The handle http://hdl.handle.net/1887/33218 holds various files of this Leiden University dissertation

Author: Nadimpalli, Santosh
Title: Typical representations for GLn(F)
Issue Date: 2015-06-16
Stellingen
behorende bij het proefschrift

Typical representations for $\text{GL}_n(F)$
door Santosh Nadimpalli

Let F be a non-discrete non-Archimedean local field with ring of integers \mathcal{O}_F and residue field k_F of characteristic p.

1. Let $s = [M, \sigma]$ be a level-zero non-cuspidal inertial class for $\text{GL}_n(F)$. If Γ is a typical representation for the inertial class s then Γ is a sub-representation of

$$\text{ind}_{J_s}^{\text{GL}_n(F)}(\lambda_s)$$

where (J_s, λ_s) is a Bushnell-Kutzko type for the inertial class s. Moreover

$$\dim_{\mathbb{C}} \text{Hom}_{\text{GL}_n(F)}(\Gamma, \text{ind}_{J_s}^{\text{GL}_n(F)}(\lambda)) = \dim_{\mathbb{C}} \text{Hom}_{\text{GL}_n(F)}(\Gamma, \text{ind}_{P}^{\text{GL}_n(F)}(\sigma))$$

for any parabolic subgroup P containing M as its Levi-subgroup. (Corollary 3.0.10)

2. Let $s = [T, \chi]$ be a principal series inertial class for $\text{GL}_n(F)$. If Γ is a typical representation for the inertial class s then Γ is a sub-representation of

$$\text{ind}_{J_s}^{\text{GL}_n(F)}(\chi)$$

where (J_s, χ) is a Bushnell-Kutzko type for the inertial class s. Moreover

$$\dim_{\mathbb{C}} \text{Hom}_{\text{GL}_n(F)}(\Gamma, \text{ind}_{J_s}^{\text{GL}_n(F)}(\chi)) = \dim_{\mathbb{C}} \text{Hom}_{\text{GL}_n(F)}(\Gamma, \text{ind}_{B_n}^{\text{GL}_n(F)}(\chi))$$

where B_n is a Borel subgroup containing T. (Corollary 4.0.13)

3. Let n be a positive integer greater than one and P be a parabolic subgroup of $\text{GL}_n(F)$ of type $(n-1, 1)$ and M be the standard Levi-subgroup of the type $(n-1, 1)$. Let $s = [M, \sigma \boxtimes \chi]$ be an inertial class for $\text{GL}_{n+1}(F)$. There exists a unique typical representation Γ occurring in the parabolic induction

$$\text{ind}_{P}^{\text{GL}_{n+1}(F)}(\sigma \boxtimes \chi)$$

Moreover Γ occurs with multiplicity one in the above representation. (Theorem 5.3.3)

4. Let $s = [\text{GL}_2(F) \times \text{GL}_2(F), \sigma \boxtimes \sigma]$ be an inertial class for $\text{GL}_4(F)$ and $\#k_F > 3$. If Γ is a typical representation for the inertial class s then Γ is a sub-representation of

$$\text{ind}_{J_s}^{\text{GL}_4(F)}(\lambda_s)$$

where (J_s, λ_s) is a Bushnell-Kutzko type for the inertial class s. Moreover

$$\dim_{\mathbb{C}} \text{Hom}_{\text{GL}_4(F)}(\Gamma, \text{ind}_{J_s}^{\text{GL}_4(F)}(\lambda)) = \dim_{\mathbb{C}} \text{Hom}_{\text{GL}_4(F)}(\Gamma, \text{ind}_{P}^{\text{GL}_4(F)}(\sigma \boxtimes \sigma))$$

where P is a parabolic sub-group of the form $(2, 2)$. (Theorem 6.3.4)

5. Let $s = [\text{GL}_2(F) \times F^\times, \sigma \boxtimes \chi]$ be an inertial class of $\text{GL}_3(F)$. We denote by P the standard parabolic subgroup of the type $(2, 1)$. There exists an inertial class $s' = [\text{GL}_2(F) \times F^\times, \sigma' \boxtimes \chi']$ such that except for finite dimensional $\text{GL}_3(\mathcal{O}_F)$-sub-representations the restrictions

$$\text{res}_{\text{GL}_3(F)}(\text{ind}_{P}^{\text{GL}_3(F)}(\sigma \boxtimes \chi)) \text{ and } \text{res}_{\text{GL}_3(F)}(\text{ind}_{P}^{\text{GL}_3(F)}(\sigma \boxtimes \chi))$$

are isomorphic.
6. There exist two distinct principal series inertial classes \([T, \chi]\) and \([T, \chi']\) of \(GL_3(F)\) such that

\[
\operatorname{res}_{GL_3(O_F)}(i_{B_3}^{GL_3(F)}(\chi))/\Gamma_1 \quad \text{and} \quad \operatorname{res}_{GL_3(O_F)}(i_{B_3}^{GL_3(F)}(\chi'))/\Gamma_2
\]

are not isomorphic even for any finite dimensional \(GL_3(O_F)\)-representations \(\Gamma_1\) and \(\Gamma_2\).

7. Let \((\pi, V)\) be a cuspidal representation of \(GL_2(F)\) where \(V\) is a vector space over a finite extension \(E\) over \(\mathbb{Q}_l\). We suppose that the central character of \(\pi\) takes values in \(O_F^\times\). Let \((\pi_l, W)\) be the mod \(l\) reduction of \((\pi, V)\). If \(c(\pi)\) and \(c(\pi_l)\) are the conductors of \((\pi, V)\) and \((\pi_l, W)\) respectively then \(c(\pi) = c(\pi_l)\).

8. Let \(\#k_F = 2\) and \(\Gamma_1\) and \(\Gamma_2\) be two distinct typical representations for the inertial class \([F^\times \times F^\times, \chi_1 \boxtimes \chi_2]\), \(\operatorname{res}_{O_F^\times} \chi_1 \chi_2^{-1} \neq 1\), then the semi-simplification of the mod 2 reductions of \(\Gamma_1\) and \(\Gamma_2\) are isomorphic.