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Typical representations for GLn(F )

door Santosh Nadimpalli

Let F be a non-discrete non-Archimedean local field with ring of integers OF and residue field kF of
characteristic p.

1. Let s = [M,σ] be a level-zero non-cuspidal inertial class for GLn(F ). If Γ is a typical representation
for the inertial class s then Γ is a sub-representation of

ind
GLn(OF )
Js

(λs)

where (Js, λs) is a Bushnell-Kutzko type for the inertial class s. Moreover

dimC HomGLn(OF )(Γ, ind
GLn(OF )
Js

(λ)) = dimC HomGLn(OF )(Γ, i
GLn(F )
P (σ))

for any parabolic subgroup P containing M as its Levi-subgroup. (Corollary 3.0.10)

2. Let s = [T, χ] be a principal series inertial class for GLn(F ). If Γ is a typical representation for the
inertial class s then Γ is a sub-representation of

ind
GLn(OF )
Js

(χ)

where (Js, χ) is a Bushnell-Kutzko type for the inertial class s. Moreover

dimC HomGLn(OF )(Γ, ind
GLn(OF )
Js

(χ)) = dimC HomGLn(OF )(Γ, i
GLn(F )
Bn

(χ))

where Bn is a Borel subgroup containing T . (Corollary 4.0.13)

3. Let n be a positive integer greater than one and P be a parabolic subgroup of GLn(F ) of type (n−1, 1)
and M be the standard Levi-subgroup of the type (n − 1, 1). Let s = [M,σ � χ] be an inertial class
for GLn+1(F ). There exists a unique typical representation Γ occurring in the parabolic induction

i
GLn(F )
P (σ � χ)

Moreover Γ occurs with multiplicity one in the above representation. (Theorem 5.3.3)

4. Let s = [GL2(F ) × GL2(F ), σ � σ] be an inertial class for GL4(F ) and #kF > 3. If Γ is a typical
representation for the inertial class s then Γ is a sub-representation of

ind
GL4(OF )
Js

(λs)

where (Js, λs) is a Bushnell-Kutzko type for the inertial class s. Moreover

dimC HomGL4(OF )(Γ, ind
GL4(OF )
Js

(λ)) = dimC HomGL4(OF )(Γ, i
GL4(F )
P (σ � σ))

where P is a parabolic sub-group of the form (2, 2). (Theorem 6.3.4)

5. Let s = [GL2(F )× F×, σ � χ] be an inertial class of GL3(F ). We denote by P the standard parabolic
subgroup of the type (2, 1). There exists an inertial class s′ = [GL2(F )×F×, σ′�χ′] such that except
for finite dimensional GL3(OF )-sub-representations the restrictions

resGL3(OF )(i
GL3(F )
P (σ � χ)) and resGL3(OF )(i

GL3(F )
P (σ � χ))

are isomorphic.
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6. There exist two distinct principal series inertial classes [T, χ] and [T, χ′] of GL3(F ) such that

resGL3(OF )(i
GL3(F )
B3

(χ))/Γ1 and resGL3(OF )(i
GL3(F )
B3

(χ′))/Γ2

are not isomorphic even for any finite dimensional GL3(OF )-representations Γ1 and Γ2.

7. Let (π, V ) be a cuspidal representation of GL2(F ) where V is a vector space over a finite extension
E over Ql. We suppose that the central character of π takes values in O×E . Let (πl,W ) be the mod
l reduction of (π, V ). If c(π) and c(πl) are the conductors of (π, V ) and (πl,W ) respectively then
c(π) = c(πl).

8. Let #kF = 2 and Γ1 and Γ2 be two distinct typical representations for the inertial class [F××F×, χ1�
χ2], resO×

F
χ1χ

−1
2 6= 1, then the semi-simplification of the mod 2 reductions of Γ1 and Γ2 are isomorphic.
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