The handle http://hdl.handle.net/1887/32551 holds various files of this Leiden University dissertation.

Author: Krol, Charlotte Georgette
Title: Pitfalls in the diagnosis and management of skeletal complications of liver transplantation
Issue Date: 2015-03-19
Longitudinal changes in BMD and fracture risk in orthotopic liver transplant recipients not using bone modifying treatment

Charlotte G. Krol, Olaf M. Dekkers, Herman M. Kroon, Ton J. Rabelink, Bart van Hoek, Neveen A.T. Hamdy

Journal of Bone and Mineral Research 2014; 29(8): 1763-9
ABSTRACT

Introduction Osteoporosis is prevalent in end-stage liver disease, but data on long-term changes in bone mineral density (BMD) and related fracture incidence are scarce after orthotopic liver transplantation (OLT).

Method We evaluated BMD changes up to 5 years in consecutive recipients of a successful OLT at the Leiden University Medical Centre between 2000 and 2011, in whom sequential BMD data were available. Spinal radiographs, available at time of screening and at six and twelve months post-OLT, were assessed for vertebral fractures by two independent observers using Genant’s semi-quantitative method. Patients were excluded when started on bisphosphonates.

Results 201 patients (71% men), median age 53 years (range 18-70 years) were included in the study. Most common liver pathology was viral (27%) or alcoholic liver disease (25%). All patients received prednisone for at least 6 months after transplantation and the majority either tacrolimus or cyclosporine for immunosuppression. At time of screening for OLT, osteoporosis and osteopenia were found in respectively 18 and 36 % of patients at the lumbar spine (LS) and in respectively 9 and 42 % at the femoral neck (FN). T-scores declined significantly at both sites 6 months after OLT, but increased thereafter at the LS, reaching pre-transplant values at 2 years, and remaining stable thereafter. FN T-scores remained consistently lower than pre-transplant values. The prevalence of vertebral fractures increased from 56% at screening to 71% at one year after OLT, with a fracture incidence of 34%. BMD changes did not predict fracture risk.

Conclusion Osteoporosis, osteopenia and vertebral fractures are prevalent in patients with end-stage liver disease. An overall decline in BMD is observed within the first 6 months after OLT, with subsequent recovery to pre-transplant values at the LS, but not at the FN. Vertebral fracture risk is high after OLT regardless of changes in BMD.
INTRODUCTION

Osteoporosis is reported to be prevalent in end-stage liver disease, and accelerated bone loss associated with increased fracture risk has been observed in 25-35% of patients in the first twelve months after orthotopic liver transplantation (OLT).(1-11) The initial decline in bone mineral density (BMD), believed to be predominantly due to corticosteroid use for immunosuppression, is generally followed by a stabilization in bone mass between 6 and 12 months after OLT, with no further decrease in BMD thereafter, independently of the use of bone-modifying agents such as bisphosphonates.(1;3-6;8;9;12) Data on natural changes in BMD beyond the first year after OLT are scarce, however, and mainly based on small studies, or on studies in patients with exclusive cholestatic liver disease as underlying liver pathology.(1-9;12-16) Studies had also been performed over a decade ago (1-5;13-15), before the introduction of currently used immunosuppressive regimens, which enable the use of significantly lower corticosteroid doses post-OLT, thus precluding exposure to a high cumulative dose of these agents. Whether the spontaneous recovery of BMD within the first year after OLT is also associated with a decreased fracture risk has also not been adequately addressed.

The aims of this study were to examine changes in BMD after OLT in a cohort of consecutive liver transplant recipients not receiving treatment with anti-resorptive agents, to identify risk factors for bone loss after successful OLT and to examine the influence of changes in BMD on fracture risk within the first year after OLT.

PATIENTS AND METHODS

Patients

Consecutive patients who underwent a first OLT at the Leiden University Medical Centre between January 1st 2000 and January 1st 2011, and who had sequential bone mineral density (BMD) measurements after OLT, were eligible for the study, including 20 patients who had BMD measurements from 6 months onwards after OLT. Immunosuppressive regimens for OLT consisted of corticosteroids for at least 6 months in all patients, with an additional calcineurin inhibitor: cyclosporine or tacrolimus in the majority, with mofetil mycophenolate (MMF) or sirolimus as additional second or third immunosuppressive agent in a few. International guidelines concerning immunosuppression were complied with in the case of new transplanted patients, but established immunosuppressive regimen were not routinely altered in individual transplant patients. Corticosteroid schedules included methylprednisolone at a dose of 500 mg given during the OLT procedure, followed by oral prednisolone at a dose
of 20 mg daily for one week, 10 mg daily for 3 months, slowly tapering to complete discontinuation of corticosteroids between 3 and 6 months after OLT in all but a few patients who required maintenance doses of prednisolone of 2.5 – 10 mg/day. Treatment with calcium- and vitamin D supplements in a combined fixed dose of 500 mg elemental calcium and 400 IU colecalciferol, and treatment with bisphosphonates were initiated at the discretion of the treating physician. Patients treated with bisphosphonates before or at time of screening for OLT were excluded from the study. Patients receiving bisphosphonates after OLT were censored and thus excluded from further analysis from time of starting treatment.

Methods

Demographic and clinical data
Patients’ demographic and clinical data were obtained from electronic hospital records. Data on age, gender, smoking, height, weight and primary liver disease were collected. Concomitant or later renal transplantation was documented. Data were also collected on date and cause of death. Recorded medication included immunosuppressives, calcium and vitamin D supplements and bone-modifying medication such as bisphosphonates.

Laboratory investigations
Laboratory data were also obtained from electronic hospital records. Biochemical data collected included serum calcium, corrected for an albumin of 40 g/L, phosphate, creatinine, parathyroid hormone (PTH) and 25-hydroxy-vitamin D (25-OHD) concentrations, which were measured at screening for OLT and at various time points thereafter. Severity of liver disease was determined using the laboratory- Model for End-stage Liver Disease (MELD) scores(17) calculated on the basis of serum creatinine, bilirubin and INR measurements obtained at time of screening for OLT. The following accepted formula was used to calculate the scores:

\[MELD = 10 \times (0.957 \times \ln(\text{Creatinine}/88.4)) + (0.378 \times \ln(\text{Bilirubin}/17.1)) + (1.12 \times \ln(\text{INR}))) + 6.43 \]

Bone mineral density measurements
Bone mineral density (BMD) was measured at the lumbar spine and at the femoral neck using dual energy X-ray absorptiometry (DXA- Hologic QDR 4500, Hologic inc. Waltham, MA, USA, equipped with reference values based on the National Health and Nutrition Examination Survey (NHANES III)). Absolute measurements of BMD in g/cm² as well as T-scores (matched to young adult reference populations at peak bone mass) and Z-scores (age- and sex-matched reference populations) were recorded. World
Health Organization (WHO) criteria were used to define osteoporosis (T-score of -2.5 SD or less) and osteopenia (T-score between -1 SD and -2.5 SD). BMD measurements were performed at time of screening for OLT (baseline), at 6 and 12 months post-OLT, and yearly thereafter for up to 60 months after OLT. BMD measurements at 36 and 48 months post-OLT were not analyzed because too few measurements were available at these time points.

Vertebral fracture assessment

Spinal radiographs were routinely performed at time of screening and at six and twelve months after OLT. Conventional antero-posterior and lateral radiographs of the thoracic spine and postero-anterior and lateral radiographs of the lumbar spine were performed by an experienced radiology technician following a standardized protocol, at a distance of 115 cm, with the film centralized on Th7 for the thoracic spine and on L3 for the lumbar spine.

All conventional radiographs of the thoracic and lumbar spine were blindly assessed for the prevalence and individually scored for the severity (grade) of vertebral fractures by two independent observers, an experienced musculoskeletal radiologist (H.K.) and an experienced bone and mineral disorders specialist (N.H.). Vertebral fractures were assessed using the Genant’s semi-quantitative method. Using this method, a decrease in height of 20-25% is considered to be a “mild” grade 1 fracture, of 25-40% a “moderate” grade 2 fracture and of > 40% a “severe” grade 3 fracture. Uniform loss of vertebral height compared to adjacent vertebrae was additionally documented using the same grading scores. Radiographs were assessed in a random order, using random numbers generated by SPSS software (version 20, SPSS Inc., Chicago, IL, USA). A unique number was assigned to each series of radiographs. In case of discrepancy in scores, consensus was achieved by both observers reviewing the radiographs together.

Laboratory, BMD and fracture data collected at time of screening for OLT were considered to be baseline data.

The study was approved by the Medical Ethics Committee of the Leiden University Medical Centre.

Statistical analysis

For descriptive statistics, categorical variables were expressed as numbers and as percentages. Continuous variables were summarized using mean and standard deviation in case of normal distribution of data; median and 5th and 95th percentiles were used otherwise. An extension of a Generalized Linear Model, Generalized Estimation Equations (GEE), was used for calculation of differences in laboratory measurements and BMD, to account for repeated measurements. Patients treated with bisphosphonates
were excluded from time of initiation of treatment for the duration of follow-up. Incidence rates for osteoporosis after OLT (number of new cases/person years at risk) were calculated with follow-up time starting after transplantation. Patients already diagnosed as having osteoporosis at time of screening for OLT were not included in the calculation of osteoporosis incidence. An incident fracture was defined as the occurrence of a new vertebral fracture or an increase in grade of a prevalent fracture between serial radiographs before and during the first year after OLT. Follow up duration until incident osteoporosis, or last measurement of BMD, was used to calculate person-years at risk. GEE model was used to evaluate the influence of various factors on changes in BMD, corrected for age and gender and accounting for repeated measurements.

Prevalence of fractures was calculated by dividing the number of patients with at least one vertebral fracture by the total number of patients with available spinal radiographs. A GEE model was used to evaluate the influence of change of BMD on fracture risk, corrected for age and gender and accounting for repeated measurements. A univariate and multivariate logistic regression model was used to evaluate risk factors for incident fractures.

Calculations were performed using STATA/SE 12.0 software (Stata Corp LP, College Station, TX, USA).

RESULTS

A. Baseline data

Demographic characteristics
Nine of the 223 eligible transplant recipients were not included in the study because bone densitometry data were not available after OLT and thirteen patients were also not included because of treatment with bisphosphonates before or at time of screening for OLT.

Of the 201 patients included in the study, 142 were men (71%). Median age at time of OLT was 53 years (range 18-70 years, with only 4 patients being younger than 20 years). The most common primary liver diseases were viral hepatitis (27%) and alcoholic liver disease (25%), followed by cholestatic liver disease (14%) (Table 1). At time of screening for OLT, 9 patients (5%) were using corticosteroids, and calcium- and vitamin D supplements were prescribed as combination treatment to 21 patients (10%).

Laboratory data
Mean creatinine level was 92 ± 67 µmol/L (normal < 104 µmol/L). Mean vitamin D level was 32 ± 23 nmol/L (normal 50-250 nmol/L), 125 patients (83%) had 25-OHD levels < 50
Table Demographic data at time of screening and after liver transplantation

<table>
<thead>
<tr>
<th>Demographic data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>201</td>
</tr>
<tr>
<td>Gender – number of male patients (%)</td>
<td>142 (71%)</td>
</tr>
<tr>
<td>Age at the time of OLT- Median (range), years</td>
<td>53 (18-70)</td>
</tr>
<tr>
<td>Death during follow-up – no of patients (%)</td>
<td>34 (17%)</td>
</tr>
<tr>
<td>Time of death after OLT – Median (5th - 95th percentile), month</td>
<td>10 (1-57)</td>
</tr>
<tr>
<td>BMI – mean (SD), kg/m²</td>
<td>26 (5)</td>
</tr>
<tr>
<td>Smoking – number of patients (%)</td>
<td>64 (34%)</td>
</tr>
<tr>
<td>Primary liver disease – number of patients (%)</td>
<td></td>
</tr>
<tr>
<td>Viral</td>
<td>54 (27%)</td>
</tr>
<tr>
<td>Alcoholic</td>
<td>51 (25%)</td>
</tr>
<tr>
<td>Combined alcoholic and viral</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>Cholestatic (PSC / PBC/ overlap syndrome)</td>
<td>29 (14%)</td>
</tr>
<tr>
<td>Malignancy</td>
<td>12 (6%)</td>
</tr>
<tr>
<td>Auto-immune hepatitis</td>
<td>10 (5%)</td>
</tr>
<tr>
<td>Metabolic</td>
<td>7 (3%)</td>
</tr>
<tr>
<td>Other*</td>
<td>34 (17%)</td>
</tr>
<tr>
<td>Previous or concomitant renal transplantation</td>
<td></td>
</tr>
<tr>
<td>- number of patients (%)</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>Time between screening and OLT - median (5th – 95th percentile), months</td>
<td>9 (1-27)</td>
</tr>
<tr>
<td>Second OLT - number of patients (%)</td>
<td></td>
</tr>
<tr>
<td>- time to second OLT – median (5th – 95th percentile), days</td>
<td>165 (2-1064)</td>
</tr>
<tr>
<td>Rejection episodes – number of episodes (cumulative incidence, %)</td>
<td></td>
</tr>
<tr>
<td>6 months after OLT</td>
<td>27 (14%)</td>
</tr>
<tr>
<td>12 months after OLT</td>
<td>30 (15%)</td>
</tr>
<tr>
<td>24 months after OLT</td>
<td>42 (22%)</td>
</tr>
<tr>
<td>60 months after OLT</td>
<td>42 (22%)</td>
</tr>
<tr>
<td>Calcium – and vitamin D supplements at time of screening – number of patients (%)</td>
<td>21 (10%)</td>
</tr>
<tr>
<td>Bisphosphonates after OLT - number of patients (%)</td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>58 (32%)</td>
</tr>
<tr>
<td>24 months</td>
<td>66 (43%)</td>
</tr>
<tr>
<td>60 months</td>
<td>42 (48%)</td>
</tr>
<tr>
<td>Corticosteroids at time of screening - number of patients (%)</td>
<td>9 (5%)</td>
</tr>
<tr>
<td>Immunosuppressive medication initiated at OLT - number of patients (%)</td>
<td></td>
</tr>
<tr>
<td>Prednisone, tacrolimus</td>
<td>88 (44%)</td>
</tr>
<tr>
<td>Prednisone, cyclosporine</td>
<td>44 (22%)</td>
</tr>
<tr>
<td>Prednisone, cyclosporine and MMF</td>
<td>21 (10%)</td>
</tr>
<tr>
<td>Prednisone, tacrolimus and MMF</td>
<td>18 (9%)</td>
</tr>
<tr>
<td>Other</td>
<td>30 (15%)</td>
</tr>
</tbody>
</table>

OLT = orthotopic liver transplantation; BMI = body mass index; PSC = primary sclerosing cholangitis; PBC = primary biliary cirrhosis; LS = lumbar spine; FN = femoral neck; MMF = mycofenolate mofetil. * including cryptogenic cirrhosis, Budd-Chiari syndrome, portal vein thrombosis, hereditary polycystic liver-disease, acute liver failure of pregnancy, medically induced cirrhosis, Caroli disease, cystic fibrosis, Rendu-Osler-Weber’s disease.
nmol/L, 87 of whom had levels of <30 nmol/L. Mean bilirubin level was 79 ± 140 mmol/L (normal < 17 mmol/L).

Severity of liver disease
Severity of liver disease at screening for OLT, as expressed by laboratory-MELD score, could be calculated in 196 of the 201 patients (98%). Mean score was 14 ± 6 (range 6-35).

BMD data
BMD measurements were available in 181 patients at time of screening for OLT, but technically non-evaluable in 11 patients at the lumbar spine. Evaluation was precluded in these 11 patients by the presence of residual oral contrast material from abdominal CT-scans, required as part of the screening protocol for OLT, but chronologically performed by error before DXA. Osteoporosis and osteopenia were respectively found in 18% and 36% of patients at the lumbar spine (LS) and in 9 and 42 % of patients at the femoral neck (FN).

Fracture data
176 patients had available conventional spinal radiographs at time of screening for OLT. 99 patients (56 %) had one or more vertebral fractures, mostly grade 1 fractures (87%). Of the patients with documented prevalent vertebral fractures, 20 had osteoporosis (22%), 38 osteopenia (42%) and 41 had a normal BMD (36%).

B. Data after OLT

Clinical data
Median time between screening and OLT was 9 months (range 0-66 months, 5th – 95th percentile 1-27 months). All patients received prednisone during the first 6 months after OLT. Prednisone was combined with tacrolimus in 44% of patients or with tacrolimus and MMF in 9% of patients. Cyclosporine was given to 22% of patients and combined with MMF in 10% of patients. Rejection episodes occurred mainly in the first six months after OLT (27 patients) with a cumulative incidence of 22% at five years after OLT. A second OLT was performed in 28 patients (14%) after a median time of 7 months (range 0-37 months). Calcium and vitamin D supplements were increasingly prescribed after OLT with 26 patients (14%) receiving these agents at screening, 107 (58%) at one year after OLT and 68 patients (77%) at 5 years after OLT. Within the first year after OLT, bisphosphonate treatment was initiated in 58 patients (32%), and 42 patients (48%) were using these agents at 5 years after OLT. Median time of initiation of bisphosphonates was 12 months after OLT (range 12-48 months).
Six patients (3%) received a previous or concomitant renal transplantation. Thirty-four patients (17%) died during the follow-up period, at a median time of 10 months after OLT (range 1–58 months). The most common cause of death was infection (n=7) and recurrence of hepatocellular carcinoma (n=5). Other causes included myocardial infarction, hypoglycemia and suicide.

Laboratory data
There was a significant improvement in liver function tests with time after OLT, with mean bilirubin level decreasing from 78 ± 141 mmol/L at screening to 20 ± 35 mmol/L (p < 0.005) at twelve months and to 20 ± 60 mmol/L at two years after OLT (p < 0.005), stabilizing thereafter with bilirubin levels of 15 ± 13 mmol/L at 5 years after OLT. There was a mild but significant decrease in renal function after OLT, with mean creatinine level increasing from 92 ± 67 µmol/L at time of screening for OLT to 113 ± 50 µmol/L at 12 months after OLT (p< 0.005), stabilizing thereafter with mean creatinine level of 111 ± 66 µmol/L at five years after OLT. Mean vitamin D levels increased from 32 ± 23 nmol/L at time of screening to 51 ± 28 nmol/L at twelve months after OLT (p < 0.005) and to 60± 29 nmol/L at five years after OLT (p < 0.005).

Changes in BMD after OLT
Sequential changes in BMD were analyzed in the 201 patients included in the study. BMD measurements were not available at screening in 20 of these patients but sequential data were available from six months onward after OLT. BMD declined significantly at both LS and FN sites between screening and six months after OLT: LS -0.02 g/cm² (-2.5%), p =0.002; FN -0.05 g/cm² (-6.5%), p <0.005), stabilizing thereafter until 12 months after OLT (Figure 1). Between one and two years after OLT, LS T-scores increased by 1.2 % (0.02 g/cm², p = 0.012), reaching pre-transplant values at two years after OLT and subsequently remaining stable. In contrast, FN BMD remained consistently below pre-transplantation values, but after the initial significant loss demonstrated no further decline up to 5 years of follow-up (Figure 1). A second OLT did not influence the course of changes in BMD. Incidence rates of osteoporosis at the LS and FN were respectively 4.2 and 4.7 per 100 person-years after OLT. The cumulative incidence of osteoporosis at the lumbar spine was 7% at six months, 12.1 % at twelve months and 14.7% at five years (Figure 2). The cumulative incidence of osteoporosis at the femoral neck was 8.5 % at six months, 10.5% at twelve months and 19.5% at five years after OLT.

Incidence of fractures after OLT
Spinal radiographs were available and evaluable in 115 patients at six months and in 106 patients at twelve months after OLT. The prevalence of fractures increased from 56% at time of screening to 78 out of 115 patients (68%) at six months after OLT, and to 75 out
of 106 patients (71%) at twelve months after OLT. Incident fractures occurred in 45 out of 133 patients (34%) in whom a second spinal radiograph was available during the first year after transplantation.

C. Risk factors for bone loss and for vertebral fractures after OLT

We studied the effect of age, gender, primary liver disease, severity of liver disease, BMD at screening for OLT and immunosuppressive regimens, including corticosteroids, on bone loss and fracture risk within the first year after OLT. Of these potential risk factors which may influence BMD, the only ones with a significant relationship with bone loss were age 52 years or older in women (pragmatic cut-off age for menopause) (OR 0.89, 95%CI 0.81-0.99, p=0.0024), and the use of the calcineurin inhibitor tacrolimus for immunosuppression (OR 0.95, 95% CI 0.91-0.98 , p=0.003). Vitamin D deficiency was not

Figure 1: Changes in LS and FN T-scores in patients not treated with bone-modifying agents after OLT. # = Significant decrease p < 0.05 compared to values at the time of screening; * = Significant increase p < 0.05 when compared to values at 12 months after OLT; LS = lumbar spine; FN = femoral neck; OLT = orthotopic liver transplantation.
predictive for bone loss either at the LS (OR 0.95, 95%CI 0.90-1.01, p=0.080) or at the FN (OR 0.99, 95%CI 0.95-1.04, p=0.674). Patients with alcoholic liver disease demonstrated an increase, rather than a decrease, in LS but not FN BMD after OLT (at LS OR 1.08, 95% CI 1.02-1.14, p = 0.005; at FN OR 1.03, 95% CI 0.99-1.08, p =0.187).

Of the potential risk factors studied, only male gender (OR 5.15, 95%CI 1.41-18.8, p = 0.013), and higher age (OR 1.06, 95%CI 1.00-1.11, p = 0.045) were associated with an increased risk for incident fractures. Other factors, including cholestatic liver disease, severity of liver disease, lumbar spine BMD and prevalent fractures at time of screening for OLT, were not predictive for increased fracture risk after OLT. There was no relationship between immunosuppressive medication and fracture risk. There was no difference in pattern of change in BMD at the LS or FN in patients with incident vertebral fractures within the first year after OLT compared to those who did not sustain a fracture (LS BMD: OR 0.97, 95%CI 0.91-1.03, p = 0.293; FN BMD: OR 0.97, 95%CI 0.93-1.02, p =0.272)

Figure 2: Incidence of osteoporosis. Kaplan Meier survival curve showing the proportion of patients without osteoporosis at the LS (upper panel) and FN (lower panel) after OLT. LS = lumbar spine, FN = femoral neck, OLT = orthotopic liver transplantation.
DISCUSSION

Our findings from this study of longitudinal changes in BMD and vertebral fracture incidence in a cohort of recipients of an orthotopic liver transplantation show a high prevalence of osteopenia/osteoporosis and vertebral fractures at time of screening for OLT. 54% of patients with diverse primary liver pathology had thus some degree of bone loss and 56% had prevalent vertebral fractures. Despite the high prevalence of skeletal pathology in these patients with end-stage liver disease awaiting liver transplantation, only a few received treatment with a bisphosphonate, which provided us the unique opportunity of studying sequential changes in BMD and fracture risk in a relatively large number of OLT recipients not receiving bone-modifying treatment. In keeping with previously published studies, with up to 2 years follow-up after OLT (1-3;7;9;10;12;13;16), we observed significant bone loss at both the LS and FN sites between screening and 6 months after OLT. Spontaneous recovery of BMD to pre-transplant values was observed at the LS within two years after OLT, with our longer term data showing stabilization of LS BMD thereafter for up to five years after OLT. In contrast to the increase in BMD observed at the lumbar spine after the initial rapid post-OLT decline in BMD, there was no similar recovery of BMD at the femoral neck. Data on long-term changes in FN BMD after OLT are scarce and not always concordant.(1;5;9;13) Whereas some studies show an increase in FN BMD during the second year after OLT (1;5), other studies show a persistently low FN BMD compared to pre-transplant values, or a further decline in bone mass at cortical sites.(6;9;13;15;16) The discrepancy in behavior of BMD between LS and FN sites is likely to be due to the difference in proportion of trabecular and cortical bone between these two sites. Trabecular bone comprises 66% of total bone at the vertebrae, whereas cortical bone comprises >75% of the total bone composition of the femoral neck. Trabecular bone is much more susceptible to changes in the bone microenvironment resulting from disease processes than cortical bone, just as it is more readily susceptible to pharmacologic interventions. BMD at the LS thus shows the greatest magnitude and speed of change in response to reversal of diseases processes as well as to pharmacological interventions such as has been repeatedly demonstrated with the use of anti-resorptives or anabolic agents in the management of osteoporosis. After successful OLT, reversal of cholestasis, of vitamin D deficiency and of hypogonadism, which follow the restoration of liver function, is likely to significantly contribute to the spontaneous improvement in LS BMD, with recovery of FN BMD lagging behind that of LS BMD up to 5 years after OLT.

Corticosteroids form the mainstay of the induction and maintenance of immunosuppression after solid organ transplantation, and these agents are used in nearly all immunosuppressive protocols. An association between corticosteroid use and early post-transplantation bone loss has been observed in the early stages of solid organ
transplantation. However, the introduction of new immunosuppressive regimens has allowed the early tapering of corticosteroids, thereby substantially contributing to recovery of bone mass in the long-term after transplantation. Nonetheless, acute rejection episodes occur more commonly in the first 3 months after transplantation, so that corticosteroids withdrawal is only practical thereafter.

In our study, only few of the risk factors evaluated at screening for OLT, which may potentially influence BMD, were able to predict bone loss or its severity post-OLT. Alcoholic liver disease was interestingly, but perhaps not surprisingly, associated with no decrease in BMD after OLT. Alcohol is toxic to the osteoblast and alcohol abuse is associated with a low turnover osteoporosis. Alcohol withdrawal is a prerequisite for liver transplantation, and candidates for OLT have to be completely dry for at least six months before being eligible for transplantation. In transplant recipients with alcoholic liver disease, removal of the toxic effect of alcohol on the osteoblast before transplantation, in addition to the improvement in nutritional status, when alcohol does no longer represent the major source of caloric intake, could well explain the lack of deterioration of bone mass after OLT in patients with this liver pathology.

We found no relationship between graft function, corticosteroid use, number of graft rejection episodes or persistent vitamin D deficiency on the degree of bone loss after OLT. This is also in keeping with data from a number of studies addressing the role of these factors on post-OLT bone loss,(1;3;4;8;9;12-14), although some other studies did find an association between cholestatic liver disease, cumulative prednisone dose and bone loss after OLT.(5;6;8)

Previously published data on fracture incidence after OLT show wide variability, ranging from 10-33% within the first year after OLT.(5;7;9;11;14;15;19) Our data on one-year fracture incidence are in keeping with only one previously published study, in which a semi-quantitative method of evaluation of vertebral fractures on routinely performed conventional spinal radiographs was also used, and the evaluation was performed by two independent observers on sequential radiographs.(9) Another reason for the discrepancy in fracture incidence between our study and that of others may be that previous studies were performed in smaller number of patients (5;9;14;15;20), or in patients solely with cholestatic liver disease as primary liver pathology.(19) Furthermore, although conventional spine radiographs were performed in some studies, these were not evaluated by semi-quantitative methods, which may have also led to underestimation of fracture incidence since routine radiology reports tend to underreport specially mild grade fractures.

Data on risk factors for incident fractures after OLT are conflicting. BMD-measurements have been found to be predictive in some studies (9;14;15;19), but not in others (7;11). In our study, both BMD at time of screening as well as changes of BMD within the first year after OLT were not predictive for fracture risk. Whereas
some studies showed prevalent fractures before OLT to be associated with increased fracture risk after transplantation (11;19;20), this was not the case in our study. These data suggest that the absence of low bone mass and of prevalent fractures before OLT does not preclude an increased risk for fracture after transplantation so that it is of significant clinical relevance that liver transplant recipients should be regularly screened for the presence of these fractures and treated accordingly.

Our study has a number of strengths as well as limitations. Its main strength lies in the relatively large representative cohort of patients studied, the availability of sequential BMD measurements as only inclusion criterion, providing a minimal selection bias, and the opportunity to study changes in BMD for a relatively long period after OLT without the confounding influence of bone-modifying treatment on BMD. Another strength of our study is the availability of serial spinal radiographs within the first year after transplantation in a large number of patients, and the blinded semi-quantitative assessment of all spinal radiographs for vertebral fractures by two experienced independent observers.

Our study has also a number of limitations. There were no pre-defined treatment protocols for immunosuppressive regimens, or for indication for bisphosphonate therapy. These patient management decisions were left to the clinical judgment of the treating physician and may have provided some degree of bias. Another limitation may be our choice to exclude patients from the time of initiation of bisphosphonate treatment, using ‘last observation carried forward’ to minimize the effect of this censoring on our data. Since patients excluded from further analysis because of starting therapy were most likely to have continuing bone loss if left untreated, the increase in BMD reported in the remaining untreated patients may have been overestimated, although numbers of patients treated are smaller than those of untreated patients. Since treatment with different immunosuppressive regimens was not randomly assigned, effect of these regimens on patterns of bone loss after OLT could also not be compared. A further limitation of our study is the variable time lag between screening for OLT and date of transplantation. Since the median time between screening and OLT was 9 months, it is conceivable that further bone loss and new fractures may have occurred between screening and transplantation, with possible further decrease in liver function and worsening cholestasis potentially contributing to worsening of skeletal pathology. However, this limitation is common to most published studies with the majority failing to report time lag between pre- and post-transplantation measurements.(1-5;7;12-14) Although the heterogeneity of the population studied may be perceived as a limitation, we did not consider this to be the case, as the distribution of primary liver pathology was fairly representative of OLT populations, patients receiving bisphosphonates were excluded from the analysis and patients receiving a second liver transplant did not have a different course of changes of BMD.
Only 12 patients (6%) were using corticosteroids at screening and use of these agents post-transplantation would override the effect of the pre-transplantation use of these agents.

In conclusion, osteopenia, osteoporosis and vertebral fractures are prevalent in prospective liver transplant recipients. An overall decline in BMD is observed within the first 6 months after OLT, with subsequent spontaneous recovery to pre-transplant values at the LS, but not at the FN up to five years after OLT. The incidence of vertebral fractures is high within the first year after OLT with poor association between pre-transplantation factors, changes of BMD and fracture risk. Whereas our findings do highlight the spontaneous recovery of BMD associated with restoration of liver function, and its maintenance in the long-term after liver transplantation, our data also demonstrate that the spontaneous recovery in BMD was not associated with a corresponding decrease in fracture risk, at least within the first year after orthotopic liver transplantation, suggesting a potentially persistent or irreversible effect of liver disease on bone quality and fracture risk. Whether treatment with bisphosphonates or other bone-modifying agents may be able to decrease or prevent fracture risk within the first year after liver transplantation and in the longer term thereafter remains to be established.
REFERENCE LIST

