Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/33218 holds various files of this Leiden University dissertation

Author: Nadimpalli, Santosh

Title: Typical representations for GLn(F)

Issue Date: 2015-06-16

Stellingen

behorende bij het proefschrift

Typical representations for $GL_n(F)$

door Santosh Nadimpalli

Let F be a non-discrete non-Archimedean local field with ring of integers \mathcal{O}_F and residue field k_F of characteristic p.

1. Let $s = [M, \sigma]$ be a level-zero non-cuspidal inertial class for $GL_n(F)$. If Γ is a typical representation for the inertial class s then Γ is a sub-representation of

$$\operatorname{ind}_{J_s}^{\operatorname{GL}_n(\mathcal{O}_F)}(\lambda_s)$$

where (J_s, λ_s) is a Bushnell-Kutzko type for the inertial class s. Moreover

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_n(\mathcal{O}_F)}(\Gamma, \operatorname{ind}_{J_s}^{\operatorname{GL}_n(\mathcal{O}_F)}(\lambda)) = \dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_n(\mathcal{O}_F)}(\Gamma, i_P^{\operatorname{GL}_n(F)}(\sigma))$$

for any parabolic subgroup P containing M as its Levi-subgroup. (Corollary 3.0.10)

2. Let $s = [T, \chi]$ be a principal series inertial class for $GL_n(F)$. If Γ is a typical representation for the inertial class s then Γ is a sub-representation of

$$\operatorname{ind}_{J_{\alpha}}^{\operatorname{GL}_{n}(\mathcal{O}_{F})}(\chi)$$

where (J_s, χ) is a Bushnell-Kutzko type for the inertial class s. Moreover

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_n(\mathcal{O}_F)}(\Gamma, \operatorname{ind}_{J_s}^{\operatorname{GL}_n(\mathcal{O}_F)}(\chi)) = \dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_n(\mathcal{O}_F)}(\Gamma, i_{B_n}^{\operatorname{GL}_n(F)}(\chi))$$

where B_n is a Borel subgroup containing T. (Corollary 4.0.13)

3. Let n be a positive integer greater than one and P be a parabolic subgroup of $GL_n(F)$ of type (n-1,1) and M be the standard Levi-subgroup of the type (n-1,1). Let $s = [M, \sigma \boxtimes \chi]$ be an inertial class for $GL_{n+1}(F)$. There exists a unique typical representation Γ occurring in the parabolic induction

$$i_P^{\mathrm{GL}_n(F)}(\sigma \boxtimes \chi)$$

Moreover Γ occurs with multiplicity one in the above representation. (Theorem 5.3.3)

4. Let $s = [\operatorname{GL}_2(F) \times \operatorname{GL}_2(F), \sigma \boxtimes \sigma]$ be an inertial class for $\operatorname{GL}_4(F)$ and $\#k_F > 3$. If Γ is a typical representation for the inertial class s then Γ is a sub-representation of

$$\operatorname{ind}_{J_s}^{\operatorname{GL}_4(\mathcal{O}_F)}(\lambda_s)$$

where (J_s, λ_s) is a Bushnell-Kutzko type for the inertial class s. Moreover

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_{4}(\mathcal{O}_{F})}(\Gamma, \operatorname{ind}_{J_{s}}^{\operatorname{GL}_{4}(\mathcal{O}_{F})}(\lambda)) = \dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_{4}(\mathcal{O}_{F})}(\Gamma, i_{P}^{\operatorname{GL}_{4}(F)}(\sigma \boxtimes \sigma))$$

where P is a parabolic sub-group of the form (2,2). (Theorem 6.3.4)

5. Let $s = [\operatorname{GL}_2(F) \times F^{\times}, \sigma \boxtimes \chi]$ be an inertial class of $\operatorname{GL}_3(F)$. We denote by P the standard parabolic subgroup of the type (2,1). There exists an inertial class $s' = [\operatorname{GL}_2(F) \times F^{\times}, \sigma' \boxtimes \chi']$ such that except for finite dimensional $\operatorname{GL}_3(\mathcal{O}_F)$ -sub-representations the restrictions

$$\operatorname{res}_{\operatorname{GL}_3(\mathcal{O}_F)}(i_P^{\operatorname{GL}_3(F)}(\sigma\boxtimes\chi)) \ \text{ and } \ \operatorname{res}_{\operatorname{GL}_3(\mathcal{O}_F)}(i_P^{\operatorname{GL}_3(F)}(\sigma\boxtimes\chi))$$

are isomorphic.

6. There exist two distinct principal series inertial classes $[T,\chi]$ and $[T,\chi']$ of $\mathrm{GL}_3(F)$ such that

$$\mathrm{res}_{\mathrm{GL}_3(\mathcal{O}_F)}(i_{B_3}^{\mathrm{GL}_3(F)}(\chi))/\Gamma_1 \ \ \mathrm{and} \ \ \mathrm{res}_{\mathrm{GL}_3(\mathcal{O}_F)}(i_{B_3}^{\mathrm{GL}_3(F)}(\chi'))/\Gamma_2$$

are not isomorphic even for any finite dimensional $GL_3(\mathcal{O}_F)$ -representations Γ_1 and Γ_2 .

- 7. Let (π, V) be a cuspidal representation of $\operatorname{GL}_2(F)$ where V is a vector space over a finite extension E over \mathbb{Q}_l . We suppose that the central character of π takes values in \mathcal{O}_E^{\times} . Let (π_l, W) be the mod l reduction of (π, V) . If $c(\pi)$ and $c(\pi_l)$ are the conductors of (π, V) and (π_l, W) respectively then $c(\pi) = c(\pi_l)$.
- 8. Let $\#k_F = 2$ and Γ_1 and Γ_2 be two distinct typical representations for the inertial class $[F^{\times} \times F^{\times}, \chi_1 \boxtimes \chi_2]$, res_{\mathcal{O}_F^{\times}} $\chi_1 \chi_2^{-1} \neq 1$, then the semi-simplification of the mod 2 reductions of Γ_1 and Γ_2 are isomorphic.