-98
-definition, 90
-estimation of overall mean, 148
-external analysis, 70
-global minimum, 86
-initialization, 84, 85-92
-implementation, 22, 30, 152
-average subject weight, 259, 260
-core matrix (see core matrix)
-for longitudinal analysis, 305, 306, 311
-optimal scaling, 69
TUCKALS1, 73
Tucker methods, 12, 76-79, 152-154
Method 1, 9, 30, 73, 77, 78
Method II, 9, 78
Method III, 9, 76, 144
advantages over ALS, 23, 67
-common factor method, 62, 74
-compared to ALS, 23, 67, 152, 154
-and covariance structure models, 67, 68
-disadvantages of, 23, 67, 78, 79, 205
-initialization for ALS, 30, 73, 94
-and length components, 154
-and longitudinal data, 305, 306
-scaling components, 23, 154
-scaling component weights, 154
-Tucker2 model, 10, 12, 21, 23, 51, 54, 55, 57-59, 76, 151, 293
-alternating least squares, 95, 96
-formal description, 22, 23
-generality of, 59
-Tucker3 model, 10, 12, 21-23, 51, 52, 54, 76, 79-92,
-130-141
-with constant first components, 141
-exact solution, 79, 84, 85, 93
-formal descriptions, 21, 22, 76-85
-generality, 57-60
-informal descriptions, 14-21
-least squares solution, 71, 79-85
-modified, 141
-special case of PARAFAC/CANDECOMP, 58-60
-unique exact solution, 76, 85, 89
-Tucker model, 73
-Tucker’s common factor analysis model, 10, 60, 61, 65
TV violence, 180
T2 (see Tucker2 model, TUCKALS2 algorithm)
T3 (see Tucker3 model, TUCKALS3 algorithm)

\[U \]

Uncorrelated modes, influence on components, 145
Uncorrelated data, 48
Unfolding
-analysis, 69, 270
-three-way, 48
-Unidimensionality and lack of interaction, 328
-Unique variances, 10, 49, 61, 63
-separate estimation of, 62, 63

\[V \]

Uniqueness
-CANDECOMP, 56
-core matrix, 80
-INDSCAL, 57, 66
-PARAFAC1, 56
-PARAFAC2, 55
-Tucker3 solution, 76, 85, 89
-Unmodelfed systematic trends, 172
-Unstructured sample of residuals, 176, 179, 191
-Upperbounds of SS(Fit), 30, 94-95, 105

Variable dependence, 287, 288, 295
-modelling of, 281
-and serial dependence, 288, 295, 298
Variance (see also variation)
 arbitrary, 133,134
 comparable, 160-151
 equalization of, 189,205,259,262
 incomparability, 26,133,134
 influences of large, 130,147,189
 interpretable, 149-151
 scaling of, 133,134,140-151
 uninterpretable, 26
Variation (see also variances), 11
 accounted for (see explained variation)
 a priori sources, 138
 a posteriori sources of, 139
 approximate percentage of (in INDGAL, ALS-
 CAL), 259,260
 due to arbitrary means, 133
 explained (see explained variation)
 rescaling of overall, 96
Varimax rotation, 70,155

W
Words (elections), 331
 way, 8
 usage, 8
Weighted model (see PARAFAC, CANDECOMP), 69
Well-fitting point, 39,40,178,188
WISC-R, 274
Within
 condition covariance matrix, 67
 sum of squares, 151

X
X² test, 327

Y
Years, 298

Z
Zero-sum
 assumption, 136,139,140
 restrictions, 140