The handle http://hdl.handle.net/1887/30254 holds various files of this Leiden University dissertation.

Author: Evers, Melvin Maurice
Title: Developing genetic therapies for polyglutamine disorders
Issue Date: 2015-01-07
DEVELOPING GENETIC THERAPIES FOR POLYGLUTAMINE DISORDERS

Melvin Evers
DEVELOPING GENETIC THERAPIES FOR POLYGLUTAMINE DISORDERS

MELVIN EVERS
DEVELOPING GENETIC THERAPIES FOR POLYGLUTAMINE DISORDERS

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 7 januari 2015
klokke 16.15 uur

door

Melvin Maurice Evers

geboren te Rhenen
in 1982
Promotiecommissie

Promotor:
Prof. dr. G.J.B. van Ommen

Co-promotor:
Dr. W.M.C. van Roon-Mom

Overige leden:
Prof. dr. R.A.C. Roos
Prof. dr. Y. Temel (Maastricht UMC+)
Dr. J.C. Dorsman (VU Medisch Centrum, Amsterdam)
Promovendi hebben lange en zware dagen omdat er meer mis dan goed gaat in het onderzoek, maar aan het einde van de dag gaan ze naar huis om andere dingen te doen. Patiënten met polyglutamine aandoeningen kunnen nooit een pauze nemen.
Table of Contents

Chapter 1 General introduction: Genetic therapies for polyglutamine disorders
8
1.1. Introduction
10
1.2. Triplet repeat expansion disorders
11
1.3. Huntington disease
15
1.4. Spinocerebellar ataxia type 3
22
1.5. Clinical and molecular genetics of other polyQ disorders
30
1.6. Protein lowering approaches for polyQ disorders
34
1.7. Antisense oligonucleotides in therapy for other neurodegenerative diseases
41
1.8. Drug delivery to the brain, how to cross the blood brain barrier?
45
1.9. Scope and outline of the thesis
49

Frontiers in Molecular Neuroscience 2011, 4:10
*

Huntington's Disease - Core Concepts and Current Advances 2012, InTech*
*

Molecular Neurobiology 2014, 49(3):1513-1531
*

Chapter 2 Making (anti-) sense out of huntingtin levels in Huntington disease
50

Under review
*

Chapter 3 Targeting several CAG expansion diseases by a single antisense oligonucleotide
72

PLoS One 2011, 6(9):e24308
*

Chapter 4 Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification
94

Nucleic Acid Therapeutics 2014, 24(1):4-12
*

Chapter 5 Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: Removal of the CAG containing exon
112

Neurobiology of Disease 2013, 58:49-56
*

Chapter 6 General discussion & future perspective
130

Chapter 7 References
142

Appendix
172

Summary
174

Samenvatting
176

List of abbreviations
178

List of publications
181

Curriculum Vitae
182

Dankwoord
183
Melvin M. Evers ¹
Ioannis Zalachoras ²
Lodewijk J.A. Toonen ¹
Rinkse Vlamings ³,⁴
Annemieke Aartsma-Rus ¹
Onno C. Meijer ²
Yasin Temel ³,⁴
Willeke M.C. van Roon-Mom ¹

¹ Department of Human Genetics, Leiden University Medical Center
² Department of Endocrinology, Leiden University Medical Center
³ Departments of Neuroscience and Neurosurgery, Maastricht University Medical Center
⁴ European Graduate School of Neuroscience (EURON)
General introduction: Genetic therapies for polyglutamine disorders

Frontiers in Molecular Neuroscience 2011, 4:10
Huntington’s Disease - Core Concepts and Current Advances 2012, InTech
Molecular Neurobiology 2014, 49(3):1513-1531
1.1. Introduction

More than two decades ago for the first time an expansion of a repeated microsatellite sequence was discovered to be the cause of a disease. A CGG triplet repeat expansion in the gene responsible for fragile X syndrome was found (VERKERK et al., 1991). In the same year the mutation in fragile X syndrome was identified, a CAG trinucleotide repeat expansion in the AR gene was found to be the cause of a X-linked progressive neurodegenerative disorder called spinal and bulbar muscular atrophy (SBMA), or Kennedy disease (LA SPADA et al., 1991). The CAG trinucleotide repeat expansion in the AR gene results in a mutant androgen receptor (AR) with an expanded polyglutamine (polyQ) tract (LA SPADA et al., 1991). Next to SBMA, eight other neurodegenerative disorders have since been identified resulting from an expanded polyQ protein (Table 1). These disorders are Huntington disease (HD), the spinocerebellar ataxias (SCAs) 1, 2, 3, 6, 7, and 17), and dentatorubro-pallidoluysian atrophy (DRPLA) (Table 1).

This chapter will first introduce a group of inherited disorders caused by a triplet repeat expansion and provide a short overview of the main characteristics of polyQ disorders (paragraph 1.2). The underlying clinical and molecular genetics of the most prevalent and best studied polyQ disorders, HD and SCA3, will be extensively reviewed in paragraph 1.3 and 1.4. While I will provide a short overview of the disease-causing polyQ proteins and the role of known disease mechanisms of the other polyQ disorders; DRPLA, SBMA, and SCAs 1, 2, 6, 7 and 17, in paragraph 1.5. Next, opportunities for protein lowering approaches of polyQ disorders will be discussed (paragraph 1.6). What can we learn from other neurodegenerative disorders where genetic therapies are in development or already used as therapy (paragraph 1.7). The challenges in delivery and cellular uptake of genetic therapies for neurodegenerative disorders to the brain and specifically neurons will be discussed in paragraph 1.8. Finally, the scope and outline of this thesis “developing genetic therapies for polyglutamine disorders” will be defined.
1.2. Triplet repeat expansion disorders

Since the early nineties, 14 inherited triplet repeat expansion disorders have been identified. Over the years other repeat expansions, such as tetra, penta and dodecanucleotide repeats, have also been linked to human diseases (MIRKIN, 2007). In this thesis I will only focus on neurological and neuromuscular disorders caused by triplet repeat expansions. These triplet repeat disorders are categorised according to their disease mechanism, being (1) functional cellular impairment due to loss of function of the gene containing the repeat, (2) cellular impairment due to production of RNA containing an expanded CUG tract, or (3) functional cellular impairment due to production of a protein containing an expanded polyQ. Here, I will provide a short overview of all three categories and successively I will focus on polyQ disorders.

Loss of protein function

As described previously, in 1991 the Human Genome Project led to the discovery of the gene responsible for fragile X syndrome (VERKERK et al., 1991). Fragile X syndrome is characterized by mental retardation, macroorchidism, and distinct facial features (JACQUEMONT et al., 2007). The CGG repeat is located in the 5′ untranslated region (UTR) of the *FMR1* gene (KREMER et al., 1991; VERKERK et al., 1991). A trinucleotide repeat expansion of over 200 CGGs results in decreased FMR1 expression due to hypermethylation at the promoter, decreased fragile X mental retardation protein (FMRP) levels and loss of function (PIERETTI et al., 1991; MEIJER et al., 1994). The CGG repeat in fragile X syndrome is considered to be highly unstable once it exceeds a certain threshold length (RICHARDS AND SUTHERLAND, 1992). This phenomenon where the triplet repeat size increases upon the next generation, causing symptoms at an earlier age, is called anticipation. The full mutation alleles are derived from meiotically unstable maternal premutation alleles, with 55 to 200 CGG repeats (FU et al., 1991). Patients with 45 to 54 repeats do not transmit directly to the full mutation, even though these intermediate alleles are slightly unstable, particularly when maternally transmitted (ZHONG et al., 1996).

Gain of RNA toxicity

A decade after the discovery of the CGG triplet repeat expansion responsible for fragile X syndrome, it was found that carriers with premutation alleles developed a late age of onset neurodegenerative disorder called fragile X-associated tremor/ataxia syndrome (FXTAS) (HAGERMAN et al., 2001; JACQUEMONT et al., 2003). Although not fully penetrant, especially males with premutation alleles containing of more than 70 CGG repeats develop FXTAS with intention tremor and cerebellar ataxia (JACQUEMONT et al., 2006). Remarkably, FXTAS patients had close to normal FMRP protein levels, ruling out the loss of protein function as shown in fragile X syndrome (KENNESON et al., 2001). Peripheral blood leucocytes derived from FXTAS patients did show elevated FMRP mRNA levels in (KENNESON et al., 2001). Likewise, post-mortem brain tissue showed intranuclear mRNA inclusions (RNA foci) containing the expanded CGG-repeat (TASSONE et al., 2004), suggesting RNA-mediated neurodegeneration.
Originally, the idea for gain of toxic function at RNA level came from myotonic dystrophy type 1 (DM1) (Davis et al., 1997). DM1 is a member of CTG expansion disorders that derive from triplet repeat expansions located in non-coding regions of the corresponding genes. Other CTG repeat expansion disorders are HD-like 2 (HDL2), SCA8 and SCA12. DM1 is caused by a CTG expansion in the 3’ UTR of the dystrophia myotonica-protein kinase (DMPK) gene (Brook et al., 1992; Fu et al., 1992; Mahadevan et al., 1992). This unstable CTG triplet repeat expansion results in the most common form of adult muscular atrophy. Like other triplet repeat expansions, DM1 shows genetic anticipation with an earlier onset and more severe phenotype after transmission from one generation to the next (Howeler et al., 1989). Patients with DM1 were shown to have RNA foci with sequestration of the muscleblind-like 1 (MBNL1) splicing factor in muscle nuclei (Miller et al., 2000; FarDaei et al., 2001). The CUG repeat mRNA can form stable hairpin structures which can sequester RNA binding proteins, such as MBNL1. This binding of MBNL1 to double stranded CUG RNA is believed to result in depleted MBNL1 function and consequently misregulation of alternative splicing, resulting in cellular toxicity (Wheeler and Thornton, 2007).

Gain of toxic polyQ protein function

Since the discovery that an expanded CAG repeat in the AR gene and subsequent translation of a mutant polyQ-repeat containing androgen receptor result in SBMA, eight other neurodegenerative polyQ disorders have been identified (Table 1). All polyQ disorders are caused by a CAG triplet repeat expansion in exons of different genes and are the result of a gain of toxic polyQ protein function. These disorders are HD, SCAs 1, 2, 3, 6, 7, and 17, and DRPLA (Table 1). PolyQ disorders can be subdivided based on their main clinical feature: SBMA is mainly characterized by motor weaknesses, HD by chorea and the other 7 polyQ disorders by ataxia.

It is known that the prevalence of each polyQ disorder significantly varies per country and ethnicity. The prevalence of the polyQ SCAs was estimated to be about 3 per 100,000 individuals in the Netherlands (van de Warrenburg et al., 2005) and for DRPLA 0.1 per 100,000 individuals in Japan (Hirayama et al., 1994). Worldwide HD (3-5 per 100,000), SBMA (1-2 per 100,000), and SCA3 (0.5-1 per 100,000) are the most prevalent polyQ disorders (Schols et al., 2004; Banno et al., 2012; Pringsheim et al., 2012).

Although the mutations occur in very different genes, polyQ disorders have a lot in common (Fischbeck, 2001). They all result in progressive neurodegeneration with psychiatric, cognitive and motor symptoms. Except for SBMA, they are all autosomal dominant and disease onset is around midlife. For all disorders the CAG repeat length correlates with the age of onset, which means that the longer the CAG repeat, the earlier the disease manifestation (Doyu et al., 1992; Ikeuchi et al., 1995; Lund et al., 2001; Van de Warrenburg et al., 2005; Roos, 2010). All polyQ disorders have a CAG repeat threshold, meaning that carriers with a CAG repeat above this threshold will certainly develop the disorder (Table 1). PolyQ diseases also have genetic anticipation, mainly upon paternal transmission, which means that the next generation will likely inherit a longer CAG repeat, resulting in a more severe disease with an earlier age of
As described above, the polymorphic polyQ tract consists of CAG repeats. However, polyQ is also encoded by CAA codons and usually a combination of both CAG and CAA triplets encodes the polyQ tract. In polyQ disease-causing proteins the polyQ tracts are commonly composed of long uninterrupted CAG triplets. The polyQ tracts encoded by mixtures of CAG and CAA codons seems to be less prone to expansion and more stable upon transmission to the next generation (Frontali et al., 1999). In accordance, interruption of the CAG repeat by CAA (silent) or CAT (missense) mutations results in altered aggregation properties and delay the onset age (Menon et al., 2013).

Except for SCA6, polyQ disease-causing proteins are ubiquitously expressed throughout the body. Apart from the expanded polyQ repeat, mutant polyQ proteins have no homologous sequences or functional domains, assuming that the expanded polyQ repeat is causative for the observed pathogenesis (Zoghbi and Orr, 2000). It has been suggested that in polyQ disorders increasing oxidative stress and inability to protect against free radicals with age could lead to mitochondrial dysfunction and cell damage (Kim et al., 2003; Goswami et al., 2006; Miyata et al., 2008; Ajayi et al., 2012).
A prominent pathological hallmark of these diseases is the accumulation of aggregated polyQ proteins in the brain (DAVIES et al., 1997). However, the exact role of protein aggregation in disease pathogenesis is controversial and whether the aggregates are neurotoxic or neuroprotective is still under debate (KLEMENT et al., 1998; SAUDOU et al., 1998; YAMADA et al., 2006). Probably the smaller soluble polyQ species generated by proteolytic cleavage during the aggregation process are the toxic entities and the large SDS-insoluble aggregates may likely be less harmful end products of the upstream toxic event (SHAO AND DIAMOND, 2007). Misfolding of the expanded polyQ proteins probably results in proteolytic cleavage and altered interactions, resulting in neurodegeneration and neuronal loss (SHAO AND DIAMOND, 2007).
1.3. Huntington disease

HD is an autosomal, dominantly inherited neurodegenerative disorder. HD is rare, but more common in Western countries. The prevalence of HD in America is approximately 5 in 100,000 (SHOULSON AND YOUNG, 2011) and in Europe, the prevalence of HD may be even higher with estimates in England and Wales as high as 12 in 100,000 individuals (RAWLINS, 2010).

Post-mortem studies show that there is a 10-20 percent weight reduction in HD brains (VONSATTEL et al., 1985). Neurodegeneration occurs throughout the forebrain and specifically affects GABAergic medium spiny neurons of the striatum (LEVESQUE et al., 2003). Severe cell loss in the striatal complex, the caudate nucleus and putamen, results in striatal atrophy (HALLIDAY et al., 1998). This causes an enlargement of the lateral ventricles. The medium spiny projection neurons, containing enkephalin, are more susceptible to degeneration than substance P containing projection neurons while interneurons seem to be spared (WALKER, 2007). With disease progression, degeneration expands throughout the brain and other structures become affected (TABRIZI et al., 2009). Cortical atrophy is characterized by thinning of the cerebral cortex and the underlying white matter. Neuronal loss is abundant in cortical layers III, V and VI (ROSAS et al., 2008) but is also prominent in the Cornu Ammonis (CA1) region of the hippocampus, with a reduction of about 9 percent (ROSAS et al., 2003).

Disease onset usually occurs around midlife and is clinically characterized by a combination of symptoms: cognitive impairments, movement abnormalities, and emotional disturbances (ROOS, 2010). Motor symptoms of HD include chorea and occasionally bradykinesia and dystonia (TABRIZI et al., 2009). Choreic movements, recognized as involuntary and unwanted movements, start in the distal extremities. During the course of HD these movements become more profound and eventually all muscles of the body are affected. These symptoms can initially appear as lack of concentration or nervousness and unsteady gait (KREMER et al., 1992). Psychiatric symptoms often precede the onset of motor symptoms. Irritability is commonly one of the first signs and occurs throughout the course of the disease. Other psychiatric symptoms involve anxiety, obsessive and compulsive behaviour while apathy and psychosis can appear in advanced stages. However, the most frequent psychiatric symptom is depression (REEDEKER et al., 2012). Like psychiatric symptoms, cognitive symptoms can be present prior to the onset of the motor symptoms. The cognitive symptoms comprise mainly of impairment in executive functions, including abstract thinking, problem solving, and attention (PAULSEN AND LONG, 2014). Furthermore, the ability to learn new skills is affected (PAULSEN et al., 2001). Altogether these symptoms dramatically impede social and professional functioning. Eventually patients are incapable to adequately perform daily activities finally leading to progressive disability, requiring full-time care, followed by death (SIMPSON, 2007). Death generally occurs 15 to 20 years post diagnosis due to complications such as pneumonia, falls, dysphagia, heart disease or suicide (ROOS et al., 1993).

The disease is caused by a CAG trinucleotide repeat expansion in the first exon of the HTT gene. The HTT gene was the first autosomal disease locus to be mapped by genetic linkage
analysis in 1983 (Gusella et al., 1983) on the short arm of chromosome 4 (4p16.3). The huntingtin protein (htt) was found to be ubiquitously expressed throughout the body, with highest expression in testis and brain (Strong et al., 1993), however, cells in the brain are specifically vulnerable to the toxic function of mutant htt. The CAG repeat expansion in the HTT gene results in an expanded polyQ repeat in the htt protein (The Huntington’s Disease Collaborative Research Group, 1993). When the number of CAG repeats exceeds 39, the gene encodes a mutated form of the htt protein that is prone to aggregation. Alleles ranging from 36 to 39 repeats, lead to reduced penetrance of the disease or to a very late onset (Kremer et al., 1992; McNeil et al., 1997; Losekoot et al., 2013) and both sexes are affected with the same frequency (Walker, 2007). Repeat numbers exceeding 55–60 result in clinical manifestation of the disease before the age of 20, known as juvenile HD (Andresen et al., 2007). Intergenerational CAG repeat changes are extremely rare on normal chromosomes but on expanded chromosomes changes in CAG repeat size take place in approximately 70 percent of meioses and expansion is more likely via the paternal line (Kremer et al., 1995).

There is a strong inverse correlation between repeat numbers and the age of onset of the disease. The repeat length accounts for approximately 70 percent of the variance in age of onset (Roos, 2010). The relationship between repeat size is and rate of progression and duration of the disease is still under debate (Rosenblatt et al., 2012). Neuropathological changes, such as atrophy and the number of aggregates found in the brain are clearly correlated with the CAG repeat number.

For patients, only symptomatic treatment is available and a treatment to slow down the progression or delay the onset of the disease remains elusive.

Huntingtin protein

When the HTT gene was discovered in 1993, the htt protein had an unknown function. Since then, enormous research efforts have revealed many functions of the wild-type protein (discussed in the present paragraph) and many toxic gain of functions of the mutant protein (discussed in the next paragraph) (Figure 1).

Wild-type htt is mainly localized in the cytoplasm, although a small proportion is present in the nucleus (Hoogeveen et al., 1993; De Rooij et al., 1996; Kegel et al., 2002). The protein is known to be associated with microtubules, the plasma membrane, Golgi complex, the endoplasmic reticulum (ER), and mitochondria. Furthermore htt is associated with vesicular structures, such as clathrin-coated and non-coated vesicles, autphagic vesicles, endosomal compartments or caveolae (Kegel et al., 2005; Atwal et al., 2007; Rockabrand et al., 2007; Strehlow et al., 2007; Caviston et al., 2011).

Three of the first 17 amino acids at the amino terminus of htt are lysines, which are targets for post translational modifications that regulate htt half-life and are proposed to be involved in targeting htt to various intracellular membrane-associated organelles (Kalchman et al., 1996; Steffan et al., 2004; Kegel et al., 2005; Atwal et al., 2007; Rockabrand et al., 2007). The polyQ repeat starts at the 18th amino acid and is thought to form a polar zipper structure, important for the interaction between different polyQ-containing transcription factors (Perutz et al., 1994; Harjes
AND WANKER, 2003). The polyQ stretch is followed by a polymorphic polyproline repeat, which is thought to be involved in keeping the protein soluble (STEFFAN et al., 2004). Additionally, three main HEAT (htt, elongation factor 3, protein phosphatase 2A, and the yeast PI3-kinase TOR1) repeat motifs are present which are known to form superhelical structures and are involved in protein-protein interactions (TAKANO AND GUSELLA, 2002; LI et al., 2006). Htt is palmitoylated at the cysteine residue 214 by htt interacting protein (Hip) 14, which is thought to be involved in htt trafficking (HUANG et al., 2004). Htt has various proteolytic cleavage motifs, with a hotspot between amino acid 500 and 600 that are recognized by various proteases, such as caspases 1, 3, 6, 7 and 8 and calpain (GAFNI AND ELLERBY, 2002; WELLINGTON et al., 2002; KIM et al., 2006). The significance of wild-type htt cleavage is not completely clear, but the N-terminal proteolytic cleavage products tend to be trafficked across the nuclear membrane (WARBY et al., 2008). In the case of mutant htt, the accumulation of N-terminal proteolytic cleavage products in the nucleus has major impact on the pathogenesis (see below).

Mutant huntingtin: gain of toxic function

Although countless toxic gain of functions of the mutant htt have been proposed in the last two decades, the exact order of pathogenic events in HD, as well as interactions between mutant htt and other cellular proteins, are still poorly understood. Mutant htt is known to undergo conformational changes and interferes with various cellular processes, such as cellular trafficking, inhibition of chaperones, proteasomes, and autophagy, causing accumulation of htt and other abnormally folded proteins. (Figure 1). The characteristic protein aggregates are located throughout the brain and can already be found before the onset of the first symptoms (WEISS et al., 2008). The rate of aggregate formation is correlated to the length of the polyQ repeat (LEGLEITER et al., 2010), although there is growing evidence suggesting that these aggregates are not good indicators for disease onset and progression (WANKER, 2000; VAN ROON-MOM et al., 2006). Whether accumulation of these aggregates is neurotoxic or neuroprotective is still under debate but increasing evidence suggests that soluble shorter mutant htt, and fragments thereof, are the main toxic components (DAVIES et al., 1997; SAUDOU et al., 1998; ARRASTATE et al., 2004; SATHASIVAM et al., 2013). Mutant htt is more subject to increased caspase activity and proteolytic cleavage of mutant htt results in the formation of small toxic N-terminal mutant htt fragments (Figure 1) (COOPER et al., 1998). In HD brains, more htt protein fragments are found within the striatum compared to control brains, as well as upregulation of caspases, suggesting that cleavage may be disease specific (MENDE-MUELLER et al., 2001; GRAHAM et al., 2010). Furthermore, strong evidence was presented for an important role of htt protein fragments in the pathogenesis of HD, as a HD mouse model containing capase-6-resistant expanded htt did not show neuronal dysfunction in contrast to the same mouse with capase-6-sensitive expanded htt (GRAHAM et al., 2006). The only difference between these mice was the presence or absence of a 586 amino acid capase-6 cleaved htt fragment containing the expanded polyQ repeat.

Although many genes and proteins have been identified to be involved in the HD pathogenesis, there is not one main cellular process affected in HD. Below I will review the
best studied cellular processes known to be involved in HD pathology.

Transcriptional deregulation

Like other polyQ disorders, altered gene expression is a prominent molecular hallmark of HD. As described above, mutant htt is proteolytically cleaved and N-terminal fragments are abundant in the nucleus, where they form aggregates (COOPER et al., 1998). Various transcription factors have been found to co-localize with htt aggregates, such as TATA box-binding protein (TBP), cAMP response element-binding protein binding protein (CBP) and p53 (STEFFAN et al., 2000; VAN ROON-MOM et al., 2002). These co-aggregated proteins can no longer assert their normal function and could thereby contribute to transcriptional deregulation (NUCIFORA, JR. et al., 2001). A large set of genes involved in cellular processes affected have been found to be differentially expressed in various cellular and animal models of HD (CHA, 2007) and HD patient-derived post-mortem brain (HODGES et al., 2006). In HD, mutant htt binds less efficiently to the RE1 silencing transcription factor (REST), causing transcriptional repression of various genes, including the brain-derived neurotrophic factor (BDNF) (ZUCCATO et al., 2001; ZUCCATO et al., 2007). BDNF is vital for neuronal survival and is involved in synaptic plasticity processes (HUANG AND RIECHARDT, 2001). Next to reduced gene transcription, mutant htt also disrupts vesicular transport and release of BDNF, possibly leading to excitotoxicity (GAUTHIER et al., 2004).

Impaired protein degradation

Protein aggregates in HD patient-derived brain material shows a clear co-localization of htt and ubiquitin (DIFIGLIA et al., 1997), suggesting an involvement of the ubiquitin-proteasomal protein degradation in the disease. Mutant htt is misfolded, resulting in an aggregation-prone conformation (ROUSSEAU et al., 2009). Misfolded, aggregation-prone proteins are generally cleared either by the ubiquitin-proteasome system (UPS) (short-lived proteins) or through the autophagy-lysosome pathway (long-lived cytoplasmic proteins and protein complexes) (RUBINSZTEIN, 2006). Aggregated htt protein and long stretches of Qs are known to impair the UPS in vitro and in post-mortem brain tissue (BENCE et al., 2001; VENKATRAMAN et al., 2004; DIAZ-HERNANDEZ et al., 2006; RASPE et al., 2009; PARK et al., 2013b), resulting in an inefficient degradation of mutant htt. The UPS is also involved in ER-associated protein degradation (ERAD). In an overexpressing cell system mutant htt was found to sequester various ERAD proteins, thereby inhibiting their function (DUENNWALD AND LINDQUIST, 2008), which can result in ER stress-induced autophagy. To note, the involvement of the UPS in processing of expanded polyQ repeats has been the subject of controversy. Overexpressed N-terminal polyQ fragments were found to be entirely degraded by cellular proteasomes (JUENEMANN et al., 2013). Also the entrapment of components of the UPS in aggregates could not be validated in HD mouse models (BETT et al., 2009; MAYNARD et al., 2009). Still, UPS activity is known to decrease with age and this reduced UPS activity is associated with increasing N-terminal expanded polyQ fragments aggregates in an HD knock-in mouse model (ZHOU et al., 2003), suggesting an involvement of UPS impairment in the HD pathogenesis.

In HD, two types of autophagy are affected, being macroautophagy and chaperone-mediated
autophagy (Cortes and La Spada, 2014). By macroautophagy cytosolic materials are sequestered in double membrane vesicles called autophagosomes. Although in HD cells autophagosomes are formed correctly and fused with lysosomes, its cargo recognition is disrupted by mutant htt, leading to empty autophagosomes (Martinez-Vicente et al., 2010). Thus, it seems that the in HD reduced macroautophagy is not caused by comprised autophagosomes formation, but due to impaired toxic substrate removal. Blockage of macroautophagy results in upregulation of chaperone-mediated autophagy (Kaushik et al., 2008). Chaperones usually assist target substrates, including phosphorylated (mutant) htt, directly to the lysosome (Thompson et al., 2009; Qi et al., 2012). In HD, this chaperone-mediated autophagy is impaired, probably by reduced phosphorylation of mutant htt (Thompson et al., 2009), or by binding of mutant htt to chaperone proteins (Qi et al., 2012), resulting in a reduced clearance of mutant htt. The reduced macroautophagy seen in HD is perhaps initially compensated by chaperone-mediated autophagy, but this overcompensation decreases with age, resulting in impaired clearance of toxic entities, increased oxidative damage and eventually neuronal cell death (Cortes and La Spada, 2014).

Mitochondrial dysfunction

N-terminal mutant htt fragments were found to be associated with the surface of mitochondria in transgenic and knock-in HD mice (Panov et al., 2002; Orr et al., 2008). The accumulation of mutant htt on mitochondria increases with age and correlates with disease progression. Soluble mutant htt impairs microtubule-based transport of proteins that are involved in the transport of mitochondria, which could lead to decreased ATP supply in nerve terminals (Orr et al., 2008). Mutant htt is also suggested to be involved in mitochondrial energy metabolism defects. Metabolic energy defects could be the result of mutant htt’s capability to induce mitochondrial permeability transition pore opening (Choo et al., 2004). This leads to low mitochondrial membrane potential and high glutamate transmission, resulting in overactive glutamate receptors (excitotoxicity) (Choo et al., 2004). Abnormal mitochondrial respiratory chain function seen in HD leads to reduced ATP levels and subsequent partially depolarized membrane (Milakovic and Johnson, 2005). This voltage change leads to chronic calcium influx and activation of proteases, causing more reactive oxygen species production and eventually oxidative stress. Nevertheless, this respiratory chain impairment is probably not caused by mutant htt directly but as late secondary event of autophagy pathway impairment and transcriptional deregulation (Oliveira, 2010).

Impaired axonal transport

In HD, axonal transport of mitochondria is impaired (Chang et al., 2006). Next to transport of mitochondria, also transport of other organelles, such as BDNF-containing organelles and vesicles that store neurotransmitters and other peptides, exists in synapses (Gauthier et al., 2004; Lu et al., 2009). In C. elegans and D. melanogaster HD models, mutant htt overexpression resulted in axonal aggregate formation and subsequently impaired axonal trafficking of synaptic vesicles and mitochondria (Parker et al., 2001; Gunawardena et al., 2003; Sinadinos et al.,
This impaired transport of vesicles is confirmed by the finding that in early stage HD patients synaptic vesicle proteins show an altered subcellular location (Modregger et al., 2002). Finally, various proteins involved in exocytosis are known to have decreased expression levels in HD patients. Proteins involved in docking and fusion of vesicles show reduced transcript expression, suggesting a defect in the neurotransmitter release machinery in HD patients (Smith et al., 2007).

To conclude, many cellular processes have been identified that are impaired in HD, making it difficult to pinpoint offhand which processes are crucial for the disease pathology. Nevertheless, the toxic N-terminal polyQ protein fragments are thought to be crucial in the pathogenesis of HD. Why certain neuronal populations are more vulnerable to polyQ-containing peptides than others, remains elusive.

Loss of wild-type htt function

As described above, the main cause of HD is a gain of toxic mutant htt function. Mutant htt can bind and sequester wild-type htt into aggregates, potentially causing loss of wild-type htt function (Kazantsev et al., 1999; Busch et al., 2003). Since wild-type htt has anti-apoptotic properties and is important for cell survival in adult brain, loss of wild-type htt function could also be involved. Knock-out of the homologous htt mouse gene was found to be early embryonic lethal (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995) and htt inactivation in the forebrain and testis of adult mice was shown to result in progressive neurodegeneration, sterility and reduced lifespan (Dragatsis et al., 2000). Removal of endogenous htt in a D. melanogaster HD model was found to exacerbate the neurodegenerative phenotype (Zhang et al., 2009). Htt is reported to be involved in BDNF-mediated neurotrophic support (Zuccato et al., 2001) and act as protector of brain cells from apoptotic stimuli (Rigamonti et al., 2000). These neuronal survival pathways are compromised due to mutant htt, once more supporting the view that loss of wild-type htt function is also involved in the disease pathogenesis.
Figure 1. Schematic representation of cellular pathogenesis in Huntington disease (HD). The HTT gene is transcribed into pre-mRNA containing 67 exons which is spliced into mature mRNA. The expanded CAG repeat is located in the first exon and the transcript is translated into a mutant polyglutamine (polyQ) repeat-containing huntingtin (htt) protein. This polyQ repeat triggers conformational changes, resulting in abnormally folded mutant htt. Mutant htt is proteolytically cleaved, giving rise to N-terminal fragments that are aggregation-prone. Full-length and cleaved forms of htt form soluble monomers, oligomers or large insoluble aggregates, both in the nucleus and in the cytoplasm that cause toxicity. Other cellular disturbances resulting from mutant htt presence involved in HD pathogenesis include: transcriptional deregulation, impaired autophagy, mitochondrial dysfunction, proteasomal impairment, and compromised axonal transport.
1.4. Spinocerebellar ataxia type 3

SCA3, or Machado-Joseph disease (MJD) (Haberhausen et al., 1995), is the most common spinocerebellar ataxia (Ranum et al., 1995; Silveira et al., 1996) and the second most common polyQ disease after HD (Pringsheim et al., 2012). Similar to the other polyQ disorders is SCA3 inherited in an autosomal dominant fashion (Coutinho and Andrade, 1978), neurodegeneration is progressive and is ultimately fatal. Current therapeutic strategies are only able to provide symptomatic relief (Bauer and Nukina, 2009). SCA3 is clinically heterogeneous, but the main feature is progressive ataxia, affecting balance, gait and speech. Other frequently described symptoms include pyramidal signs, progressive external ophthalmoplegia, dysarthria, dysphagia, rigidity, distal muscle atrophies and double vision (Coutinho and Andrade, 1978; Rosenberg, 1992; Soong et al., 1997; Teive et al., 2012). Neuropathological studies have detected widespread neuronal loss in the cerebellum, thalamus, midbrain, pons, medulla oblongata and spinal cord of SCA3 patients, as reviewed by Riess et al., (Riess et al., 2008).

SCA3 is caused by an expanded stretch of CAG triplets in the penultimate exon of the ATXN3 gene on chromosome 14q32.1, encoding the ataxin-3 protein (Kawaguchi et al., 1994). Healthy individuals have up to 44 CAG repeats, whilst affected individuals have between 52 and 86 glutamine repeats. A repeat range from 45 to 51 is associated with incomplete penetrance of the disease (Kawaguchi et al., 1994; Durr et al., 1996; Padiath et al., 2005). SCA3 patients with two mutant alleles show a more severe disease phenotype than those with a single mutant allele (Carvalho et al., 2008). Also, there is a clear correlation between CAG repeat size and age of onset, though CAG repeat length only accounts for approximately 50% of the total variability in age of onset (Maciel et al., 1995). The expanded CAG repeat leads to formation of an expanded polyQ tract in the C-terminal region of the ataxin-3 protein, leading to a toxic gain of function of the protein and formation of characteristic neuronal aggregates (Paulson et al., 1997b). As is the case in HD, the neurotoxic properties of these aggregates are still under debate since the number of aggregates does not mirror the level of neurodegeneration or ATXN3 CAG repeat length (Rub et al., 2006).

Extensive studies in cell and animal models over the last decade have led to the identification of several cellular processes potentially involved in SCA3 pathology. Nonetheless, much remains to be elucidated regarding the toxicity resulting from mutant ataxin-3 RNA and protein, and a more comprehensive understanding of the many cellular processes involved would be of great benefit for the development of therapeutic strategies.
Ataxin-3 protein

The ataxin-3 protein has a molecular weight of approximately 42 kDa, depending on the isoform and size of the polyQ repeat. The CAG repeat, located in the penultimate exon, is translated into a polyQ repeat located at the C-terminus of the protein. In blood, 56 splice variants of ATXN3 have been identified, of which 20 could potentially be translated into a functional ataxin-3 protein (BETTENCOURT et al., 2010). Of these 20 isoforms, only two isoforms, which differ in their C-terminal tail, have been studied extensively thus far. The isoform of ATXN3 most commonly expressed in brain consists of 11 exons, and is translated into an ataxin-3 protein consisting of 361 amino acids (SCHMIDT et al., 1998; TROTTIER et al., 1998; HARRIS et al., 2010), based on a polyQ repeat length of 13 [Ensembl transcript ID ENST00000393287] (Figure 2).

Ataxin-3 is found throughout the cell and is able to translocate from the cytoplasm to the nucleus and back (PAULSON et al., 1997A; SCHMIDT et al., 1998; TAIT et al., 1998; TROTTIER et al., 1998; POZZI et al., 2008). Different regions of the ataxin-3 protein influence its subcellular localisation. It is not yet known if ataxin-3 plays a more important role in the nucleus or the cytoplasm, but enzymatically active ataxin-3 has been shown to localise to the nucleus more frequently compared to its inactive form (TODI et al., 2007). In silico analysis predicted a nuclear localisation signal (NLS) in the proximity of the polyQ repeat at amino acid 273 to 286 (Figure 2) (TAIT et al., 1998; ALBRECHT et al., 2004; ANTONY et al., 2009; MACEDO-RIBEIRO et al., 2009). This NLS showed a weak nuclear import activity in vitro (ANTONY et al., 2009). However, mutating or deleting the proposed core NLS sequence from amino acid 282 to 285 had no effect on subcellular distribution, thus questioning the importance of the ataxin-3 NLS in its cellular localisation (MUELLER et al., 2009; BREUER et al., 2010).

Another region that has been implicated in regulating ataxin-3 cellular localisation lies in the first 27 amino acids. Ataxin-3 lacking these first 27 amino acids could not be found in the nucleus, though the responsible mechanism involved is still unknown (POZZI et al., 2008). Furthermore, ataxin-3 contains six potential nuclear export signals (NES) (ALBRECHT et al., 2004; ANTONY et al., 2009; MACEDO-RIBEIRO et al., 2009), of which two (amino acid 77 to 99 and 141 to 158) (Figure 2), showed significant nuclear export activity (ANTONY et al., 2009; MACEDO-RIBEIRO et al., 2009).

The N-terminus of ataxin-3 contains a large Josephin domain (Figure 2) that is known to have a low isopeptidase activity (WINBORN et al., 2008), implicating a role for ataxin-3 in the UPS pathway (BURNETT et al., 2003). The Josephin domain, together with the ubiquitin interacting motifs (UIM), can either rescue proteins from degradation or stimulate breakdown, by the removal of inhibitory poly-ubiquitin chains and by the regeneration of free and reusable ubiquitin (BURNETT et al., 2003; WINBORN et al., 2008; DO CARMO et al., 2010). The UPS pathway is involved in various cellular processes, such as protein degradation, endocytosis, transcriptional regulation and antigen presentation. Ubiquitination is a cascade of processes involving activating enzyme E1, transfer to ubiquitin conjugating enzymes E2 and association with ubiquitin ligases E3, resulting in addition of ubiquitins via isopeptide linkages to lysines.
in the targeted protein (Fang and Weissman, 2004). Ubiquitins can bind individually, or as a poly-ubiquitin chain. Polyubiquitin chains linked through lysines 6, 11, 27, 29, 33, and 48 target proteins for proteasomal degradation. In contrast, lysine 63 or linear polyubiquitin chains have non-proteolytic functions such as activation of kinases and autophagy, where it is proposed to be involved in the biogenesis of protein inclusions (Lim and Lim, 2011). Amino acid cysteine 14, histidine 119, and asparagine 134 of the Josephin domain (Figure 2) of ataxin-3 are essential for its isopeptidase function and are highly conserved between Josephin and other ubiquitin C-terminal hydrolases and ubiquitin-specific proteases (Mao et al., 2005; Nicastro et al., 2005). The UIMs mediate selective binding to ubiquitin chains and restrict the types of chains that can be cleaved by the Josephin domain. Ataxin-3 is known to recognise poly-ubiquitin chains of four or more ubiquitins (Burnett et al., 2003; Berke et al., 2005) and binds the poly-ubiquitin linkages at lysine 48, lysine 63 and mixed linkage ubiquitin chains, with preference for lysine 63-tagged ubiquitins (Fang and Weissman, 2004; Winborn et al., 2008). Especially the first and second UIMs are very important for binding of poly-ubiquitin chains, since mutations of leucine 229 and 249 resulted in almost abolished binding to ubiquitins (Burnett et al., 2003).

Ataxin-3 has been found to bind the valosin-containing protein (VCP/p97) (Wang et al., 2000; Zhong and Pittman, 2006). VCP/p97 has numerous functions, of which one is the regulation of ERAD (Zhong and Pittman, 2006; Liu and Ye, 2012). A potential VCP/p97 binding domain has been mapped to an arginine/lysine-rich motif just prior to the polyQ repeat (Boeddrich et al., 2006). The ataxin-3-VCP/p97 complex is involved in assisting targeted proteins to the proteasome (Wang et al., 2006). Ataxin-3 is also known to interact with the human homologues of yeast protein RAD23, hHR23A and hHR23B (Figure 2) (Wang et al., 2000). hHR23A and hHR23B are involved in DNA repair pathways as well as the delivery of ubiquitinated substrates to the proteasome for degradation (Wang et al., 2000). The binding site of hHR23B to ataxin-3 is located in the second ubiquitin binding site of the Josephin domain, and in concordance, hHR23B was shown to compete with ubiquitin binding (Nicastro et al., 2005). Cell stress resulted in altered interactions with both VCP/p97 and HR23B, which were found mainly in the cytoplasm, although no effect on protein degradation was reported (Laco et al., 2012A).

Besides the clear role of ataxin-3 in protein degradation, ataxin-3 has been shown to be capable of regulating the transcriptional process. Ataxin-3 is, for instance, able to repress matrix metalloproteinase-2 (MMP-2) transcription, and improved nuclear localisation of ataxin-3 through phosphorylation enhances this transcriptional repression (Mueller et al., 2009). Transcriptional regulation by ataxin-3 might arise through different mechanisms, since ataxin-3 is known to interact with numerous transcriptional regulators such as TBP-associated factor 4 (TAF4) (Shimohata et al., 2000), CBP (McCabe et al., 2000; Chai et al., 2002; Li et al., 2002), p300 (Li et al., 2002), p300/CBP-associated factor (PCAF) (Li et al., 2002), nuclear receptor co-repressor (NCoR1), histone deacetylase (HDAC) 3 and 6 (Burnett, 2005; Evert et al., 2006), forkhead box O (FOXO) transcription factor FOXO4 (Araujo et al., 2011), and RAD23 (Wang et al., 2000). Also, direct binding of ataxin-3 to DNA can likely take place through a leucine zipper motif located at amino acid 223 to 270 (Figure 2) (Evert et al., 2006). This basic leucine zipper
Figure 2. Schematic representation of the ATXN3 gene, exon-intron structure and protein product showing protein functional domains, posttranslational modifications and binding domains of the main interacting partners. (a) The ATXN3 gene (Ensembl ENST00000393287 transcript ID) consists of 11 exons with the start codon in exon 1 and the CAG repeat in exon 10. The shape of the boxes depict the reading frame, nt = nucleotides. The height of the introns are relative to their size. (b) The ataxin-3 protein consists of 361 amino acids (aa) with a Josephin domain in the N-terminal part that contains crucial amino acids for its isopeptidase activity (cysteine 14 (C), histidine 119 (H), and asparagine 134 (N)) and two nuclear export signals (NES). The C-terminal part contains three ubiquitin interacting motifs (UIM 1 to 3), a nuclear localisation signal (NLS) and the polyQ repeat. Specific amino acids known to undergo posttranslational modifications are indicated as follows: Yellow circles, phosphorylation (P); purple eclipse, ubiquitination (Ub); orange triangle, calpain cleavage site; pink triangle, caspase cleavage motif. (c) Binding domains of the main interacting partners: ubiquitin; VCP/p97, valosin-containing protein; hHR23A and hHR23B, human homologs of yeast protein RAD23; and DNA.
motif was previously shown to bind to the GAGGAA consensus sequence in DNA (Landschulz et al., 1988).

In summary, ataxin-3 is a well-established deubiquitinating enzyme, directly regulating the UPS machinery. Next to the proteasomal degradation, ataxin-3 is also implicated to be involved in regulation of misfolded ER protein degradation and might also directly interact with important transcriptional regulators and components of the DNA repair pathway.

Mutant ataxin-3 gain of toxic function

In SCA3, the expanded polyQ stretch in the C-terminus of ataxin-3 most likely leads to conformational changes of the protein, in turn resulting in altered binding properties, loss of protein function, altered subcellular localisation, aggregation, and perhaps altered proteolytic cleavage (Jana and Nukina, 2004). Although in the past decade there has been extensive research into the SCA3 disease mechanisms, it is still not well understood how the ataxin-3 polyQ expansion results in the observed pathology. In brain, the ATXN3 gene expression levels were not found to be higher in the predominantly affected brain regions, suggesting that ATXN3 gene expression levels do not directly correlate with the selective neurodegeneration seen in SCA3 patients (Schmitt et al., 1997). Therefore, other alterations induced by the mutant ataxin-3 protein are most likely important in SCA3 pathogenesis as well.

One of the first observations made in SCA3 patient derived brain material were the intracellular aggregates in neurons of the ventral pons and less frequently in the substantia nigra, globus pallidus, dorsal medulla, and dentate nucleus (Paulson et al., 1997a), a feature that was reproduced in cell and animal models overexpressing mutant ataxin-3 (Ikeda et al., 1996; Evert et al., 1999; Schmidt et al., 2002). Mutant ataxin-3 is known to accumulate in the cell nucleus, a property that is required for in vivo toxicity (Paulson et al., 1997b; Schmidt et al., 1998; Bichelmeier et al., 2007). In line with this, transgenic SCA3 mice show a decrease of soluble mutant ataxin-3 protein in the cerebellum during disease progression, whilst aggregate formation increases and the disease phenotype progresses (Nguyen et al., 2013). The nuclear environment has been suggested to promote the formation of nuclear aggregates, and additional proteins, such as TBP and CBP, were found to be recruited to the aggregates in human brain (van Roon-Mom et al., 2005) and SCA3 animal models (Perez et al., 1998). Indeed, reducing nuclear localisation of mutant ataxin-3 led to a reduction in nuclear inclusions (Fei et al., 2007; Mueller et al., 2009). The intranuclear aggregates only arise when ataxin-3 contains the expanded polyQ tract (Paulson et al., 1997b).

In SCA3, proteolytic cleavage of mutant ataxin-3 is thought to lead to generation of cytotoxic and aggregation prone shorter soluble fragments containing the expanded polyQ toxic entity (Berke et al., 2004; Haacke et al., 2006; Takahashi et al., 2008; Koch et al., 2011). In a mouse model, ataxin-3 derived cleavage fragments were shown to contain expanded polyQ-containing protein fragments C-terminal of amino acid 221 (Goti et al., 2004). Interestingly, in the two SCA3 brains tested, the ataxin-3 C-terminal fragments were enriched in disease-relevant brain structures, such as the cerebellum and substantia nigra, compared to an unaffected brain region or control brain material (Goti et al., 2004). In subsequent studies, several caspase and
calpain proteolytic enzymes were identified that could be responsible for the generation of the potentially toxic ataxin-3 fragments. These mutant ataxin-3 fragments are highly susceptible to aggregation (Hubener et al., 2012), and capable of inducing both aggregation and toxicity to a larger extent than full length mutant ataxin-3 (Ikeda et al., 1996; Teixeira-Castro et al., 2011).

In the past decade there has been extensive research into the SCA3 disease mechanisms, and various cellular processes, which I will review below, were found to be altered in SCA3.

Impaired protein degradation

Though ubiquitin chain proteolytic activity does not appear to vary between wild-type and mutant ataxin-3 (Winborn et al., 2008), a widespread reduction of protein deubiquitination was reported in a mutant ataxin-3 cell model (Winborn et al., 2008). This potential loss of deubiquitination function in SCA3 might in part be explained by trapping of ataxin-3 and various other components of the proteasomal machinery in the large ubiquitin-rich aggregates (Paulson et al., 1997B; Chai et al., 1999). Mutant ataxin-3 binds the ERAD-mediated protein degradation component VCP/p97 more efficiently than wild-type ataxin-3, possibly because of conformational changes (Hirabayashi et al., 2001; Zhong and Pittman, 2006; Laco et al., 2012A). In spite of this more efficient binding, mutant ataxin-3 seems to interfere with the degradation of target substrates (Doss-Pepe et al., 2003; Laco et al., 2012A). Additionally, N-terminal ataxin-3 fragments of 259 amino acids lacking the VCP/p97 binding domain were found to result in ER stress and impaired ER mediated unfolded protein response when expressed in a mouse model, though ERAD component levels appeared unchanged (Hubener et al., 2011).

Not only ER degradation is altered in SCA3 but also autophagy, in which the degradation of cellular components through the lysosomal machinery, is impaired (Figure 3). Aggregates of mutant ataxin-3 were found to contain molecular components involved in autophagy. For instance, beclin-1, a protein crucial in the autophagy pathway was found to be trapped in protein aggregates in SCA3 brains (Nascimento-Ferreira et al., 2011). In a rat model overexpressing mutant ataxin-3, increased beclin-1 expression resulted in clearance of the mutant protein (Nascimento-Ferreira et al., 2011). This observation is in accordance with impairments in autophagy seen in other neurodegenerative disorders (Wong and Cuervo, 2010), and the fact that stimulation of autophagy was found to alleviate symptoms in vivo (Raikumar et al., 2004).

These observations suggest that the SCA3 pathology may partly be the result of loss of function of ERAD machinery as well as compromised autophagy, together resulting in impaired protein degradation, accumulation of ubiquitinated proteins, and cellular stress.

Mitochondrial dysfunction

A cell model overexpressing mutant ataxin-3 with 78 CAGs showed reduced antioxidant enzyme levels, increased mitochondrial DNA damage, and reduced energy supply, which indicates impaired mitochondrial function (Yu et al., 2009). Recently, mitochondrial DNA damage was also seen in SCA3 transgenic mice expressing full length ataxin-3 with 98 to 104 glutamines (Kazachkova et al., 2013). In the disease affected pontine nuclei of these transgenic SCA3 mice less mitochondrial DNA copies were seen, as compared to the unaffected
hippocampus (Kazachkova et al., 2013). Additionally, less mitochondrial DNA copy numbers were observed in the mutant cells and SCA3 patient samples, implying mitochondrial DNA damage due to oxidative stress (Yu et al., 2009). In line with this, the antioxidant enzyme superoxide dismutase was found downregulated in pontine brain tissue of SCA3 patients (Araujo et al., 2011), suggesting diminished antioxidant enzyme function.

Additionally, mitochondrial dysfunction was verified by the finding that the mitochondrial respiratory chain complex II activity was somewhat compromised in SCA3 (Laco et al., 2012b). As damaged mitochondria will not be able to scavenge free radicals and prevent cell energy impairment as effectively, this process may therefore further increase oxidative stress in the cell. Oxidative stress is then able to interfere with vital cellular functions, potentially resulting in activation of apoptosis or excitotoxicity, two of the main causes of neuronal death (Emerit et al., 2004).

Above described findings indicate that, like other polyQ disorders, defects in the cellular defence mechanism against oxidative stress could play a role in the pathogenesis of SCA3.

Transcriptional deregulation

Since ataxin-3 has DNA-binding properties and interacts with transcriptional regulators, transcriptional deregulation has been suggested to play a central role in the SCA3 pathogenesis (Riley and Orr, 2006). In SCA3 and other polyQ disorders, transcription factors, together with polyQ proteins, are sequestered into nuclear aggregates, resulting in deregulation of their function as transcriptional co-repressor or activator (Perez et al., 1998; van Roon-Mom et al., 2005). Transcription of genes involved in inflammatory processes, cell signalling, and cell surface-associated proteins were found to be altered in SCA3 cell and mouse models, suggesting transcriptional deregulation in SCA3 (Evert et al., 2001; Evert et al., 2003; Chou et al., 2008). Likewise, some corresponding proteins like MMP-2, amyloid-β precursor protein (APP) and interleukins were found to be significantly increased in SCA3 patient brain material (Evert et al., 2001). However, thus far no gene expression studies have been performed on SCA3 patient material to replicate above described findings.

Ataxin-3 was shown to inhibit histone acetylase activity. When mutated, this inhibition of histone acetylase is impaired, and increased acetylation of total histone H3 was indeed observed in mutant ataxin-3 overexpressing cells and human SCA3 brain material, resulting in an increase of transcription in SCA3 cells (Evert et al., 2006). This transcriptional upregulation was supported by the discovery that in cells overexpressing mutant ataxin-3, MMP-2 was found upregulated (Evert et al., 2003).

Although in SCA3 changes in gene expression have not been as extensively studied as the impaired protein degradation, the discovery of altered transcription of many genes suggests a role of transcriptional deregulation in SCA3 pathogenesis.
Loss of wild-type ataxin-3 function

Although the ataxin-3 protein has been well studied, it is still uncertain to what extent ataxin-3 is an essential protein for normal cellular functioning. In support of an essential role for ataxin-3, depletion of ataxin-3 using small-interference RNA (siRNA) in cultured non-neuronal human and mouse cells resulted in accumulation of ubiquitinated material in the cytoplasm, cytoskeletal disorganisation, loss of cell adhesion and increased cell death (Rodrigues et al., 2010). Likewise, knock-out of ataxin-3 was found to result in lower levels of stress-induced chaperone proteins in mouse brain, proposing an significant role for ataxin-3 in cellular homeostasis (Reina et al., 2012). Other evidence however suggests that ataxin-3 is not necessary for normal cellular functioning. First, ataxin-3 knock-out in C. elegans did not alter the lifespan (Rodrigues et al., 2007), and remarkably resulted in resistance to stress (Rodrigues et al., 2011). In mice, local knock-down of endogenous ataxin-3 in the striatum for 2 months did not show any toxicity (Alves et al., 2010). Likewise, ataxin-3 knock-out mice, loss of ataxin-3 did not affect viability or fertility (Schmitt et al., 2007; Boy et al., 2009; Switonski et al., 2011). However, these mice did show a mild behavioural phenotype with increased anxiety, as well as increased levels of ubiquitinated proteins, particularly in cells that are known to express high levels of ataxin-3 in wild-type mice (Schmitt et al., 2007). Furthermore, ataxin-3 has also been proposed to serve as a neuroprotectant, since in flies expressing mutant polyQ proteins overexpression of ataxin-3 was found to alleviate neurodegeneration (Warrick et al., 2005). In contrast, double transgenic mice, co-expressing mutant and wild-type ataxin-3, did not show any phenotypic improvement as compared to single transgenic SCA3 mice, suggesting that ataxin-3 may not act as neuroprotectant (Hubener and Riess, 2010).

Whilst absence of ataxin-3 thus does not appear to be directly detrimental to cellular vitality in most studies, the subtle phenotypes observed in rodent ataxin-3 knock-out models and the fact that ataxin-3 contains several well conserved regions amongst different species (Albrecht et al., 2003) indicate that the protein may not be completely dispensable.
1.5. Clinical and molecular genetics of other polyQ disorders

Spinal and bulbar muscular atrophy

SBMA is X-linked and females typically exhibit a reduced pathology (Banno et al., 2012). Next to lower motor weakness, males affected by SBMA suffer from muscle cramps, gynecomastia with abdominal obesity, and progressive loss of libido (Katsuno et al., 2012). There is marked degeneration of anterior horn cells, bulbar neurons, and dorsal root ganglion cells (Orr and Zoghbi, 2007). Patients with 40 or more CAGs in the first exon of the AR gene will develop SBMA (La Spada et al., 1991).

The AR protein is a well characterized nuclear hormone with the polyQ repeat located in its N-terminal transactivation domain. Next to this transactivation domain, the AR contains a DNA binding domain and an androgen binding domain. Binding of androsterone to the AR in the cytoplasm results in translocation into the nucleus, where it dimerizes and subsequently stimulates transcription of androgen responsive genes. AR is essential for male foetus development, male sexual characteristics and spermatogenesis maintenance (Brinkmann, 2011). The main pathological mechanisms leading to SBMA are altered protein-protein interactions and transcriptional deregulation. Intranuclear aggregates have been found to sequester AR binding partners (Beitel et al., 2013). Other known polyQ gain of function mechanisms like mitochondrial deregulation, autophagy, and impaired transport were also suggested to be involved in SBMA (Beitel et al., 2013).

Spinocerebellar ataxia type 1

SCA1 is clinically characterized by dysphagia, oculomotor disturbance, pyramidal and extrapyramidal disease signs, sensory deficits as well as mild cognitive decline (Sasaki et al., 1996). SCA1 is caused by a repeat expansion of 39 or more CAGs in the first coding exon (exon 8) of the ATNX1 gene, resulting in severe cerebellar and brain stem atrophy (Orr et al., 1993). In healthy individuals, when the repeat is longer than 21 CAGs, it is interrupted by one to three histidine-encoding CAT triplets. Loss of one of these CAT codons results in an uninterrupted CAG repeat which is instable upon transmission (Menon et al., 2013). There is a clear inverse correlation between the pure CAG repeat number and the age of onset (Menon et al., 2013). Patients with 70 or more CAG repeats will develop a juvenile form of SCA1 (Donato et al., 2012).

The function of the ataxin-1 protein is largely unknown, although various domains and phosphorylation sites have been identified that are involved in protein-protein interactions, cellular localisation and stability (Chen et al., 2003; La Spada and Taylor, 2010). Ataxin-1 is able to translocate from the cytoplasm to the nucleus where it can interact with various transcription factors (Orr, 2012). Mutant ataxin-1 can still translocate to the nucleus, but transport back to the cytoplasm is impaired (Irwin et al., 2005).
Spinocerebellar ataxia type 2

Compared to SCA1, patients with SCA2 show slower eye movements and more pronounced hyporeflexia and tremor (Giunti et al., 1998). SCA2 is characterized by olivopontocerebellar, spinal and cortical atrophy (Geschwind et al., 1997a). SCA2 is caused by a CAG repeat expansion in the first exon of the ATXN2 gene which is translated into an expanded polyQ containing ataxin-2 protein (Imbert et al., 1996). The CAG repeat is interrupted by one or two CAA triplets and loss of one of the CAA triplets makes the repeat very unstable upon transmission to the next generation. SCA2 is an unique polyQ disorder as it does not show reduced penetrance. Patients with 32 or more CAGs will develop SCA2, whereas individuals with 31 do not (Magana et al., 2013).

Though no reduced penetrance has been reported for SCA2, an expansion between 27 to 33 CAGs in ATXN2 has been associated with sporadic and familial amyotrophic lateral sclerosis (ALS). In these cases, an altered interaction between ataxin-2 and the ALS related TAR DNA-binding protein (TARDBP) is thought to result in cytoplasmic aggregations in neurons derived from ALS patients (Elden et al., 2010). The ataxin-2 protein is thought to be involved in transcriptional regulation via its interaction with mRNA metabolism complexes (Orr, 2012).

Spinocerebellar ataxia type 6

SCA6 is a slow progressing pure cerebellar ataxia with mainly cerebellar atrophy mild peripheral neuropathy (Schols et al., 1998). Patients show pronounced oculomotor disturbance and problems with the vestibulo-ocular reflex (Yabe et al., 2003). SCA6 is the only non-fatal polyQ disease, probably because the brain stem is not affected (Zhuchenko et al., 1997; Geschwind et al., 1997b). The CAG repeat located in the 3’UTR of the CACNA1A gene on chromosome 19p13 was found when mapping the gene responsible for familial hemiplegic migraine (FHM) and episodic ataxia type-2 (EA-2) (Ophoff et al., 1996). SCA6 is the result of an expansion of 20 till 33 CAG repeats, usually located in the 3’UTR of the CACNA1A gene (Riess et al., 1997). However, in SCA6 alternative splicing leads to an alpha 1A subunit of the voltage-dependent P/Q type calcium channel (Ca$_{\alpha}$2.1) isoform containing the toxic polyQ repeat at its C-terminus. This alternative splicing disrupts the reading frame at the 3’ end of the CACNA1A transcript due to a GGCAG pentamer read-through at the intron 46 and exon 47 boundary (Tsunemi et al., 2008).

The pathogenic polyQ expansion in the encoded C-terminus of Ca$_{\alpha}$2.1 is by far the smallest of all polyQ disorders and within the range of normal repeats in other polyQ disease-causing proteins. Ca$_{\alpha}$2.1 is highly expressed in the cerebellar cortex and is expressed in only a few neuronal specific cell types. The pathology of SCA6 is thought to be a straightforward channelopathy, although SCA6 knock-in mice, which displayed aggregation of mutant Ca$_{\alpha}$2.1, did not show an electrophysiological phenotype, suggesting that the polyQ repeat itself does not affect the intrinsic electrophysiological properties of the channels (Watase et al., 2008). Proteolytic processing is implicated in disease pathogenesis, because C-terminal fragments and cytoplasmic protein aggregates have been reported in SCA6 post-mortem brain tissue (Ishikawa et al., 1999; Kubodera et al., 2003).
Spinocerebellar ataxia type 7

Next to ataxia and dysarthria, the clinical presentation of SCA7 consists of oculomotor disturbance, pyramidal disease signs, and visual loss due to pigmentary retinopathy (Enevoldson et al., 1994). This clinical presentation resulting from the olivopontocerebellar atrophy is highly variable and depends on the length of the CAG repeat in exon 3 of the ATXN7 gene (David et al., 1997). Individuals with 36 or more CAG repeats will certainly develop the disease around midlife and in the case of more than 100 repeats the disease manifests itself in infancty or early childhood (Van de Warrenburg et al., 2001). Intermediate alleles of 28 to 35 CAG repeats are meiotically unstable and were shown to result in pathological repeat lengths after paternal transmission (Stevanin et al., 1998).

The ataxin-7 protein is part of various transcription regulating complexes, where it functions as transcriptional repressor via histone acetylation (Strom et al., 2005). The pathogenic role of expanded ataxin-7 is still not exactly known and expanded ataxin-7 overexpression systems showed conflicting results on its histone acetylation activation (Martin, 2012). Although its gain of function mechanism is thus far unidentified, proteolytic cleavage and entrapment of truncated and full-length ataxin-7 in nuclear aggregates are part of the disease process (Holmberg et al., 1998; Garden et al., 2002).

Spinocerebellar ataxia type 17

SCA17 was the last identified polyQ disorder. In SCA17 patients the repeat size correlates with clinical characteristics; patients with 43 to 50 repeats display a reduced penetrance and show an HD-like phenotype (Rolfs et al., 2003), patients with 50 to 60 Qs show intellectual disability, dystonia and pyramidal signs, whereas patients with over 60 Qs have early childhood onset with rapid progression (Cloud and Wilmot, 2012). The expanded CAG repeat, interspersed by CAAs, is located in exon 3 of the TBP gene (Nakamura et al., 2001). Because the CAG repeat is interrupted by CAA codons, the expanded repeat is quite stable upon inheritance, and anticipation is rare in SCA17.

The expanded mixed repeat encodes a polyQ expansion in the transcription initiation factor TBP. TBP has the longest pure glutamine stretch in the healthy human proteome and can contain up to 42 Qs. An homozygous expanded polyQ repeat in TBP does not impair normal function during development, ruling out loss of function in SCA17 (Zuhlke et al., 2003; Toyoshima et al., 2004). Although transcriptional deregulation has been suggested, the exact mechanism by which expanded TBP cause neurotoxicity is not yet known (Friedman et al., 2008).

Dentatorubro-pallidoluysian atrophy

DRPLA is characterized by progressive ataxia, dementia, choreoathetosis, myoclonus, and epilepsy (Naito and Oyanagi, 1982). It is caused by an expanded CAG repeat in exon 5 of the atrophin-1 (ATN1) gene, resulting in degeneration of the dentatorubral and pallidoluysian systems of the central nervous system (CNS) (Naito and Oyanagi, 1982). Patients with a repeat of 49 or more will develop symptoms (Nagafuchi et al., 1994). Patients with a repeat number of 65
or more will develop myoclonic epilepsy during childhood, whilst infantile onset with severe atrophy was reported in patients with more than 90 CAGs (Shimojo et al., 2001).

Although the exact function of atrophin-1 is still unknown, it was suggested to act as transcriptional co-repressor (Zhang et al., 2002). Mutant atrophin-1 is prone to proteolytic cleavage and N-terminal fragments accumulate in nuclei of neurons (Nucifora, Jr. et al., 2001). This transcriptional deregulation is thus far the only pathogenic mechanism proposed to contribute to the neurodegeneration in DRPLA.
1.6. Protein lowering approaches for polyQ disorders

Most therapeutic strategies for polyQ diseases under investigation are targeting one of the many altered cellular processes caused by toxic mutant polyQ protein. To date, several clinical trials with small patient numbers have been carried out for polyQ disorders as symptomatic treatment to reduce depression, chorea, parkinsonian phenotype, restless leg syndrome, and sleepiness (Ogawa, 2004; Bettencourt and Lima, 2011; Scott, 2011). Clearly, there is demand for polyQ disorder therapies directed at preventing or slowing the progression of neurodegeneration. Targeting a single cellular process might be inadequate to be clinically beneficial. A more effective approach would be to reduce the expression of the mutant gene and thereby inhibiting all downstream toxic effects. Since polyQ disorders are monogenic and are the result of a gain of toxic polyQ protein, reducing the expression of the CAG repeat expansion containing gene should ideally halt the disease progression. However, for most of the polyQ disorders, the exact function and importance of the polyQ-containing protein is not fully understood, and therefore specific lowering of the mutant polyQ protein levels, leaving wild-type levels unchanged, would be favoured over a generic downregulation (Miller et al., 2003; Rodriguez-Lebron and Paulson, 2006). For instance, TBP haploinsufficiency was already shown to cause cognitive deficits in mice, indicating that complete knockdown of TBP cannot be used as potential therapy for SCA17 (Rooms et al., 2006).

For SCA2 and SCA17, no reports are available that use oligonucleotide-mediated modulating therapeutics as potential treatment, although if there would be therapies existing for these disorders, rodent models that nicely mimic phenotypic characteristics, are available to test these protein lowering strategies (Kelp et al., 2013; Magana et al., 2013). For the remaining polyQ disorders, there have been reports on protein lowering strategies, which will be shortly outlined below. I will first in short describe the basic principles of oligonucleotide-mediated therapies. Next I will focus on studies showing non-allele-specific lowering of total polyQ protein levels (Figure 3a and b), followed by different approaches for allele-specific lowering of mutant polyQ proteins (Figure 3c), than oligonucleotide-mediated modulating therapeutics targeting the common denominator of polyQ disorders, being the expanded CAG repeat (Figure 3d), and finally I will discuss lowering polyQ protein levels by targeting its binding partner.

Basic principles of antisense oligonucleotide-mediated therapies

Oligonucleotide-mediated therapies are widely used to manipulate the expression of specific disease-causing genes, as well as modulating splicing to rescue protein expression. Nowadays, there are many types of nucleic acid molecules that can interfere at the RNA level, such as double stranded RNAs (siRNAs, short hairpin RNAs (shRNA), and microRNAs (miRNA or miR)) (Maxwell, 2009) or single stranded RNAs (single-stranded silencing RNA (ss-siRNA)) (Yu et al., 2012), that promote selective degradation of homologous cellular mRNAs through the RNA-induced silencing complex. In this thesis I will mainly focus on antisense oligonucleotides (AON), which are small pieces of modified RNA or DNA that can hybridize to RNA. They can
generate different effects depending on the AON chemistry and target site (Figure 3 and 4).

Initially, AONs were used to induce gene knockdown (Dias and Stein 2002). This can be achieved through RNase H, a ubiquitous enzyme that cleaves RNA:RNA or RNA:DNA hybrids. The AONs used for this application are generally modified with a phosphorothioate (PS) backbone, which increases AON stability and enhances uptake of the AON across cell membranes. AONs modified further containing DNA molecules with 2’sugar moieties at the wings (DNA gapmers) will, upon binding to target mRNA, recruit RNase H to this RNA:DNA heteroduplex, resulting in cleavage and degradation of the target by nuclease (Wu et al., 2004) (Figure 3a).

Suppressing RNA translation into protein is also achieved by AONs targeting the translation start site by sterically blocking the binding of RNA binding protein complexes, such as ribosomal subunits (Kole et al., 2012) (Figure 3b). Here, AONs can be modified further to render them RNase H resistant by addition of a methyl (Me) or methoxyethyl (MOE) group to the 2’O sugar ribose, which is the target cleavage site of the RNase H enzyme. The 2’ sugar PS AONs targeted at pre-mRNA splicing elements can also block the access of proteins involved in the splicing machinery, causing exon skipping or inclusion (Figure 4).

Alternatively, nucleotides have been modified even further, e.g. using phosphorodiamidate morpholino oligomers (PMO), peptide nucleic acids (PNA) or locked nucleic acids (LNA). PMOs have been widely used for developmental studies in zebrafish embryos (Nasevicius and Ekker 2000; Nasevicius et al., 2000). Multiple RNase H-dependent AONs are in clinical trials including one against high-grade glioma in phase IIb (trabedersen (Bogdahn et al., 2011), and one has even been registered as a drug for cytomegalovirus induced retinitis (vitravene) (Marwick 1998).

Lowering total polyQ protein levels

For HD, various synthetic oligonucleotides with different modifications and backbones have been used in rodents to lower htt expression (Sah and Aronin, 2011). A partial reduction of 25 to 35% of both normal and mutant htt by using shRNAs was well-tolerated in wild-type rats up to 9 months without signs of toxicity or striatal degeneration (Drouet et al., 2009). Non-allele-specific reduction of htt transcripts up to 75% by using shRNAs (McBride et al., 2008; Boudreau et al., 2009; Grondin et al., 2012) and chimeric MOE PS AONs (Figure 3b) (Kordasiewicz et al., 2012) was found to be well tolerated in HD rodents and non-human primates. Intracerebroventricular (ICV) infusion of MOE PS AONs in transgenic HD mice for two weeks targeting both the human HTT transgene and endogenous murine htt resulted in reduced toxicity, extended survival, and improved motor performance up to 3 months post treatment (Kordasiewicz et al., 2012). Interestingly, the observed phenotypic improvement was comparable to the mice who were treated with exclusively the human HTT-specific AON, suggesting that the therapeutic reversal is caused by total lowering of htt protein levels (Kordasiewicz et al., 2012). Since htt lowering strategies will be most beneficial for patients when administered over many years, the long-term safety needs to be assessed.

Reducing AR protein expression using siRNAs was shown to reduce truncated mutant AR-induced toxicity in mutant AR overexpressing D. melanogaster and human cell models of SBMA (Caplen et al., 2002). However, no follow-up studies have been published since showing
an *in vivo* effect of reduced AR protein expression levels.

In a transgenic mouse model of SCA1, it also has been shown that ataxin-1 is an essential protein for cellular functioning (Burright et al., 1995). Depletion of endogenous ataxin-1 resulted in learning deficits and decreased hippocampal paired-pulse facilitation. This suggests that complete knockdown of ataxin-1 is not favourable (Matilla et al., 1998). The first attempt to use oligonucleotides as treatment for SCA1 was performed in a SCA1 transgenic mouse model, where injection of lentiviral shRNAs into the cerebral ventricles resulted in reduced mutant ataxin-1 protein expression, causing improved neuropathology and motor coordination (Xia et al., 2004). Silencing of mutant ataxin-1 *in vivo* was also achieved with miRNAs (Keiser et al., 2013). However, these shRNAs or miRNAs are uniquely attacking the transgenic human 82 CAGs-containing ATXN1 gene, whereas the endogenous ataxin-1 is left untouched, limiting its value as a model for the human intervention where all the ataxin-1 protein will probably be affected.

As potential gene silencing treatment for SCA3, non-allele-specific downregulation of all ataxin-3 transcripts has been tested in both wild-type and SCA3 rats (Alves et al., 2010). Striatal knock-down of endogenous ataxin-3 by injection of lentiviruses encoding shRNAs into the brain of wild-type rats did not show any toxicity (Alves et al., 2010). Interestingly, in SCA3 rats, this non-allele-specific silencing of ataxin-3 in the striatum for a 2 month period resulted in locally reduced neuropathology (Alves et al., 2010).

Lowering specifically mutant polyQ protein

Suppression of human mutant htt by 50% to 80%, for 4 months in transgenic rodent models of HD (expressing one human mutant htt and two wild-type murine htt transcripts) was found to improve motor and neuropathology abnormalities and prolonged longevity in HD mice (Harper et al., 2005; Wang et al., 2005). These studies showed that allele-specific lowering mutant htt without reducing wild-type htt levels, result in an improved pathology. Various studies have shown that a pronounced decrease of mutant htt levels with only minor reduction in wild-type htt is feasible using allele-specific oligonucleotides (Krol et al., 2007; Van Bilsen et al., 2008; Hu et al., 2009b; Lombardi et al., 2009; Pfister et al., 2009; Carroll et al., 2011). One way to design a molecule that can distinguish between the wild-type and polyQ disease-causing allele is to target a single nucleotide polymorphism (SNP) that is unique to the mutant transcript (Miller et al., 2003). SNPs are DNA sequences in which a single nucleotide is different between the two alleles of a gene. The first study showing allele-specific silencing in HD using SNP-specific siRNAs was obtained in human cells overexpressing an additional copy of HTT containing the targeted SNP (Schwarz et al., 2006). The first proof of principle of endogenous mutant htt silencing using this approach was shown in fibroblasts derived from HD patients (van Bilsen et al., 2008). Next to siRNAs, SNP-targeting RNase H-dependent AONs (Figure 3c) were shown to allele-specifically reduce mutant htt expression in patient-derived cells and a humanized HD mouse model (Carroll et al., 2011; Oestergaard et al., 2013). Subsequent genotyping revealed a group of 22 SNPs that are highly associated with mutant htt alleles in a European HD cohort (Warby et al., 2009). Since then, various groups have shown that the vast majority of the HD
patient population could be treated in this way using 5 (75% of HD patients) or 7 (85% of the HD patients) different siRNAs (OMBARDI et al., 2009; PFISTER et al., 2009). The most promising SNP is located in exon 67 of the HTT gene. This SNP is strongly associated with the mutant allele while 48% of the total Western HD population was heterozygous at this site (PFISTER et al., 2009). Although the allele specificity obtained from above described SNP targeting siRNAs are very promising, there are some limitations. The diversity of SNPs within patient populations would make it necessary to develop multiple oligonucleotides. Furthermore, for HD patients that do not exhibit heterozygosity at any of the most frequent SNPs this approach is not applicable.

A cre-recombinase conditional knock-out SCA1 mouse model proved that removal of mutant ataxin-1 at an early stage of the disease results in clearance of nuclear inclusions and reversal of disease symptoms (ZU et al., 2004). To date, there is only one report on allele-specific silencing of mutant ataxin-1 by targeting a heterozygous SNP. Using SNP-specific siRNAs in SCA1 patient-derived fibroblasts, only a moderate reduction of the mutant ataxin-1 transcript was achieved, whereas the normal ataxin-1 allele was also somewhat reduced (FISZER et al., 2012).

Whilst absence of ataxin-3 does not appear to be directly detrimental to cellular vitality in most studies, subtle phenotypes were observed in rodent ataxin-3 knock-out models (SCHMITT et al., 2007; BOY et al., 2009; SWITONSKI et al., 2011). The fact that ataxin-3 contains several well conserved regions amongst different species (ALBRECHT et al., 2003), together with its important function in protein degradation, transcription and possibly DNA repair, suggests that a strategy which reduces mutant ataxin-3 protein toxicity, whilst maintaining wild-type ataxin-3 protein levels, would be a preferable approach for therapeutic application in SCA3. Allele-specific silencing was achieved using shRNAs directed against a SNP unique to the mutant ataxin-3 transcript (ALVES et al., 2008). This targeted SNP at the 3’ end of the ATXN3 gene was found to be present in over 70% of SCA3 patients (GASPAR et al., 2001). The SNP-specific shRNA was able to specifically silence mutant ataxin-3 and was found to be neuroprotective in SCA3 mouse and rat models (ALVES et al., 2008; NOBREGA et al., 2013), thus showing good promise of allele-specific reduction for clinical implementation in SCA3 patients.

In the case of SCA6, complete removal of the Ca²⁺.1 protein would probably result in cerebellar dysfunction due to Purkinje cell loss (SAITO et al., 2009). However, mice with one functional CACNA1A allele are phenotypically normal (FLETCHER et al., 2001). Therefore, an allele-specific, or even better, a specific reduction of the Ca²⁺.1 isoform containing the toxic polyQ repeat at its C-terminus would be preferred. This splice isoform-specific knockdown of polyQ-containing Ca²⁺.1 was performed in vitro in transiently transfected human cells using siRNAs, as well as in human neuronal cells using miRNAs targeting a specific sequence encoding the polyQ-containing C-terminus of Ca²⁺.1 (TSOU et al., 2011).

Recently, conditional knockdown of mutant ataxin-7, one month after onset of motor symptoms, resulted in reversal of aggregation and alleviated some behavioural deficits in a tamoxifen-inducible SCA7 transgenic mouse model (FURRER et al., 2013). They concluded that a 50% downregulation of the mutant ataxin-7 protein expression already would show
major impact on the SCA7 phenotype. On the other hand, complete removal of the ataxin-7 homolog in *D. melanogaster* was shown to be lethal at the larval stage (Moham et al., 2014). Furthermore, knockdown of ataxin-7 in *D. melanogaster* resulted in reduced deubiquitinase activity, pronounced neurodegeneration, reduced locomotion, and decreased life span (Moham et al., 2014), suggesting that complete removal of ataxin-7 is not a proper strategy for SCA7. Thus far only one potential treatment for SCA7 showed to some extent an allele-specific reduction of mutant ataxin-7. Using shRNAs, a reduction of mutant ataxin-7 was achieved by targeting an expanded CAG repeat-linked SNP located in the last coding exon of ATXN7 (Scholefield et al., 2009; Scholefield et al., 2014). In a heterozygous wild-type and mutant ataxin-7 overexpressing cell model it was found that using this SNP-specific shRNA a 97% and 26% reduction of respectively mutant and wild-type ataxin-7 was achieved, which ameliorated the SCA7 phenotype (Scholefield et al., 2009). However, in patient-derived fibroblasts this allele-specific reduction of mutant ataxin-7 transcript levels was less pronounced and was only found at very low doses of SNP-specific shRNAs (Scholefield et al., 2014), questioning the allele-specificity of this particular small RNA, especially at higher dosage or of more realistic (less favourable) agent : target ratios.

PolyQ expansion-specific protein lowering

Another approach to achieve allele-specific silencing targets the common denominator of all polyQ disorders; their expanded CAG repeat (Figure 3d). Here selective silencing is either based on the hypothesis that there are structural differences between wild-type and mutant HTT mRNA, or based on the larger number of CAGs in the expanded repeat and subsequent more binding possibilities of CAG-targeting oligonucleotides. The first proof for allele discrimination by targeting the CAG repeat was achieved in HD human fibroblasts using an siRNA with 7 consecutive CUG nucleotides (Krol et al., 2007). Further studies with CAG repeat targeting siRNAs showed a low selectivity for the mutant allele, making siRNAs unsuitable for CAG repeat-directed allele-specific silencing (Hu et al., 2009b). Other chemical modifications and oligomers show much higher specificity for expanded CAG repeat transcripts. Single stranded PNAs, LNAs and 2OMePS AONs targeting CAG repeats (Figure 3d) have been used to specifically reduce expanded HTT transcripts in vitro in patient-derived fibroblasts (Hu et al., 2009b; chapter 3). Other endogenous CAG repeat containing transcripts with important cellular functions were unaffected by the tested CUG oligonucleotides (Hu et al., 2009b; chapter 3). To note, PNA selectivity was less pronounced in CAG repeat lengths (40 to 45 CAGs) that occur most frequently in the HD patient population. The allele-specific reduction with 2OMePS AONs and LNAs with 7-mer CUG repeats was more pronounced in the average HD CAG repeat length, making these 2OMePS AONs and LNAs more suitable for polyQ expansion-specific protein lowering.
Figure 3. AON-mediated therapeutic approaches for lowering polyQ protein levels. Two different polyQ protein lowering strategies used for polyQ disorders are: 1) Lowering total polyQ protein levels by (a) using 2'-O-modified-phosphorothioate (PS) AONs blocking translation from both transcripts or (b) using (chimeric 2'-O-modified-PS) DNA AONs resulting in a RNA:DNA hybrid, which activates RNase H. RNase H will cleave the mRNA and prevents the translation into a protein. 2) Specifically lowering mutant polyQ protein by (c) targeting a unique heterozygous SNP linked to the mutant transcript and subsequently RNase H-induced cleavage of the mutant mRNA or (d) targeting the expanded CAG repeat by using CUG triplet AONs complementary to the CAG repeat, resulting in polyQ expansion-specific protein lowering.
Lowering polyQ protein levels by targeting its modulating partner

Next to targeting the (mutant) transcript directly, targeting binding partners to lower polyQ protein levels have been recently proposed as potential therapeutic intervention for various polyQ disorders. For SBMA, a possible approach to lower AR protein levels that does not directly target the AR, but targets a binding partner of AR, acts through miRNAs. Exploration of miRNA expression differences in the spinal cords of mice expressing full length wild-type AR and mutant AR resulted in the identification of upregulated miR-196a (MIYAZAKI et al., 2012). This miR-196a regulated CUGBP Elav-like family member 2 (CELF2). CELF2 recognizes the AR exon 1-internal CUGCUGCU sequence and by binding increases AR mRNA stability (MIYAZAKI et al., 2012). Lentiviral miR-196a injection in the hind limb skeletal muscle of SBMA mice resulted in reduced levels of the polyQ-specific antibody 1C2-positive aggregate formation in the spinal cord and improved motor symptoms (MIYAZAKI et al., 2012).

For SCA1, it was recently found that multiple components of the cell-signalling RAS–MAPK–MSK1 pathway influence ataxin-1 protein expression levels (PARK et al., 2013A). Pharmacological inhibition of this pathway was found to decrease ataxin-1 protein levels and knockout of MSK1 rescued both behavioural and pathological phenotypes in SCA1 mice (PARK et al., 2013A). These results suggest that components of this pathway are potential target for oligonucleotide-mediated lowering of mutant ataxin-1 protein levels.

In summary, most research has been performed on protein lowering treatments for HD and SCA1 and SCA3. Concerning the rarer polyQ disorders, less is known about the importance of the wild-type functions of polyQ proteins and the gain of toxic pathological mechanisms of the expanded polyQ proteins. For none of the polyQ disorders, much data is available elucidating the levels of mutant and wild-type transcript and protein present in the brain. Knowledge of wild-type and mutant polyQ protein levels are required to allow researchers to better assess the impact of non-allele-specific reduction of wild-type htt protein. Knowledge on these basal levels, together with better understanding of the significance of the polyQ protein for normal cellular functioning, will eventually define which protein lowering strategy to follow; an allele-specific or general reduction.
1.7. Antisense oligonucleotides in therapy for other neurodegenerative diseases

Like polyQ disorders, many other neurodegenerative diseases originate from a mutation in a single gene, resulting in a loss- or gain of one or more toxic functions, eventually initiating disease onset. There are several neurodegenerative disorders where the use of AONs is a promising therapeutic strategy. I will show some examples where AON treatment resulted in therapeutic benefit in animal models and/or clinical trials. In neurodegenerative diseases such as polyQ disorders, multiple sclerosis (MS), ALS and Alzheimer disease (AD), the aim of AON treatment can be to reduce transcript levels of disease-causing proteins. Alternatively, the deleterious allele can be reduced or knocked-out using allele-specific approaches or the mutated element can be eliminated by modulating pre-mRNA splicing events. The latter approaches are being followed for HD (chapter 4), SCA3 (chapter 5), and spinal muscular atrophy (SMA). In SMA, altering splicing can also be used to restore the expression of a gene or increase expression of a particular isoform.

Prevent translation of mutant protein in neurodegenerative diseases

ALS is a progressive neurodegenerative disorder caused by degeneration of motor neurons in the brain and spinal cord. This eventually leads to muscle weakening, twitching, and an inability to move the arms, legs, and body (AL-CHALABI AND LEIGH, 2000). Only 5% of ALS cases are familial and about 20% of all familial cases result from a specific genetic defect that leads to mutation of the enzyme known as superoxide dismutase 1 (SOD1) rendering the protein toxic and prone to aggregation (BOSSY-WETZEL et al., 2004). The AONs that have been used in ALS were designed to lower mRNA levels of the SOD1 transcripts and were PS modified chimeric nucleotides with five MOE modifications on both the 5’ and 3’ ends and 10 deoxynucleotides in the center to support RNase H activity. Continuous ventricular infusion reduced levels of mutant SOD1 in a rodent model of ALS and significantly slowed disease progression (SMITH et al., 2006). A phase I study to test the safety of this AON in subjects with familial ALS with a SOD1 mutation showed no serious adverse side effects after intrathecal injection into the CSF (MILLER et al., 2013).

MS is an autoimmune disease of the CNS where multifocal infiltration of autoreactive T lymphocytes across the blood brain barrier (BBB) takes place. Lymphocytes in MS patients display high levels of α-4 integrin on their surface (CANNELLA AND RAINE, 1995) and this plays an important role in lymphocyte migration to sites of inflammation (ROSE et al., 2007). Decreasing leukocyte trafficking into various organs has been successful using monoclonal antibodies against α-4 integrin (LOBB AND HEMLER, 1994). In a commonly used mouse model of MS, the experimental autoimmune encephalomyelitis model, AON-induced blocking of α-4 integrin expression reduced the incidence and severity of paralytic symptoms (MYERS et al., 2005). The 20-mer AONs with MOE modifications and a PS backbone were designed to target a sequence just 3’ of the translation start site of the murine α-4 integrin mRNA to block its translation.
Subcutaneous daily injections reduced α-4 integrin surface expression. Although the site of actions of this particular AON is unknown, it is thought that α-4 integrin levels are reduced in peripheral lymphoid tissue and this prevents trafficking of activated mononuclear cells into brain and spinal cord (MYERS et al., 2005).

AD is the most common form of dementia, in which AONs are considered in yet another mode. Cleavage of amyloid β precursor protein (APP) at the β-secretase and γ-secretase site causes elevated levels of β-amyloid peptide (Aβ). This is considered a key event in the pathogenesis of AD (VAN BROECK et al., 2007). Point mutations near the β-secretase site in the human gene for APP lead to a dominantly inherited form of AD (SELKOE AND KOPAN 2003). In a transgenic mouse model of AD containing this mutated β-secretase site, translation of the APP-mRNA was blocked by AONs that bind specifically to the mutated β-secretase site. The AONs used in this study had a MOE group and capped at 5'- and 3'-ends with a PS backbone. Repeated injections into the third ventricle (once a week for 4 weeks) reduced the levels of toxic Aβ and increased the levels of soluble α-cleaved APP indicating that this could be a possible strategy to treat familial AD (CHAUHAN AND SIEGEL, 2007).

Modulating pre-mRNA splicing neuromuscular diseases

Other AON applications that do not induce the lowering of transcript levels are gaining more interest. The best-known application is the manipulation of splicing. Using AONs that target splice sites or exonic/intronic inclusion signals, exons can be hidden from the splicing machinery, resulting in skipping of the target exon (Figure 4). This can have multiple applications, e.g. switching from one isoform to another, skipping an aberrantly introduced exon to restore the normal transcript, removing disease-causing mutations from genes, or introducing an out-of-frame deletion that results in knock down expression of a gene. The latter approach is an alternative approach to AON-induced knockout through RNAse H-dependent cleavage of RNA:DNA hybrids (AARTSMA-RUS et al., 2009).

The most advanced clinical application of exon skipping is the exclusion of an exon allowing the production of an internally deleted, partially functional protein. This has been extensively studied as a therapeutic approach for Duchenne muscular dystrophy (DMD). Protein restoration has been shown in patient-derived cell cultures and in animal models this led to a rescued phenotype (AARTSMA-RUS et al., 2006; HEEMSKERK et al., 2009; HEEMSKERK et al., 2010). The results in phase I and I/II clinical trials were very encouraging (LU et al., 2003; ALTER et al., 2006; VAN DEUTEKOM et al., 2007; KINALI et al., 2009; GOEMANS et al., 2011). Although the primary endpoint in a recently conducted phase III clinical trial was not reached (FLANIGAN et al., 2014), a very clear phenotypical improvement in young children was seen (PRESS RELEASE JANUARY 16TH 2014, PROSENSA HOLDING N.V.), indicating that exon skipping is successful in DMD patients.

Intron splicing silencers can also be targeted resulting in exon inclusion. This can be used to restore expression of a gene or inducing expression of a particular isoform. Here, the most prominent application is rescue of SMA by AON mediated stimulation of the expression of a functional homologue. SMA is an autosomal recessive neuromuscular disorder caused by dysfunction and loss of motor neurons in the anterior horn of the spinal cord and lower brain.
stem. The underlying cause of SMA is a homozygous deletion of survival motor neuron 1 (SMN1). SMN1 depletion is viable because of the presence of the almost identical SMN2 gene. However, the majority of SMN2 mRNA transcripts lack exon 7, due to a silent mutation within this exon. This reduces the inclusion of exon 7 which results in a truncated protein and reduced expression of functional SMN protein (Lorson et al., 2010). Current therapeutic strategies are aimed at modulation the splicing of SMN2 by blocking exonic splicing silencers (ESE) or intronic splicing silencers (ISS), thereby increasing exon 7 inclusion. Transfecting fibroblasts with an AON (termed ISS-N1) blocking an ISS in intron 7 of SMN2 was found to result in inclusion of SMN2 exon 7 (Singh et al., 2006). Improved efficacy of the AON was achieved by incorporation of a uniform MOE chemistry and a single injection of this AONs into the cerebral ventricles in a severe mouse model of SMA showed increased exon 7 inclusion and SMN protein levels in the spinal cord resulting in increased muscle size and strength (Passini et al., 2011). An increased exon 7 inclusion could also be achieved by targeting the 3’ splice site region of exon 8 with 2OMe and PS backbone modified AONs (Lim and Herbel, 2001). These 2OMePS AONs were found to result in exon 7 inclusion and elevated SMN protein expression levels in vivo (Williams et al., 2009; Hua et al., 2010).

Recently, a phase I clinical trial has been completed evaluating the safety of a MOE-modified AON which aims at exon 7 inclusion and increased SMN protein levels (ClinicalTrials.gov, 2011). The so called ISIS-SMNRx was intrathecally injected in 4 increasing doses in children with SMA. In this open label safety tolerability dose-escalating study, the MOE-modified AON was well tolerated with no significant safety or tolerability findings after a single dose up to 9 mg. The intrathecal injection procedure was well tolerated and all SMA patients who participated completed the study. In the high dose treated patients, the SMN protein levels in the CSF more than doubled in the two highest dose cohorts and that those children continued to show increases in muscle function scores up to 14 months after a single injection of the MOE-

![Figure 4. Schematic representation of antisense oligonucleotide-mediated modulation of pre-mRNA splicing.](image-url)
modified AON (Rigo et al., 2012). Currently a phase II trial is ongoing with 6 mg or 12 mg doses of MOE-modified AON administered intrathecally on days 1, 15 and 85. The interim results reported that the MOE-modified AON was well tolerated (CLINICALTRIALS.GOV, 2012).
1.8. Drug delivery to the brain, how to cross the blood brain barrier?

One major challenge of AON-mediated therapies for neurodegenerative disorders is delivery of the AON to the brain. In this paragraph I will describe in short the BBB function and how this impairs the uptake of peripherally administered drugs. I will focus in particular on the limitations and possibilities of AON delivery to the brain and specifically neurons, and will speculate on future clinical applications.

Blood Brain Barrier

A unique feature of the brain is that it is separated from the blood by the BBB. This is a monolayer of endothelial cells forming tight junctions through the interaction of cell adhesion molecules (Palmer, 2010). Astrocytes with their processes surrounding the endothelial cells, pericytes located between the endothelial cells and astrocytes, macrophages, and the basement membrane, form the other structural components of the BBB. Endothelial cells of the BBB are characterized by only few fenestrae and pinocytic vesicles, limiting transport to and from the brain. In this respect, it should be noted that the BBB also largely separates the immune system from the brain. Despite this gate-controlling system, essential nutrients, such as glucose, are permitted to pass (Bernacki et al., 2008). In neurodegenerative diseases, including HD, disruption of the BBB is common (Tomkins et al., 2007; Palmer, 2010). Interestingly, in animal models, this can even lead to neurodegenerative changes itself (Tomkins et al., 2007).

The BBB has been already noticed in the work of Paul Ehrlich, Nobel Prize winning bacteriologist in the late 19th century. Injected dyes stained all organs except the brain and spinal cord. However, he did not attribute this phenomenon to the presence of a barrier but to dye characteristics. His student showed later that staining of the brain was possible when the dye was injected directly into the brain (Palmer, 2010). Subsequent studies using electron microscopy allowed to directly visualize the BBB.

While essential to protect the brain, the BBB is a major challenge in CNS drug development. When a drug is administered to the body, a fraction will be bound to proteins (e.g. serum albumin, lipoprotein etc.) and a fraction will be free. The free fraction is the pharmacologically relevant fraction, since it is, in principle, available to cross the BBB (Palmer, 2010), depending on its physiochemical properties. After crossing the BBB, the drug will enter the interstitial fluid and go to the target (proteins, receptors, transporters etc.). Subsequently, the interstitial fluid drains to the CSF, which is produced at a rate of 500 ml/day in humans, while the ventricle system can house only 100-150 ml. This means that there is a continuous dehydration as well, making up for at least a threefold CSF circulation, allowing a continuous drainage of the brain’s interstitial fluid.

In the process of drug discovery, the aim is to find a substance which is potent, selective and preferably bioavailable. In addition, it needs to be able to cross the BBB, and reach the target at a sufficient concentration (Alavieh et al., 2005). The following mechanisms are available...
to cross the BBB. The first one is simple diffusion. Small lipophilic substances which have a hydrogen bond are more likely to pass the BBB (Gerbertzoff and Seelig, 2006). The second mechanism is via active transport mediated by transporter molecules. The most well-known is glucose with its glucose transporter 1 (GLUT1), which is the most widely expressed of the GLUT family (13 isoforms) (Guo et al., 2005; Palmer, 2010). Other carriers are for instance lactate and amino acids. A well-known drug transported via this way is levodopa (Cotzias et al., 1967). The third mechanism to cross the BBB is via receptor-mediation. Receptor-mediated endocytosis allows macromolecules to enter the brain, such as transferrin, insulin, leptin, and insulin-like growth factor 1 (Pardridge, 2007).

Besides systemic mechanisms to cross the BBB, there are also techniques to bypass the BBB by direct infusions into the subdural space, the brain’s ventricle system, or the brain parenchyma. These infusions can be single, repeated, or continuous depending on the methodology, using either simple or sophisticated pump systems. It is possible to use one probe or more probes for infusion. Using the subdural and ventricle compartments, diffuse delivery of the drug into the brain can be achieved, while using intraparenchymal delivery, a local, but well-targeted delivery can be realized.

When a substance has successfully entered the brain, there are mechanisms preventing adequate functioning. One mechanism is active transport to remove the substance, also known as resistance. A superfamily of multidrug resistance proteins, belonging to the adenosine triphosphate (ATP)-binding cassette transporters, drives substances out by an ATP-dependent process (Palmer, 2010). One of the most abundant proteins is the P-glycoprotein. This mechanism is responsible for the failure of some anticancer drugs. Another relevant family of egress transporters is the organic anion transporting proteins.

In the field of HD, efforts are ongoing to deliver innovative drugs to the brain via the systemic route and drugs are designed to use any of the three mechanisms to cross the BBB, as explained earlier. For instance, Lee and associates described the use of a peptide nucleic acid as an antisense which was able to access endogenous transferrin transport pathways (receptor mediated endocytosis) and reach the brain in a transgenic mouse model (Lee et al., 2002). However, there are also efforts to bypass the BBB, and to deliver the drug using either the ventricle system or intraparenchymally.

Cellular delivery and associated safety of oligonucleotide-mediated therapeutics

In all instances of oligonucleotide-mediated therapeutics targeting the brain, delivery is an issue. In vivo manipulation of gene expression with shRNA very often depends on the use of viral vectors (Di Benedetto et al., 2009; Ehlerst et al., 2010; Kubo et al., 2010), as do cre-recombinase mediated gene excision (Kolber et al., 2008) or gene overexpression models (Ulusoy et al., 2010; Woldbye et al., 2010). However, after reaching the brain, AONs are readily taken up by neurons, and are therefore independent of viral transduction of neurons (Kordasiewicz et al., 2012). The ease of delivery of the present day modified AONs seems to be linked with a lack of any major adverse side effects, making AONs suitable candidates as potential treatment for the polyQ disorders.
Associated safety of oligonucleotide-mediated therapeutics

Delivery of viral vectors has been associated with toxicity in the brain, mainly depending on viral type used. For example, adeno-associated virus (AAV) vectors have been shown to induce neurotoxicity when delivered to the CNS (Ehlert et al., 2010; Jayandharan et al., 2011), although serotypes may differ in that aspect (Sanchez et al., 2011). Other viral types, such as retrovirus, show milder toxicity, but they are not suitable for investigation of long term effects and due to their tropism for mitotically active cells have limits in the applicability to postmitotic neurons (Kaplitt et al., 1998). Lentivirus causes less inflammatory and immune response, but still share the disadvantage that pre-existing immunity to parental wild-type virus may cause an accentuated immune response. Furthermore, toxicity could also be triggered due to the lack of dosage regulation of virally-mediated shRNAs since they tend to produce an all-or-nothing effect, particularly when cre-recombinase systems are used (Kolber et al., 2008; Pfeifer et al., 2001).

Although AONs have a longer half-life than, for instance, siRNAs (Smith et al., 2006), eventually they are degraded allowing gene expression to return to basal levels, offering the possibility to discontinue treatment (Smith et al., 2006). Obviously, in instances where long-term manipulation is the goal, viral delivery may be desirable (Hua et al., 2010). The lack of viral vectors makes that AON administration allows better dosage control while reducing potential toxic effects (Smith et al., 2006; Heemskerk et al., 2010; Hua et al., 2010). For 2'-O-modified-PS AONs only very mild toxicity has been reported, which did not interfere with their desired effects after delivery in the brain via the ventricles (Liebsch et al., 1999; Hua et al., 2010), or in cultured neuronal cells (Muller et al., 2000). Although it has been shown that PS AONs can have an immunostimulatory effect via toll-like receptors, appropriate 2'-O modifications, such as 2OMe can suppress these effects (Robbins et al., 2007; Hamm et al., 2010; Ma et al., 2011). It is important to mention that possible toxic and immunostimulatory effects of 2OMePS AONs may also be a function of dosage, concentration, or duration of treatment (Hua et al., 2010).

Cellular delivery of AONs

Single stranded AONs have a very rapid uptake within minutes to hours (Pitts et al., 2009; Ma et al., 2011). A typical AON used to modulate splicing is negatively charged and has a PS backbone. There are diverse chemical modifications to strengthen binding to the target mRNA and to improve pharmacokinetics by reducing nuclease-induced degradation. Most chemistries have modifications of the 2'O sugar ribose (such as 2OMePS and MOE), which is the target cleavage site of the RNase H enzyme, and thus have increased resistance to degradation. Other oligonucleotide chemistries, such as PNAs, LNAs, PMOs, are even more resistant to nuclease degradation.

Conjugating arginine-rich peptides to 2OMePS and PMOs (PPMO) have been shown to improve cellular uptake (Moulton et al., 2009; Jirka et al., 2014). This is not required for neurodegenerative disorders when locally administered, since 2OMePS and MOE AONs are readily taken up by neurons and translocate to the nucleus where splicing events take place.
Furthermore, ICV injected PMOs resulted in increased SMN protein expression in the spinal cord and total brain of severe SMA mice (Mitrapant et al., 2013). Nevertheless, these “naked” AONs do not cross the BBB and therefore need to be administered into the CSF.

Interestingly, a PPMO against ataxia-telangiectasia causing out-of-frame splicing mutations did cross the BBB after intravenous injections (Du et al., 2011). The PPMOs were widely distributed throughout the brain of wild-type mice (Du et al., 2011). Although remarkable, thus far no follow-up studies have been published showing an in vivo restoration of normal splicing and protein production in ataxia-telangiectasia mice. Unfortunately, two PPMOs are abandoned as therapeutic agent since repetitive intravenous bolus injections of PPMOs caused lethargy and weight loss in rats (Amantana et al., 2007) and tubular degeneration in the kidneys of monkeys (Moulton and Moulton, 2010).

To conclude, most in vivo data on splicing modulation or protein reduction in brain disorders make use of MOE PS and as described in chapter 3 to 5, 2OMePS AONs. While AONs for use in the CNS cannot be administered systemically, they have excellent entry into cells once they passed the BBB. For several chemistries, it has been shown that local injection and distribution via the CSF seem to be devoid of any major toxicity, making these oligonucleotide chemistries suitable candidates as potential treatment for the polyQ disorders.
1.9. Scope and outline of the thesis

Although polyQ disorders are caused by CAG triplet repeat expansions in different genes, they all result in gain of toxic polyQ protein function and subsequently neurodegeneration. The polyQ disorders have a monogenic cause and thus far no therapies are available to delay the age of onset or slow the disease progression. Because of the well-defined nature of the primary mutation and its direct consequence on toxic polyQ protein function, reducing the expression of the CAG repeat expansion-containing gene should in principle contribute significantly to halting the disease progression. Therefore, much effort has been put in reducing the expression of the mutant gene and thereby inhibiting all downstream toxic polyQ effects. Preclinical results during the course of this PhD research using oligonucleotide-mediated therapies for polyQ disorders, particularly HD, look promising. Despite the fact that for several neurodegenerative disorders oligonucleotide-mediated therapies moved from preclinical to clinical testing, for polyQ disorders we are not there yet.

While much research has been done on the underlying polyQ disease mechanisms, knowledge on mRNA and protein regulation and expression levels are limited. In Chapter 2, htt expression levels in adult-onset HD and juvenile HD patient-derived fibroblasts and post-mortem brain are studied. Subtle differences in htt mRNA and protein expression between adult-onset and juvenile HD are described.

By targeting the polyQ-encoding transcripts, translation of mutant polyQ protein is reduced, inhibiting all downstream toxic polyQ effects. Chapter 3 describes the reduction of polyQ disease-causing proteins by specifically targeting expanded CAG repeat transcripts. By targeting the common denominator of all polyQ disorders, using CUG triplet-repeat AONs, mutant polyQ transcript and protein levels in several polyQ disorders were found to be reduced.

Chapter 4 describes a novel therapeutic approach for HD through removal of cleavage motifs that are implicated in the formation of toxic htt polyQ fragments. In HD, expanded polyQ htt is known to undergo proteolytic processing, which results in toxic polyQ-containing htt protein fragments. Preventing the formation of these toxic polyQ htt fragments is achieved by AONs that induce exon skipping of HTT pre-mRNA. Thus by modifying the htt protein, cleavage motifs are removed and less toxic polyQ htt fragments are formed.

Chapter 5 describes the removal of the CAG repeat-encoding exon from SCA3-causing mutant ATXN3 pre-mRNA. This AON-mediated skipping results in the removal of the toxic polyQ repeat from the ataxin-3 protein. A modified ataxin-3 protein is formed that lacks the toxic polyQ repeat, but maintains important wild-type functions of the protein.

Chapter 6 provides a general discussion of the thesis, reviewing the main findings, followed by recent developments and its implications for the genetic therapies proposed in this thesis and finally discussing future perspective.
Melvin M. Evers¹,#
Menno H. Schut¹,#
Barry A. Pepers¹
Melek Atalar²
Martine van Belzen³
Richard L. Faull⁴
Raymund A.C. Roos⁵
Willeke M.C. van Roon-Mom¹

Contributed equally to this work

¹ Department of Human Genetics, Leiden University Medical Center
² Galapagos B.V., Leiden
³ Department of Clinical Genetics, Leiden University Medical Center
⁴ Centre for Brain Research and Department of Anatomy with Radiology,
 University of Auckland, New Zealand
⁵ Department of Neurology, Leiden University Medical Center
Making (anti-) sense out of huntingtin levels in Huntington disease

Neurobiology of Disease 2014, under review
2.1. Abstract

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by motor, psychiatric and cognitive symptoms. HD is caused by a CAG repeat expansion in the first exon of the HTT gene, resulting in an expanded polyglutamine tract at the N-terminus of the huntingtin protein. Typical disease onset is around mid-life (adult-onset HD) whereas onset below 21 years is classified as juvenile HD. While much research has been done on the underlying HD disease mechanisms, little is known about regulation and expression levels of huntingtin RNA and protein.

In this study we used a unique collection of human post-mortem HD brain tissue and fibroblast cells to investigate huntingtin mRNA and protein expression, as well as huntingtin antisense isoforms. In adult-onset HD brain samples, there was only a small but significant lower expression of mutant huntingtin mRNA compared to wild-type huntingtin mRNA, while protein expression levels were equal. Juvenile HD subjects did show a lower protein expression of mutant huntingtin compared to wild-type huntingtin protein. Additionally, in brain tissue we did not find any evidence for a reduced expression of huntingtin antisense with an expanded CTG repeat, as we showed HTTAS_v1 expression in a homozygous HD patient. Finally, we have identified a novel huntingtin antisense isoform and named it HTTAS_v2.2.

Our results highlight subtle differences in huntingtin RNA and protein expression with less mutant huntingtin mRNA, but equal wild-type and mutant huntingtin protein levels in adult-onset HD. In juvenile HD mutant huntingtin protein levels were lower compared with wild-type huntingtin. This indicates subtle differences in huntingtin protein expression between adult-onset and juvenile HD.
2.2. Introduction

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by motor, psychiatric and cognitive symptoms (Roos, 2010). HD is caused by a CAG repeat expansion in the first exon of the \textit{HTT} gene on chromosome 4p16, resulting in an expanded polyglutamine (polyQ) tract at the N-terminus of the huntingtin (htt) protein. Carriers of 40 or more CAG repeats will develop HD, whereas people with 36 to 39 repeats show reduced penetrance (Kremers et al., 1992; Losekoot et al., 2013). The mean disease onset lies between 30 and 50 years of age (adult-onset HD). HD patients with onset below 21 years of age (juvenile HD), typically carry more than 55 polyQs (Roos, 2010). The major neuropathology in HD occurs in the striatum and cerebral cortex but degeneration is seen throughout the brain as the disease progresses (Vonsattel and Difiglia, 1998) and insoluble protein aggregates in the nucleus and cytoplasm of cells are a hallmark of the disease (Difiglia et al., 1997).

Knowledge on regulation of htt RNA and protein expression is limited and inconsistent. Upregulation of mutant HTT mRNA translation in HD was suggested by interaction of the expanded CAG repeat with the MID1-PP2A complex (Krauss et al., 2013). Upregulation of mutant HTT mRNA translation was also suggested by HTT antisense transcript regulation (Chung et al., 2011). Two natural HTT antisense transcripts (HTTAS_v1 and v2) were identified at the HTT locus, of which HTTAS_v1 contains a CTG repeat. Overexpression of HTTAS_v1 resulted in reduced HTT transcript levels, whereas HTTAS_v1 knockdown increased HTT transcript levels (Chung et al., 2011). Furthermore, in post-mortem HD brain no HTTAS_v1 with expanded CTG repeat could be detected. From these observations, it was suggested that HTTAS_v1 negatively regulated HTT transcript expression (Chung et al., 2011). Contrasting, in patient-derived lymphoblasts, no CAG repeat-related effect on total HTT mRNA was observed (Lee et al., 2013), suggesting that there is no difference in wild-type and mutant HTT RNA expression. To our knowledge, levels of wild-type and mutant htt RNA and protein in human HD tissue have not been assessed systematically.

In this study we have investigated htt mRNA and protein levels in a unique collection of human post-mortem HD brain tissue and fibroblasts. For post-mortem adult-onset HD brain tissue we detected a small, but significant, decrease in mutant HTT mRNA levels compared to wild-type HTT mRNA. Moreover, both brain tissue and fibroblasts from adult-onset HD patients did not show difference in wild-type and mutant htt protein expression levels. In contrast, juvenile HD fibroblasts and brain tissue showed a small, but significant, lower level of mutant htt protein compared to wild-type htt protein. Furthermore, similar HTTAS levels in (homozygous) HD and controls were found. Additionally, we identified a novel HTTAS isoform and named it HTTAS_v2.2.
2.3. Materials & Methods

Patient-derived fibroblasts and human brain samples

Fibroblasts derived from HD patients and controls were purchased from Coriell Cell Repositories, Camden, USA (Table 1). Fibroblasts were cultured at 37°C and 5% CO2 in Minimal Essential Medium (Gibco Invitrogen, Carlsbad, USA) with 15% heat inactivated fetal bovine serum (Clontech, Palo Alto USA), 1% Glutamax (Gibco) and 100 U/ml penicillin/streptomycin (Gibco).

Post-mortem human brain tissue was obtained from the Neurological Foundation of New Zealand Human Brain Bank in the Centre for Brain Research, University of Auckland, and the brain bank from the department of Neurology, Leiden University Medical Center. Tissue was obtained with the families full consent and with the ethical approval of the various institutional Ethics Committees. For a complete list of samples and corresponding clinical information, see Table 2.

CAG repeat sizing

Genomic DNA samples were isolated from patient-derived fibroblasts and human brain using the Wizard Genomic DNA Purification Kit (Promega) according to manufacturer’s instructions and diluted to 50 μg/ml. The number of CAG repeats in the HTT gene was determined by PCR using primers “HD-1” and “HD-3” as described previously (WARNER et al., 1993), followed by fragment analysis on an ABI 3130 Automated Capillary DNA Sequencer (Applied Biosystems, Life Technologies Corporation, Carlsbad, USA). The exact PCR conditions are available on request. The 3’ CAA and following CAG are not counted. For the polyQ repeat the CAA and CAG triplet are counted and the polyQ repeat is therefore 2 units longer than the CAG repeat size.

RNA and genomic DNA analysis

Post-mortem brain tissue was homogenized using ceramic MagNA Lyser beads (Roche, Mannheim, Germany) by grinding in a Bullet Blender (Next Advance, Averill Park, USA) according

Table 1. Patient-derived fibroblasts.

<table>
<thead>
<tr>
<th>Name</th>
<th>CAG 1</th>
<th>CAG 2</th>
<th>Type</th>
<th>Age at Sampling</th>
<th>Age of Onset</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM02173</td>
<td>44</td>
<td>17</td>
<td>HD</td>
<td>52</td>
<td>NA</td>
<td>F</td>
</tr>
<tr>
<td>GM04022</td>
<td>44</td>
<td>18</td>
<td>HD</td>
<td>28</td>
<td>NA</td>
<td>F</td>
</tr>
<tr>
<td>GM04855</td>
<td>48</td>
<td>20</td>
<td>HD</td>
<td>11</td>
<td>26</td>
<td>M</td>
</tr>
<tr>
<td>GM04857</td>
<td>50</td>
<td>40</td>
<td>homozygous HD</td>
<td>23</td>
<td>28</td>
<td>F</td>
</tr>
<tr>
<td>GM04281</td>
<td>71</td>
<td>17</td>
<td>juvenile HD</td>
<td>20</td>
<td>14</td>
<td>F</td>
</tr>
<tr>
<td>GM05539</td>
<td>97</td>
<td>22</td>
<td>juvenile HD</td>
<td>10</td>
<td>2</td>
<td>M</td>
</tr>
<tr>
<td>GM09197</td>
<td>179</td>
<td>18</td>
<td>juvenile HD</td>
<td>6</td>
<td>NA</td>
<td>M</td>
</tr>
<tr>
<td>GM04204</td>
<td>18</td>
<td>17</td>
<td>control</td>
<td>81</td>
<td>NA</td>
<td>M</td>
</tr>
</tbody>
</table>

Samples ranked on CAG repeat size of the longest allele. M: male, F: female, NA: not assessed.
Total RNA was isolated from fibroblast cells and brain tissue using the Aurum Total RNA Mini Kit (BioRad, Hercules, USA), with an on-column DNase treatment for 30 min. RNA was eluted in 40 μl elution buffer and cDNA was synthesized from 1 μg total RNA using the Transcriptor First Strand cDNA Synthesis Kit with oligo (dT) primers at 55°C for 90 min (Roche).

PCR was performed using 1 μl cDNA or genomic DNA, 10x Expand High Fidelity buffer with 15 mM MgCl₂ (Roche), 200 μM dNTPs (Roche), 1 M Betaine (Sigma-Aldrich, St. Louis, USA), 15 pmol of both forward primer HttCAGFw: 5'- ATG GCG ACC CTG GAA AAG CTG AT -3' and reverse primer HttCAGRev: 5'- TGA GGC AGC AGC GGC TG -3' (Eurogentec, Liege, Belgium), 3 U Expand High Fidelity enzyme mix (Roche), and PCR grade water to a final volume of 30 μl. The PCR program started with a 2 min initial denaturation at 94°C, followed by 35 cycles of 15 sec denaturation at 94°C, 30 sec annealing at 60°C, 1 min elongation at 72°C, after which a final elongation step was performed at 72°C for 7 min.

PCR products were loaded on a 2% agarose gel diluted in Tris/Borate/EDTA buffer (TBE). DNA gel electrophoresis was performed for 1 hour at 100 V. Intensities of DNA bands were quantified using ImageJ software. Intensity of the HTT mRNA band was divided by the corresponding genomic DNA band to normalize for differences in PCR efficiency between wild-type and mutant HTT due to CAG repeat length.

SNP genotyping and SNP linkage by circularization (SLiC)

The procedure for SNPs rs362273 genotyping and SNP linkage by circularization on human brain tissue was adapted from Liu et al. (Liu et al., 2008). One μg of DNase-treated total RNA, together with oligo (dT) primers, was used for cDNA synthesis using SuperScript III First-Strand Synthesis System (Invitrogen). To improve reverse transcription of long cDNA templates, 2 M Betaine and 0.6 M Trehalose (both Sigma-Aldrich) were added to the reaction mixture (Spiess...
cDNA synthesis was performed at 42°C for 2.5 hours, followed by RNase H treatment at 37°C for 20 min. Next, 5 μl cDNA was used as template for long-range PCR and SLiC.

Taqman SNP assay

Quantitative PCR was performed using the LightCycler 480 II (Roche), according to manufacturer’s instructions, using a mixture containing 45 ng cDNA, 1xTaqMan® Universal PCR Master Mix, no AmpErase®UNG (Applied Biosystems), 1xTaqMan® SNP Genotyping Assay (Applied Biosystems), and nuclease-free water (Ambion) in a 20μl reaction volume. ACTB (Applied Biosystems, cat#Hs99999903_m1) was included as reference gene. A standard curve was generated using pooled equal amounts of cDNA from all samples. Quantification of the dual-color hydrolysis of both allele-specific fluorescent reporter dyes, FAM (“G” allele) and VIC (“A” allele), was performed with the LightCycler® 480 SW 1.5.1 software using the 2nd derivative method, according to manufacturer’s instructions.

HTT antisense determination

RNA isolation as described above. PCR was performed using 1.5 μl cDNA, 10x PCR buffer with 20 mM MgCl₂ (Roche), 200 μM dNTPs (Roche), 6 pmol primer, for HTTAS_v1, forward: 5’-CAC CGG GGC AAT GAA TGG-3’; reverse: 5’- GTG CGG ATG GCA AGG ACA G -3’; and for HTTAS_v2.1/2.2, forward: 5’-GAA GGC GCG GGG CTC AAC-3’, reverse: 5’- TGC AGT GCG GAT GGC AAG GA -3’, 2 U FastStart Taq DNA Polymerase (Roche), 1 M ethylene glycol (Sigma-Aldrich, St. Louis, USA), and PCR grade water to a final volume of 30 μl. The PCR program started with a 3 min initial denaturation at 95°C, followed by 40 cycles of 10 sec denaturation at 95°C, 10 sec annealing at 60°C, 10 sec elongation at 72°C, after which a final elongation step was performed at 72°C for 7 min.

PCR products were loaded on a 3% TBE agarose gel and bands were extracted using the NucleoSpin Gel & PCR Clean-up kit (Machery Nagel, Düren, Germany). To identify the sequence of the novel HTTAS isoform, PCR products were cloned into a pGEM-T Easy vector (Promega) and analyzed by Sanger sequencing using a T7-specific forward primer.

Protein isolation

Fibroblasts were detached from the culture surface with a 0.5% Trypsin/EDTA solution. After washing twice with HBSS, cells were resuspended in 200 μl ice cold lysis buffer, containing 15 mM HEPES, pH 7.9, 200 mM KCl, 10 mM MgCl₂, 1% NP40, 10% glycerol, 20 μg/ml BSA, and 1 tablet Complete mini protease inhibitor EDTA free (Roche) per 10 ml buffer. Next, samples were sonicated 3 times 5 sec using ultrasound with amplitude 60 at 4°C. After 1 hour head-over-head incubation at 4°C, extracts were centrifuged for 15 min at 10,000 x g and 4°C and supernatant was isolated.

For brain homogenates, slices from frozen unfixed human brain tissue were collected using a sliding microtome (Leica SM 2010 R.). Tissue was homogenized using ceramic MagNA Lyser beads (Roche) by grinding in a Bullet Blender (Next Advance) for 3 min at strength 8 in lysis
buffer as described previously (Hu et al., 2009). Homogenates were incubated for 1 hour in a head-over-head rotator at 4°C, and centrifuged for 15 min at 10,000 x g at 4°C.

Protein concentrations were determined with the bicinchoninic acid kit (BCA) (Thermo Fisher Scientific, Waltham, USA) using Bovine Serum Albumin (BSA) as a standard. After addition of 5% glycerol, samples were aliquotted, snap frozen and stored at -80°C.

Western blotting

SDS-PAGE separation of proteins was performed according to the “shorter CAG repeats” protocol as described previously (Hu et al., 2009). Proteins were transferred to a 0.2 μm nitrocellulose membrane (Bio-Rad, #170-4159.) using the Trans-blot Turbo (BioRad) at 2.5A (constant)/25V for 10 min. Membranes were blocked for 15 min in tris buffered saline (TBS) containing 5% non-fat milk (Nutricia, Schiphol, the Netherlands). Next, membranes were incubated with primary rabbit antibody EPR5526 (Abcam, Cambridge, UK) that recognizes the N-terminus of the htt protein, diluted 1:5000 in blocking buffer, followed by secondary incubation with rabbit IRDye800 (LI-COR, Lincoln, USA) diluted 1:5000 in blocking buffer. Blots were analyzed on an Odyssey reader (LI-COR). Protein bands corresponding to wild-type and mutant htt were quantified using the Odyssey software version 3.0 (LI-COR). Background correction was performed by sampling an empty area of the blot of the same size as the area that contained the positive protein band. Wild-type and mutant htt protein expression levels relative to total htt protein expression were calculated by dividing wild-type and mutant htt band intensities with total htt band intensity (wild-type + mutant).

Dot blot assay

Brain homogenates were prepared in 150 mM sucrose, 15 mM HEPES pH 7.9, 60 mM KCl, 5 mM EDTA, 1 mM EGTA and 1 tablet Complete mini protease inhibitor EDTA free (Roche) per 10 ml buffer. Tissue was homogenized using ceramic MagNA Lyser beads (Roche) by grinding in a Bullet Blender (Next Advance) for 3 min at strength 8. Next, Triton X-100 (Sigma) was added to a final concentration of 1%. Homogenates were incubated in a head-over-head rotator for 1 hour at 4°C and extracts were centrifuged for 10 min at 10,000 x g. Protein pellets were washed three times in 60 mM Tris and centrifuged for 10 min at 10,000 x g. Next, pellets were resuspended in 15% SDS and incubated overnight at 95°C. Protein concentrations of the resulting pellet suspensions were determined by BCA. Per well, 100 μg of pellet suspension was applied to in 0.2% SDS pre-wetted cellulose acetate pore size 0.2 μm (Schleicher and Schuell, St. Louis, USA) membranes by vacuum application using the Bio-dot manifold (Bio-Rad). Wells were washed twice with 0.2% SDS and membrane was fixed in 0.5% glutaraldehyde for 20 min. The fixed membrane was blocked in TBS containing Tween-20 (TBST) and 5% non-fat milk (Nutricia). First incubation was performed with rabbit EPR5526 antibody diluted1:5,000 in TBST containing 5% non-fat milk. Secondary incubation was performed with mouse anti rabbit antibody conjugated with horse radish peroxidase (Santa Cruz, Dallas, USA), diluted 1:10,000 in TBST containing 5% non-fat milk. Membranes were incubated with enhanced chemiluminescence (ECL) (GE Healthcare, Cleveland, USA) and exposed to light sensitive film.
Statistical analyses

GraphPad Prism version 6.02 was used for statistical analysis. Typically, significance was determined using the two-tailed paired Student's t-test after testing for normal distribution. Data presented as bar graphs (means + standard deviation (SD)), whisker boxplots (whiskers = 10-90 percentile), or scatter dot plot (line = mean).
2.4. Results

No difference in wild-type and mutant HTT mRNA levels in HD patient-derived fibroblasts

To measure both wild-type and mutant HTT mRNA levels we performed a PCR with primers flanking the CAG repeat that separated on gel electrophoresis due to differences in their CAG repeat length (Figure 1a). In total four HD patient-derived fibroblasts of which 1, GM04857, contained a homozygous CAG repeat expansion were analyzed. For more information, see Table 1. Genomic DNA (gDNA) was taken along to control for differences in PCR amplification efficiencies across the CAG repeat. Furthermore, reverse transcription without reverse transcription enzyme was taken along, verifying that there was no gDNA contamination in our RT-PCR (Figure 1b). The two PCR products for each cell line were quantified and individual wild-type versus mutant HTT mRNA expression ratios were calculated. Next, the average expression levels of wild-type and mutant HTT mRNA in the adult-onset HD fibroblasts were calculated. No significant difference ($P = 0.5168$) between wild-type and mutant HTT mRNA expression was observed (Figure 1c).

Figure 1. Wild-type and mutant HTT mRNA levels in HD patient-derived fibroblasts. Wild-type and mutant HTT mRNA PCR products were separated on gel electrophoresis by differences in their CAG repeat length. (a) RT-PCR products from 3 HD (GM02173, GM04022, GM04855) and one homozygous HD (GM04857) fibroblasts. Allelic CAG repeat sizes are indicated below each lane. gDNA was taken along to control for differences in PCR amplification efficiencies across the CAG repeat. (b) RT-PCR products with input: cDNA (+RT), cDNA lacking reverse transcriptase (-RT) and gDNA of 1 control (GM04204). (c) Scatter boxplot of RT-PCR from HD patient-derived fibroblasts, comparing wild-type and mutant HTT mRNA expression levels, relative to gDNA. Line = mean, data were evaluated using two-tailed student-t test, $n = 3$.

<table>
<thead>
<tr>
<th>CAG 1:</th>
<th>44</th>
<th>44</th>
<th>48</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAG 2:</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>
More wild-type than mutant HTT mRNA in human post-mortem HD brain material

Next, we investigated HTT mRNA expression levels in post-mortem brain tissue from HD patients with a wide range of repeat lengths. RNA was isolated and PCR was performed with primers flanking the CAG repeat. PCR products were separated by gel electrophoresis due to differences in their CAG repeat length (Figure 2a). Individual bands were quantified and normalized against PCR products from gDNA (Figure S1).

After calculating average expression, wild-type and mutant HTT mRNA levels were compared (Figure 2b). Although the PCR approached the plateau phase, we still found a small, but significant, lower average mutant HTT mRNA expression 0.89 (±0.19) versus 1.15 (±0.25) of wild-type mRNA in post-mortem brain tissue from HD patients.

To validate the semi-quantitative RT-PCR gel electrophoresis analysis, we performed a SNP-
specific TaqMan quantitative PCR, using probes for SNP rs362273 located at exon 57 of HTT. Of our post-mortem brain samples, 6 out of 14 were heterozygous for SNP rs362273. Next, SNP linkage by circularization (SLiC) was successfully performed to determine which allele has the guanine and which allele the adenine in exon 57 (Li et al., 2008). Due to the variable RNA quality of brain tissue, SLiC was only possible in 4 out of 6 samples. The SNP-specific TaqMan quantitative (q)RT-PCR showed a consistent trend towards wild-type HTT. Due to the smaller number of brain samples that we could use for this SNP-specific TaqMan assay, the difference did not reach significance. However, it confirmed the higher expression of wild-type HTT mRNA compared to mutant HTT mRNA in HD post-mortem brain (Figure 2c).

No difference in wild-type and mutant htt protein levels in HD fibroblast and post-mortem brain

We examined levels of SDS-soluble wild-type and mutant htt protein levels in patient-derived fibroblasts by Western blot (Figure 3a). In the homozygous HD fibroblast GM04857, only one protein band was visible because the difference in protein size between the htt protein expressed from the two alleles is too small to separate by Western blot. For the other samples, the separated wild-type and mutant htt protein bands were quantified and individual wild-type versus mutant htt protein ratios were calculated (Figure S2). Next, we averaged all data from individual measurements and compared wild-type and mutant htt protein levels. No significant difference between wild-type and mutant htt protein levels in patient-derived fibroblasts was found (Figure 3c).

We then analyzed SDS-soluble wild-type and mutant htt protein levels in post-mortem human HD brain homogenates (Figure 3b). As with the HD fibroblasts, there was no difference in wild-type and mutant htt levels in HD brains (Figure 3d and Figure S2). We also examined aggregation of mutant htt in our post-mortem human HD brain tissue by investigating SDS-insoluble htt using a dot blot assay. We found comparable levels of SDS-insoluble htt for subjects HC105 and HD166, which had the same polyQ stretch of 44, and more insoluble htt for subject HC107 which had a slightly longer polyQ stretch of 45 (Figure 3e).

Soluble wild-type and mutant htt protein levels are similar in both fibroblasts and brain, while in fibroblasts it is known that mutant htt protein does not aggregate (Sathasivam et al., 2001). We found more htt protein aggregation in the brain sample with the longer polyQ repeat, but there was no decrease in mutant htt protein levels on Western blot.

More wild-type than mutant htt protein in juvenile HD fibroblasts and post-mortem brain

Next, we used Western blot to analyze SDS-soluble levels of wild-type and mutant htt protein in juvenile HD samples. Analysis of juvenile HD fibroblast cell lines showed a significant higher level of wild-type htt protein compared to mutant htt (0.55 versus 0.45 (±0.05)) (Figure 4a and c). Western blot analysis of post-mortem juvenile HD brain lysates also showed a significantly higher level of wild-type htt protein with respect to mutant htt (0.53 versus 0.47 (± 0.06)) (Figure 4b and d).
Figure 3. Wild-type and mutant htt protein levels in HD fibroblasts and post-mortem brain tissue. PolyQ repeat lengths are indicated below each lane. The lower band represents wild-type htt protein, the upper band mutant htt protein. (a) Western blot analysis of total protein lysates from human fibroblasts from three heterozygous HD (GM02173, GM04022, GM04855) and one homozygous HD subject (GM04857). (b) Western blot analysis of cortical brain homogenates from six HD subjects. (c) Whisker box plots comparing wild-type and mutant htt levels normalized against total htt in HD fibroblasts (n = 3) and (d) HD post-mortem brain tissue (n = 6). Whiskers = 10-90 percentile, data were evaluated using a two-tailed student t-test. (e) Dot blot assay of SDS-insoluble htt protein fractions of human control (H121) and HD brain (HC105, HD166, HC107). Dot intensity indicates level of insoluble htt protein.
We also looked at aggregation of post-mortem juvenile HD brain lysates from subjects HC104 and HD29 using the dot blot assay (Figure 4e). As expected, when compared with the HD brain lysates, juvenile HD brain lysates clearly showed more aggregated SDS-insoluble mutant htt protein.
To conclude, in adult-onset HD samples, wild-type and mutant htt protein levels are equal, regardless of mutant htt protein aggregation. In juvenile HD there is a consistent lower level of mutant htt protein expression, in both brain and fibroblast samples.

Identification of novel HTT antisense isoform in patient-derived fibroblasts and brain tissue

In previous studies in *post-mortem* HD brain it was suggested that the HTTAS_v1 with an expanded CTG repeat was not expressed (CHUNG et al., 2011). To validate this a homozygous HD patient-derived fibroblast GM04857 was included since it has two expanded CAG repeats and therefore should not have any HTTAS_v1 expression. Unexpectedly, we also found HTTAS_v1 in fibroblasts obtained from an HD patient homozygous for the CAG repeat expansion (*Figure 5a*). The HTTAS_v1 expression level of the homozygous HD patient was comparable to that of the heterozygous patient samples, suggesting that there is expression of HTTAS_v1 with the expanded CTG repeat.

Next, we designed HTTAS isoform-specific primers to examine the expression of HTTAS_v1 and v2 in: (I) fibroblasts derived from a control, (II) an HD patient, and (III) a juvenile HD patient (*Figure 5a*), as well as *post-mortem* (juvenile) HD brain tissue (*Figure 5b*). Similar levels of HTTAS_v1 in all brain and fibroblasts samples were shown. Interestingly, the primers specific for HTTAS_v2 gave an additional band, slightly bigger than the expected PCR amplicon. Sanger sequencing confirmed that this was a novel HTTAS isoform, which we named HTTAS_v2.2 (*Figure 5c*). This HTTAS_v2.2 has an additional 69 nucleotides at the 3’end of HTTAS exon 2.

In sum, similar HTTAS expression levels in (homozygous) HD and controls were found, suggesting that the observed variations in wild-type and control HTT transcript levels in *post-mortem* brain are probably not caused by changes in HTTAS expression levels. Furthermore, we have identified a novel HTTAS isoform, which we named HTTAS_v2.2.
Figure 5. HTT antisense (HTTAS) identification in HD patient-derived fibroblasts and post-mortem brain tissue. HTTAS_v1 and HTTAS_v2 were amplified using strand- and HTTAS isoform-specific primers. (a) Gel electrophoresis of HTTAS_v1 and HTTAS_v2 RT-PCR of patient-derived fibroblasts from a control (GM04204), an HD patient (GM02173), an HD patient homozygous for the CAG repeat expansion (GM04857) and a juvenile HD patient (GM05539). (b) Gel electrophoresis of HTTAS_v1 and HTTAS_v2 RT-PCR of post-mortem brain tissue from a control (H121), an HD patient (HC105), and 2 juvenile HD patients (HD192 and HD86). Allelic CAG repeat sizes below each lane. (c) Schematic representation of HTTAS_v2.1 and the novel identified HTTAS_v2.2. Sanger sequencing of the exon 2 - exon 3 boundaries of both HTTAS_v2 isoforms are shown. The novel HTTAS_v2.2 has an additional 69 nucleotides at the 3’end of HTTAS exon 2.
In the current study we found that in adult-onset HD patient-derived fibroblasts, the levels of wild-type and mutant HTT mRNA did not significantly differ. This is in concordance with results found in patient-derived HD lymphoblasts (Lee et al., 2013). By analyzing microarray probes that detect both wild-type and mutant HTT mRNA, it was shown that the expanded CAG repeat did not affect HTT mRNA expression (Lee et al., 2013). CAG repeat-induced RNA toxicity has recently also been proposed to be involved in the HD pathogenesis (Wojciechowska and Krzyzosiak, 2011). The size of the CAG repeat is thought to be critical for the contribution of RNA toxicity (Wang et al., 2011). Juvenile fibroblast cells with mutant htt alleles containing either 68 or 151 CAGs exhibited aggregation of mutant HTT mRNA (De Mezer et al., 2011). Our results show that there is no difference in wild-type and mutant HTT mRNA levels in fibroblasts, suggesting that there is no detectable effect of mRNA aggregation on mRNA levels in adult-onset fibroblast samples. However, in post-mortem brain tissue we did find a small but significant lower level of mutant than wild-type HTT mRNA, highlighting subtle differences between post-mortem brain tissue and patient-derived fibroblasts.

Wild-type and mutant htt protein levels did not significantly differ in either patient-derived fibroblasts or post-mortem brain samples. Soluble htt has a half-life of approximately 24 hours (Persichetti et al., 1996) and we hypothesize that with Western blot analysis we detect soluble htt that is present in the cells. Aggregated htt is less efficiently cleared (Gutekunst et al., 1999). This SDS-insoluble accumulated htt protein is detected by dot blot assay. Since protein aggregation is an important feature in HD brain tissue, but does not occur in HD fibroblasts (Sathasivam et al., 2001), our results show that protein aggregation does not affect the levels of soluble htt protein. Although htt protein levels did not differ, in human brain samples we did find less mutant HTT mRNA. A possible explanation could be an enhanced translation of mutant HTT, resulting in equal htt protein levels. Recently, increased translation of mutant htt by binding of the MID1-PP2A translational complex was shown (Krauss et al., 2013). Cells overexpressing N-terminal htt fragments with a normal and mutant polyQ repeat showed an enhanced protein synthesis of htt fragments with an expanded polyQ repeat. This more efficient translation of mutant HTT mRNA was proposed to be caused by enhanced binding of the MID1-complex to the expanded CAG repeat and mediated by mTOR and S6K kinases (Krauss et al., 2013). However, this cannot be a general expanded polyQ mechanism, since we only found a difference in wild-type and mutant HTT mRNA in brain tissue samples and not in fibroblast cells. Another possible explanation for the differences in HTT mRNA levels between human fibroblasts and brain could be the nature of the tissue where RNA was isolated from; dividing living cells versus brain material with post-mortem delay and subsequently autolysis. Nevertheless, our results show subtle differences in htt protein levels between post-mortem brain tissue and patient-derived fibroblasts. This has to be considered when interpreting results obtained from patient-derived HD fibroblasts or other peripheral tissue with respect to disease processes in HD.
In juvenile HD samples we consistently found that the levels of wild-type htt protein were higher than mutant htt protein in both patient-derived fibroblasts and post-mortem brain tissue. This is in contradiction with previous studies in knock-in HD mice carrying one or two repeats with 111 CAGs (KRAUSS et al., 2013), which showed increased mutant htt protein levels. It is known that reverse transcriptase and polymerase chain reactions across CG-rich regions are notoriously difficult (STINE et al., 1995), this combined with a reduced RNA quality in our juvenile HD samples, is why we could not reliably quantify mutant HTT mRNA levels in juvenile HD subjects. It is conceivable that the lower mutant htt protein level in juvenile HD is caused by an equivalent lower level of mutant HTT mRNA. Clearly, our results indicate that expression of wild-type and mutant htt in juvenile HD are different compared to that of adult-onset HD.

Recently it has been suggested that in polyQ disorders bidirectional RNA transcription could play a role in the disease pathology by deregulation of the sense transcript (CHUNG et al., 2011; SOPHER et al., 2011). In HD, two natural HTTAS transcripts (HTTAS_v1 and v2) were identified at the HTT locus, of which HTTAS_v1 contained the CTG repeat (CHUNG et al., 2011). It was shown that overexpression of HTTAS_v1 with an wild-type repeat resulted in reduced HTT sense transcript levels, whereas knockdown of HTTAS_v1 increased HTT sense transcript levels. Based on these findings, it was hypothesized that HTTAS_v1 negatively regulated htt transcript expression (CHUNG et al., 2011). Also, when the CG repeat in HTTAS_v1 was expanded, expression was strongly reduced in HD brains. However, our results show expression of HTTAS_v1 in human-derived fibroblasts homozygous for the CAG repeat expansion, suggesting that there is an HTTAS_v1 with expanded CTG repeat transcribed. Unfortunately we did not have post-mortem material from a homozygous HD patient to validate this HTTAS_v1 expression in human homozygous HD brain. Furthermore, we have identified a novel HTTAS_v2 isoform, which has an additional 69 nucleotides at the 3'end of HTTAS exon 2, which we named HTTAS_v2.2. Future research will have to determine the role of these antisense transcripts in HTT expression.

Recent advances have shown the potential of reducing mutant htt levels with oligonucleotide-based therapeutics. Reduction of both wild-type and mutant htt up to 70% was well tolerated in HD rodent models and non-human primates (KORDASIEWICZ et al., 2012). Long-term suppression of wild-type and mutant htt might not be desirable because of htt’s anti-apoptotic function (RIGAMONTI et al., 2000) and importance for cell survival in the adult brain (DRAGATSIS et al., 2000; ZHANG et al., 2003). A different approach would be an allele-specific reduction of mutant htt. This could be achieved with oligonucleotides directed against SNPs unique to the mutant htt transcript, or by targeting the expanded CAG repeat directly (APPL et al., 2012). Showing that the basal levels of mutant HTT mRNA and mutant htt protein are equal or lower when compared to wild-type, provides feasibility for oligonucleotide therapeutics that are not completely specific for the mutant HTT allele.

Our results highlight subtle differences in htt RNA and protein expression with less mutant HTT mRNA, but equal wild-type and mutant htt protein levels in adult-onset HD. In juvenile HD mutant htt protein levels were lower compared with wild-type htt, indicating subtle differences in htt protein expression between adult-onset and juvenile HD. Differences between post-mortem brain tissue and patient-derived fibroblasts have to be taken into account when
interpreting results obtained from HD patient-derived fibroblasts. Furthermore, differences in htt levels between adult-onset HD and juvenile HD samples should be taken into account when using HD tissue and animal models with juvenile polyQ repeat lengths.

2.6. Acknowledgements

We thank David F. Fischer (BioFocus, a Galapagos company, Leiden, The Netherlands) and Michela A. Tessari (Galapagos B.V., Leiden, The Netherlands) for the TaqMan SNP assay. We thank Marika Eszes and Ingrid Hegeman for providing us with the relevant clinical information.

This work was supported by the Center for Biomedical Genetics (the Netherlands), the Prinses Beatrix Spierfonds (the Netherlands), and Integrated European Project in Omics Research of Rare Neuromuscular and Neurodegenerative Diseases (Neuromics). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
2.7. Supplementary Material

Figure S1. Wild-type and mutant HTT mRNA levels in individual HD patient-derived fibroblasts and post-mortem brain material. Wild-type and mutant HTT alleles were separated by differences in CAG repeat length. Allelic CAG repeat sizes below each bar. gDNA was taken along to control for the PCR reaction over the CAG repeat. Wild-type and mutant HTT RNA expression levels were calculated by dividing the intensity of the gDNA normalized wild-type HTT band by the mutant HTT band. (a) Gel electrophoresis quantification of 4 HD fibroblasts. Bars represent mean values with standard deviation (n = 3). (b) Gel electrophoresis quantification of brain tissue derived from 10 HD patients. Bars represent mean values with standard deviation. Data were evaluated using two-tailed student-t test, * P > 0.05, ** P > 0.01, *** P > 0.001, n = 5.
Figure S2. Analysis of wild-type and mutant htt ratios in individual subjects. Wild-type versus mutant htt ratio for individual subjects was calculated by dividing wild-type htt band intensity with mutant htt band intensity. Individual polyQ tracts are indicated below each subject. (a) Individual patient-derived HD fibroblast cell lines (left), or individual post-mortem cortical brain lysates (right). (b) Individual patient-derived juvenile HD fibroblast cell lines (left), or individual post-mortem cortical juvenile HD brain lysates (right). Bars represent mean values with standard deviation (n ≥ 3). Data were evaluated using two-tailed student-t test, * P < 0.05.
Melvin M. Evers 1
Barry A. Pepers 1
Judith C.T. van Deutekom 2
Susan A.M. Mulders 2
Johan T. den Dunnen 1,3,4
Annemiek Aartsma-Rus 1
Gert-Jan B. van Ommen 1
Willeke M.C. van Roon-Mom 1

1 Department of Human Genetics, Leiden University Medical Center
2 Prosensa Therapeutics B.V., Leiden
3 Leiden Genome Technology Center, Leiden University Medical Center
4 Department of Clinical Genetics, Leiden University Medical Center
Targeting several CAG expansion diseases by a single antisense oligonucleotide

PLoS One 2011, 6(9):e24308
3.1. Abstract

To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington’s disease. Huntington’s disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the \(HTT \) gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2’-O-methyl phosphorothioate (CUG)\(_n\) triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington’s disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)\(_7\), also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington’s disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well.
3.2. Introduction

Polyglutamine (polyQ) diseases are a group of disorders caused by CAG triplet repeat expansions in the coding region of the genome. The disease causing proteins in these polyQ diseases are very different, but in each case the expanded stretch of glutamines results in a toxic-gain-of-function of the protein and this leads to neurodegeneration. To date, a total of 9 polyQ disorders have been described: dentatorubral-pallidoluysian atrophy (DRPLA), Huntington’s disease (HD), spinal bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCA1, 2, 3, 6, 7, and 17) (CUMMINGS AND ZOGHBI, 2000; NAKAMURA et al., 2001). Of these polyQ disorders, HD and SCA3 have the highest prevalence worldwide (BAUER AND NUKINA, 2009). The expanded repeats in these polyQ diseases are unstable resulting in anticipation; a more severe and earlier onset of disease in following generations (RANEN et al., 1995). There is an inverse correlation of disease onset and polyQ length in the protein; the longer the CAG repeat, the earlier the age of onset of the disease (CUMMINGS AND ZOGHBI, 2000). Protein aggregates are found in the nucleus and cytoplasm of cells, indicating that protein misfolding is a common feature of these disorders. Currently no treatment is available to delay onset or even slow progression of polyQ diseases.

In HD, the expanded CAG repeat is located in the first exon of the HTT gene on chromosome 4p16. The expanded CAG transcript is translated into a mutant huntingtin (htt) protein with an expanded polyQ tract at the N-terminus. Patients with 40 or more CAG repeats will develop the disease, whereas people with 35 to 39 repeats show reduced penetrance (MCNEIL et al., 1997). The disease is characterized by motor, psychiatric and cognitive impairments and the typical age of onset lies between 30 and 50 years (ANDREW et al., 1993). The major neuropathology occurs in the striatum but degeneration is seen throughout the brain when the disease progresses. Various other proteins have been found to co-localize with htt aggregates, i.e. TATA box binding protein (TBP), CREB binding protein (CBP) and several molecular chaperones (HUANG et al., 1998; STEFFAN et al., 2000; MUCHOWSKI et al., 2002; ROON-MOM et al., 2002). When the mutation for HD was found, htt was a protein of unknown function but extensive research over the past decade has revealed numerous functions for htt. Also many affected cellular processes have been identified in HD, such as transcriptional de-regulation, mitochondrial dysfunction, and impaired vesicle transport (BAUER AND NUKINA, 2009; ROSS AND TABRIZI, 2011).

SCAs are genetically and clinically distinct autosomal dominant CAG-expansion diseases, numbered by the order of gene description. Patients with SCA exhibit cerebellar degeneration resulting in ataxia and oculomotor deficits, often followed by general brain atrophy (MANTO, 2005; SCHOLS et al., 2004). The first SCA identified, SCA1, is caused by a CAG repeat expansion of 41 or more in exon 8 of the ATXN1 gene (BAUER AND NUKINA, 2009). ATXN1 is translated into the 98 kDa protein ataxin-1, which is involved in transcriptional regulation and RNA metabolism (MATILLA-DUENAS et al., 2008). Mutated ataxin-1, by entering the nucleus, causes cellular dysfunction (KLEMENT ET AL., 1998). In SCA3, the expanded CAG repeat is located in exon 10 of the ATXN3 gene which is translated into mutant ataxin-3 (KAWAGUCHI et al., 1994).
Patients develop the disease when the number of CAGs exceed 51, while there is reduced penetrance when the number of repeats is between 45 and 51 (Padiath et al., 2005). The 42 kDa ataxin-3 protein is suggested to be involved in proteasomal degradation and transport of ubiquitinated proteins (Riess et al., 2008). DRPLA is a rare autosomal dominant disorder, characterized by dementia, ataxia, chorea, myoclonic epilepsy, and psychiatric disturbances. The disease is caused by a CAG repeat expansion in exon 5 of the ATN1 gene, which encodes the 200 kDa atrophin-1 protein. Atrophin-1 is a known transcriptional co-regulator although its exact function is not well understood (Shen and Peterson, 2009). Patients with a repeat of 49 or more glutamines will develop the disease (Nagafuchi et al., 1994).

Most therapeutic strategies under investigation for polyQ disorders are aimed at counteracting one of the many cellular processes that are altered due to expression of the mutant protein. For instance, in all of these neurodegenerative diseases the formation of fragmented protein products by proteolytic cleavage is an important step in the pathogenic process (Bauer and Nukina, 2009). It has been shown that altering proteolysis of the mutant htt protein can be beneficial, as an HD mouse model lacking the caspase 6 cleavage site had reduced neuronal dysfunction and neurodegeneration (Graham et al., 2006). Reducing mutant polyQ protein levels and thereby inhibiting all downstream toxic effects would be much more effective than targeting a single cellular process. One way to achieve this would be to enhance the degradation of mutant polyQ proteins through activation of the proteasome (Seo et al., 2007) or through upregulation of the autophagic pathway (Metcalf et al., 2010). Another strategy would be to inhibit the formation of mutant polyQ proteins by gene silencing or transcript degradation (Scholefield and Wood, 2010). RNAi is increasingly used as a potential therapeutic tool to reduce expression of target transcripts (Rao et al., 2009). RNAi is an endogenous cellular defense mechanism against exogenous viral components and is also involved in transcriptional regulation (Ding and Voinnet, 2007). Specific knock down of target sequences is achieved by introducing exogenously modified oligonucleotides (e.g. short hairpin RNA (shRNA) and short interfering RNA (siRNA)) that bind to the target transcript, which is subsequently degraded or its translation blocked. Recently an siRNA targeting both normal and mutant htt was found to be well-tolerated in wild-type rats (Drouet et al., 2009). However, endogenous htt expression is important for normal cellular function, as underlined by the finding that conditional knockout of murine htt in forebrain and testis resulted in loss of function and progressive neurodegeneration (Dragatsis et al., 2000). Total loss of the endogenous htt homolog in a Drosophila HD model expressing the human first exon of the HTT gene with 93 Qs enhanced the HD pathogenesis (Zhang et al., 2009A). These studies show that a specific reduction of mutant htt levels, leaving as much wild-type htt protein as possible, would be the optimal outcome of a therapy aimed at htt knockdown. Specific reduction of the mutant htt transcript was shown by allele-specific siRNAs directed against a single nucleotide polymorphism (SNP) in htt exon 50 (van Bilsen et al., 2008). In a recent study on the cleavage of triplet repeat hairpins by ribonuclease dicer it was shown that an siRNA with 7 consecutive CUG nucleotides specifically reduced the expression of the mutant htt transcript containing 44 CAG repeats in HD human fibroblasts (Krol et al., 2007). Although off-target effects and
interference with endogenous RNAi processes remains to be assessed (McBride et al., 2008), these results are encouraging.

Another RNA-based therapy approach to knock down gene or protein expression is the use of single stranded antisense oligonucleotides (AON). One of the most promising examples of AON treatment in a neurodegenerative disease is aimed at amyotrophic lateral sclerosis (ALS). In ~2% of ALS patients, the disease is caused by a mutation in superoxide dismutase 1 (SOD1) (Robberecht, 2000). Continuous intraventricular infusion of AONs successfully downregulated SOD1 mRNA and protein levels in the brain and significantly slowed disease progression in an animal model of ALS (Smith et al., 2006). A clinical trial is currently ongoing in ALS patients with SOD1 mutations and results are expected this year (ClinicalTrials.gov, 2009).

For glutamine-expansion disorders, peptide nucleic acid (PNA) and locked nucleic acid (LNA) antisense oligomers targeting CAG repeats have been used to reduce expanded HD and SCA3 transcripts in vitro (Hu et al., 2009a; Hu et al., 2009b; Gagnon et al., 2010; Hu et al., 2011). However, although PNA transfection efficiently reduced mutant protein levels with very long glutamine expansions, the reductions on polyQ lengths that occur most frequently in the HD patient population were less pronounced (Hu et al., 2009a; Hu et al., 2009b). In the current work, we make use of 2′-O-methyl (2OMe) modified RNA AONs with a phosphorothioate (PS) backbone carrying different CUG numbers. We examine the effect of (CUG)n AONs on mRNA levels in cell lines derived from HD, SCA1, SCA3, and DRPLA patients with CAG expansions that occur most frequently in the patient population. A significant reduction in expanded transcript levels was found in patient-derived fibroblast from HD, SCA1, SCA3, and DRPLA. Furthermore, a significant reduction of mutant htt protein was seen in the HD cells. For htt, a reduction in wild-type htt transcript levels was observed as well, but this reduction was less pronounced than for the mutant transcript. Lowering the AON concentration increased the specificity for the mutant transcript. These results show that one single antisense oligonucleotide could be a promising therapeutic treatment for all polyQ disorders.
3.3. Materials & Methods

Cell culture and transfection

Patient derived fibroblasts from HD (GM04022), SCA3 (GM06151), SCA1 (GM06927), and DRPLA (GM13716) (purchased from Coriell Cell Repositories, Camden, USA); and control fibroblasts FLB73 (kind gift from Dr. M.P.G. Vreeswijk, LUMC) were cultured at 37°C and 5% CO₂ in Minimal Essential Medium (Gibco Invitrogen, Carlsbad, USA) with 15% heat inactivated fetal bovine serum (Clontech, Palo Alto USA), 1% Glutamax (Gibco) and 100 U/ml penicillin/streptomycin (Gibco). Human Epstein Barr Virus transformed lymphoblasts HL2.42 and HL2.93 were a kind gift from Prof. E. Bakker (Laboratory of Diagnostic Genome Analysis (LDGA), LUMC). Cells were cultured at 37°C and 5% CO₂ in RPMI 1640 medium (Gibco), containing 15% FBS, 1% glutamax and 100 U/ml P/S.

AON transfection was performed with 3.3 μl ExGen 500 polyethylenimine (PEI) (MBI Fermentas, Vilnius, Lithuania) per μg AON. AON and PEI were diluted in 150 mM NaCl to a total volume of 100 μl and mixtures were prepared according to the manufacturer’s instruction. Four different transfection conditions were used: 1) transfection with 1-100nM (CUG)₇, 100nM (CUG)₃, 100nM (CUG)₁₂, 2) transfection with 10-100nM h₄₀AON2 directed against exon 40 of the DMD gene (5'- UCC UUU CAU CUC UGG GCU C -3') (Control AON) (AARTSMA-RUS et al., 2002), 3) transfection without AON (Mock II), and 4) NaCl only (Mock I). Mixtures were added to a total volume of 2 ml of medium with 5% FBS. Four hours after transfection, medium was replaced with fresh medium and a second identical transfection was performed 24 hours after the first transfection. All AONs consist of 2’-O-methyl RNA and contain a full-length phosphorothioate backbone (Prosensa B.V. Leiden, the Netherlands).

RNA Isolation and RT-PCR

Forty eight hours after the first transfection cells were harvested by trypsinization and washed twice with Hanks buffered salt solution (HBSS) (Gibco). Total RNA was isolated from the cells using an RNeasy Mini Kit (QIagen, Venlo, The Netherlands), with an on-column DNase treatment for approximately 30 minutes. RNA was eluted in 50 μl elution buffer and cDNA was synthesized from total RNA using the Transcriptor First Strand cDNA Synthesis Kit with Random Hexamer primers at 65°C (Roche, Mannheim, Germany).

PCR was performed using 1 μl cDNA, 10x PCR buffer with 1.5 mM MgCl₂ (Roche), 2mM dNTPs, 10 pmol forward primer, 10 pmol reverse primer, 1U FastStart Taq DNA Polymerase (Roche), 1M Betaine (Sigma-Aldrich, St. Louis, USA), and PCR grade water to a final volume of 20 μl. PCR was performed with primers for HTT, ATXN1, ATXN3, and ATN1 (all flanking the CAG repeat), ACTB, and RPL22 (for sequences, see Table S1). The PCR program started with a 4 min initial denaturation at 95°C, followed by 35 cycles of 30 sec denaturation at 95°C, 30 sec annealing at 60°C (56°C for ATXN3), 45 sec elongation at 72°C, after which a final elongation step was performed at 72°C for 7 min.
Lab-on-a-Chip was performed on the Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany), using the Agilent DNA 1000 Kit. Expression levels were normalized for β-actin levels and relative to transcript levels without transfection (Mock I). The relative mutant transcript levels were analyzed using a paired two-sided Student t test. Differences were considered significant when P < 0.05.

qPCR, Calculations and Sequencing. The qPCR was performed using 1 μl of 5x diluted cDNA, 2x FastStart Universal SYBR Green Master mix (Roche), 2.5 pmol forward primer, 2.5 pmol reverse primer and PCR grade water to a total volume of 10 μl. Primer pairs for 6 transcripts containing long uninterrupted CAG repeats were selected for qPCR by BLAST analysis and ACTB and RPL22 were used as reference genes. (For primer list, see Table S1). The qPCR was performed using the LightCycler 480 (Roche). Initial denaturation was 10 min. at 95°C, followed by 45 cycles of 10 sec. denaturation at 95°C, 30 sec. annealing at 59°C and 20 sec. elongation at 72°C. The final elongation was performed 5 min. at 72°C. Next, we performed a melting curve analysis of all samples from 60°C to 98°C with a ramp rate of 0.02°C per sec.

Relative expression of the transcript levels was calculated as described previously (PFAFFL, 2001). All samples were run in triplicate on a plate and two independent experiments were performed for each sample. On all plates both reference genes were included to correct for inter-plate variance.

Primer efficiencies were determined using LinRegPCR v11.1 (RUJTER et al., 2009) with the raw data amplification curves as input and Mock II was used as reference. Values from the mock water transfected cells (Mock I) were set on 100%. The relative transcript levels were analyzed using a paired two-sided Student t test. Differences between groups were considered significant when P < 0.05.

CAG repeats of the CAG enclosing transcripts were amplified using primers flanking the CAG repeat (see Table S1). PCR products were loaded on an agarose gel and bands were extracted using the QIAquick Gel Extraction Kit (QIAGen). The purified products were sequenced by Sanger sequencing, using the Applied Biosystems 96-capillary 3730XL system (Life Technologies Corporation, Carlsbad, USA) with the Applied Biosystems BigDye Terminator v3.1 kit.

Protein isolation and Western blotting

Cells were detached from the culture surface with a 0.5% Trypsin/EDTA solution. After washing twice with 1x HBSS, cells were resuspended in 200 μl ice cold lysis buffer, containing 1x PBS, 0.4% Triton-X100, and 1 tablet Complete mini protease inhibitor EDTA free (Roche) per 10 ml buffer. Next, samples were sonicated 3 times for 5 seconds using ultrasound with an amplitude of 60 at 4°C. After incubation in a head-over-head rotor at 4°C for 1 hour, the extract was centrifuged for 15 min at 10,000g and 4°C and supernatant was isolated. Protein concentrations were determined by the bicinchoninic acid kit (Thermo Fisher Scientific, Waltham, USA) using Bovine Serum Albumin as a standard. Samples were snap frozen and stored at -80°C.
Protein extracts were separated by SDS-PAGE, with 4-15% acryl/bisacrylamide 1:37.5 separating gels and 30 μg (human fibroblasts) of protein lysate loaded. For each sample the Spectra Multicolor High Range Protein Ladder (Fermentas) was used as a marker. Electrophoresis was performed for 30 min at 100V through the stacking gel and 5 hours at 150V through the running gel. Gels were blotted onto a polyvinylidene fluoride (PVDF) membrane for 3 hours at 300mA. Membranes were blocked with 1x Tris Buffered Saline + 0.5% Tween 20 (TBST) containing 5% non-fat milk powder (Profitar Plus, Nutricia, Zoetermeer, the Netherlands). The antibodies used for detection were mouse 4C8 for htt (Eurogentec, Liege, Belgium) dilution 1:1000, mouse 1C2 specific for expanded poly glutamine stretches (Eurogentec) dilution 1:500, mouse ataxin-3 (Eurogentec) 1:1000, rabbit TBP (Santa Cruz Biotechnology, USA) 1:1000, and mouse β-actin, diluted 1:5000. Secondary antibodies were goat α-mouse-horseradish peroxidase (Santa Cruz) and goat α-rabbit-horseradish peroxidase (Santa Cruz), both diluted 1:10,000 in 1x TBST. Horseradish peroxidase was activated by ECL+ reagent (GE Healthcare, Buckinghamshire, United Kingdom) to visualize positive staining on film.

Protein bands were quantified using ImageJ software. The percentage of inhibition was calculated as a relative value to a non-treated control sample and was normalized using β-actin.
3.4. Results

(CUG)₇ AON shows most pronounced reduction of HTT transcript levels

Patient-derived human fibroblasts were transfected with AONs with 3, 7 and 12 consecutive CUGs ((CUG)₃, (CUG)₇, and (CUG)₁₂, respectively) and total RNA was isolated after 48 hours. In the HTT gene the glutamine repeat consists of a CAG stretch, followed by one CAA and a final CAG triplet. The HD cell line GM04022 contained a (CAG)ₙ CAA CAG repeat with n = 18 and 44. As a control fibroblasts cell line FLB73 was used where n = 17 and 21. To avoid influences of CAG repeat length, reductions in total HTT mRNA levels were measured by quantitative PCR (qPCR) with primers within the CAG containing exon but amplifying a transcript fragment upstream of the repeat (Table S1). The most significant reduction in total HTT transcript of 81% (± 4%) in the HD and 76% (± 4%) in the control fibroblasts was found after (CUG)₇ treatment (Figure 1). (CUG)₁₂ transfection resulted in a significant reduction of total HTT transcript of 78% (± 5%) in the HD and 61% (± 18%) in the control cell line. The (CUG)₃ did not show significant reduction of HTT mRNA levels. The (CUG)₇ AON was selected for further testing since it was the shortest AON resulting in the most significant reduction in HTT mRNA levels.

Reduction of mutant HTT mRNA levels in HD cells after (CUG)₇ treatment

Since regular htt expression is important for normal cellular function, our approach is to lower mutant htt protein levels, while maintaining sufficient levels of normal protein. To examine the effect of (CUG)₇ treatment on both HTT transcripts an allele-specific PCR with primers flanking the CAG repeat was performed in quadruplo (Figure 2a). The mutant transcript was decreased by 83% (± 13%, measured by Lab-on-a-Chip analysis) in (CUG)₇ treated cells compared to controls, while normal transcript was reduced to a lesser extent with 43% (± 32%) (Figure 2b). Treatment of the control cell line with (CUG)₇ showed a reduction for both alleles of 21% (± 38%) and 40% (± 38%) respectively.
We repeated this experiment in duplo in patient-derived Epstein Barr Virus transformed control and HD lymphoblasts (Figure 2c). (CUG)$_7$ transfection of the HD cell line gave a reduction of the mutant transcript of 53% (± 10%), while only a small decrease of 22% (± 11%) for the normal transcript was detected (Figure 2d). No apparent reduction in the control cell line was found (data not shown).
TARGETING SEVERAL CAG EXPANSION DISEASES BY A SINGLE ANTISENSE OLIGONUCLEOTIDE

Chapter 3

Reduction of mutant htt protein levels in a HD cell line after (CUG)₇ treatment

Since mRNA levels of the HTT transcript were substantially reduced after treatment with (CUG)₇, in both experiments, we investigated htt protein levels (Figure 3a). Antibody 4C8 can be used to detect total htt protein (TROTTIER et al., 1995A), while antibody 1C2 specifically recognizes the expanded polyQ tract (TROTTIER et al., 1995B). Patient-derived human fibroblasts were transfected and protein isolated (see Materials and Methods). 96 hours after first treatment of HD fibroblasts with 100nM (CUG)₇, 4C8 antibody showed a clear reduction of 54% (± 34%) in htt protein level, while a less pronounced reduction of 16% (± 28%) was observed in the control fibroblasts with 1C2. β-actin is used as loading control. (b) Mutant htt protein levels in HD (GM04022) fibroblasts after 100nM (CUG)₇ transfection were quantified by ImageJ software. A significant reduction of 58% of mutant htt protein was seen after (CUG)₇ transfection as compared to control transfections (* P < 0.05, n = 2). Mutant protein levels of Mock I transfection were set to 100%.

Reduction of mutant htt protein levels in a HD cell line after (CUG)₇ treatment

Since mRNA levels of the HTT transcript were substantially reduced after treatment with (CUG)₇, in both experiments, we investigated htt protein levels (Figure 3a). Antibody 4C8 can be used to detect total htt protein (TROTTIER et al., 1995A), while antibody 1C2 specifically recognizes the expanded polyQ tract (TROTTIER et al., 1995B). Patient-derived human fibroblasts were transfected and protein isolated (see Materials and Methods). 96 hours after first treatment of HD fibroblasts with 100nM (CUG)₇, 4C8 antibody showed a clear reduction of 54% (± 34%) in htt protein level, while a less pronounced reduction of 16% (± 28%) was observed in the control fibroblasts (Figure 3a and data not shown). With 1C2 antibody a significant reduction of 58% (± 16%) of mutant htt protein was seen in the HD fibroblasts following 100nM (CUG)₇ treatment (Figure 3b). Thus, reduction of mutant htt protein was more pronounced than normal htt.

(CUG)₇ AON efficiency is concentration dependent

To test if (CUG)₇ AON concentration is related to efficacy, various AON concentrations were used to transfect HD and control fibroblasts. Lab-on-a-Chip analysis (Figure 4a and b) showed a reduction of mutant HTT with an IC₅₀ value between 2.5nM and 5nM (Figure 4b). At 10nM (CUG)₇, the mRNA expression of mutant HTT was reduced by 89% (± 5%), whereas normal HTT transcript was reduced by 38% (± 9%) in the HD fibroblasts. HTT mRNA reduction was less pronounced for both alleles (16% (± 6%) and 36% (± 5%)) in the control cells, suggesting that at lower concentrations the (CUG)₇ AON is more specific at reducing HTT transcripts with expanded CAG repeats (Figure 4a).

Figure 3. (CUG) AON reduces mutant htt protein levels in HD patient fibroblast cell lines. Cells were transfected with 10nM and 100nM (CUG)₇, non-htt specific h40AON2 (Control AON), or non-transfected cells (Mock I). (a) Western blot of control (FLB73) and HD (GM04022) fibroblasts treated with (CUG), and controls. Total (4C8) and mutant (1C2) htt protein expression is reduced 72 hours after treatment with (CUG)₇. No mutant htt could be detected in the control fibroblasts with 1C2. β-actin is used as loading control. (b)Mutant htt protein levels in HD (GM04022) fibroblasts after 100nM (CUG)₇ transfection were quantified by ImageJ software. A significant reduction of 58% of mutant htt protein was seen after (CUG)₇ transfection as compared to control transfections (* P < 0.05, n = 2). Mutant protein levels of Mock I transfection were set to 100%.
AON directed against the CAG repeat reduces mutant ataxin-3 levels

Since CAG repeat expansions are a hallmark of several neurodegenerative disorders, we tested the molecular efficacy of our AON approach to reduce the expression of other genes as well. SCA3 patients have a CAG triplet repeat expansion in the ATXN3 gene, we examined the effect of (CUG)\textsubscript{7} treatment in patient-derived SCA3 fibroblasts with a CAG CAA (CAG)	extsubscript{n} repeat where n = 18 and 72. As for htt, the (CUG)\textsubscript{7} treatment reduced the transcript from the expanded ataxin-3 allele, while reduction in transcript levels from the normal allele was less pronounced (Figure 5a).

PCR with primers amplifying a product containing the CAG repeat in ATXN3 showed a significant 97% (+ 1%) down regulation of mutant ATXN3 after both 10nM and 100nM (CUG)\textsubscript{7} AON transfection (Figure 5b). The wild-type allele was reduced by respectively 27% (+ 17%) and 33% (+ 6%) by 10nM and 100nM after (CUG)\textsubscript{7} AON treatment.

Reduction on other expanded CAG transcripts by (CUG)\textsubscript{7} treatment

We next tested SCA1 and DRPLA fibroblasts. Allele-specific PCRs with primers flanking the CAG repeat were performed to examine the effect of (CUG)\textsubscript{7} treatment in both the normal and mutant allele. The mutant ataxin-1 (ATXN1) transcript was decreased by 89% (+ 14%) in 100nM (CUG)\textsubscript{7} treated SCA1 cells compared to control transfections (Figure 6a and c), while the normal transcript was not reduced. (The SCA1 and DRPLA cell lines served as each other’s control.) Mutant atrophin-1 (ATN1) in DRPLA was also reduced after 100nM (CUG)\textsubscript{7}, treatment by 98% (+ 2%), whereas there was only a 30% (+ 6%) reduction in the normal allele (Figure 6b and d).
TARGETING SEVERAL CAG EXPANSION DISEASES BY A SINGLE ANTISENSE OLIGONUCLEOTIDE

Chapter 3

(CUG)\(_7\) does not affect other endogenous CAG-enclosing transcripts

The human genome contains several proteins that contain polyQ tracts, usually encoded by a combination of CAG and CAA triplets. Most of these transcripts are essential for normal cellular function (Molla et al., 2009) so reducing those transcripts could impair normal cellular function. To verify whether other uninterrupted CAG repeat containing transcripts were affected, 5 other transcripts were selected after a BLAST search: androgen receptor (AR), ataxin-2 (ATXN2), glutaminase (GLS), TBP, and zinc finger protein 384 (ZNF384). For the cells used in the present study the exact CAG tract length of these 5 transcripts was first determined by Sanger sequencing (Table 1). Primers for qPCR were designed within the CAG containing exon but amplifying a fragment downstream of the CAG repeat in the transcript (Table S1). For technical reasons primers for ATXN2 were designed upstream of the CAG repeat.
Figure 6. (CUG) AON reduces mutant ATXN1 and ATN1 transcripts in SCA1 and DRPLA fibroblasts. SCA1 (GM06927) and DRPLA (GM13716) patient derived fibroblasts were transfected with 10 and 100nM (CUG)$_7$, 10nM non-htt specific h40 AON2 (Control AON), transfection agent only (Mock II), or non-transfected cells (Mock I). (a) Agarose gel analysis with primers flanking the CAG repeat in the ATXN1 transcript. After transfection with both 10nm and 100nM (CUG)$_7$, the upper band, representing the mutant ATXN1 transcript, is greatly decreased in intensity, while the lower band, representing the wild-type transcript, is not reduced. β-actin was used as loading control. (b) Agarose gel analysis with...
primers flanking the CAG repeat in the ATN1 transcript. After transfection with both 10nM and 100nM (CUG), the upper band representing the mutant ATN1 transcript, is greatly decreased in intensity, while the lower band representing the wild-type transcript, is not reduced. β-actin was used as loading control. (c) Lab-on-a-Chip analysis of ATXN1 transcripts in SCA1 cells after control AON and 10nM (CUG) treatment. The mutant transcript, with 72 CAGs, is significantly reduced by 89% after (CUG) treatment, compared to transfection controls. The normal ATXN1 transcript with 27 CAGs is not reduced. (d) ImageJ analysis of ATN1 transcripts in DRPLA cells after control AON and 10nM (CUG) treatment. The 66 CAGs containing mutant ATN1 transcript is significantly reduced by 98% after (CUG) treatment, while normal ATN1 transcript with 16 CAGs is not significantly reduced by 30%. Expression levels are corrected for loading differences with β-actin. The mRNA level of the Mock I transfection was set on 100% (* P < 0.05, ** P < 0.01, n = 3).

All tested CAG-enclosing transcripts were unaffected by 100nM (CUG) treatment (Figure 7), including the AR transcript that contained CAG repeats of 21 and 23 CAGs. Endogenous ataxin-3 (with 17:18 Qs) and TBP (37:38 Qs) protein levels were unaffected by 100nM (CUG) treatment (Figure 8). From the above results we can conclude that (CUG), does not significantly reduce endogenous CAG containing transcripts and does not decrease endogenous polyQ-containing protein levels.
3.5. Discussion

The present study shows that an AON targeting CAG repeats and consisting of 7 CUGs significantly reduces protein and RNA levels of mutant htt in patient-derived fibroblast cell lines. This reduction was also seen, but to a lesser extent with (CUG)$_{12}$ but not with (CUG)$_3$. Although there was also a reduction of normal HTT transcript levels, the results show a preferential allele-specific reduction of mutant HTT in patient derived HD cells and this allele specificity was improved when AON concentration was lowered from 100nM to 10nM.

Furthermore, other non-expanded CAG-containing transcripts that were investigated were not affected by (CUG)$_7$ treatment. There was no reduction after (CUG)$_7$ treatment of the AR transcript that contained the longest tested uninterrupted CAG repeat, namely 21 and 23 CAGs. Normal HTT that contained 17 and 21 CAG repeats did show a reduction after (CUG)$_7$ treatment, suggesting that there are other factors besides the number of consecutive CAG triplets that determine (CUG)$_7$ efficacy.

The results with mutant ATXN1, ATXN3, and ATN1 confirmed the specificity of (CUG)$_7$ for transcripts with an expanded CAG tract in SCA1, 3, and DRPLA patient derived cells, respectively. Our results suggest that (CUG)$_7$ could

Figure 7. (CUG)$_7$ AON does not affect other CAG-containing transcripts. Quantitative real-time PCR was used to measure androgen receptor (AR), ataxin-2 (ATXN2), glutaminase (GLS), TATA box binding protein (TBP), and zinc finger protein 384 (ZNF384) mRNA levels in control and HD fibroblasts after treatment with 100nM (CUG)$_7$, non-htt specific h40AON2 (Control AON), transfection agent only (Mock II), or non-transfected cells (Mock I). All tested CAG-enclosing transcripts were unaffected by (CUG)$_7$ treatment. ACTB and RPL22 are used as reference genes. The expression level of Mock I transfections were set on 100% (n= 6)
be effective in reducing expanded CAG repeat containing transcripts in all polyQ diseases.

In HD there is a gain of toxic function of the mutant htt protein, while regular htt expression is important for normal cellular function. Knockout of the homologous htt mouse gene was found to be early embryonic lethal (Zeitlin et al., 1995) and previous studies have shown that approximately 50% of htt protein level is required to maintain cell functionality (Dragatsis et al., 2000; Rigamonti et al., 2000; Cattaneo et al., 2001; Cattaneo et al., 2005). In addition, increased clearance of mutant htt protein by autophagy in a Drosophila model and blockage of mutant htt in a conditional knock-out mouse model of HD resulted in a reduction in aggregates and an ameliorated phenotype (Yamamoto et al., 2000; Sarkar et al., 2007). Reduction of mutant protein levels will therefore most likely result in amelioration of the toxic HD phenotype but total knockdown of htt protein expression would not be advantageous (Sah and Aronin, 2011).

For other polyQ disorders the role of wild-type polyQ proteins in adult brain is still poorly understood. In a SCA3 Drosophila model expressing normal and mutant human ataxin-3, loss of normal ataxin-3 contributed to neurodegeneration (Warrick et al., 2005). In contrast, non-allele-specific reduction of endogenous ataxin-3 was not found to be detrimental in rodents (Schmitt et al., 2007; Alves et al., 2010). Ataxin-1 knockout mice resulted in cerebellar transcriptional changes resembling SCA1 pathology, suggesting a neuroprotective role of normal ataxin-1 (Crespo-Barreto et al., 2010). In contrast, atrophin-1 knockout mice were viable and did not show a clear phenotype (Shen et al., 2007), suggesting that non-allele-specific reduction of both alleles in DRPLA is not harmful. Future research is necessary to determine the significance of wild-type polyQ protein levels for normal cellular function and the importance of AON-mediated allele-specific transcript reduction.

Several papers have shown allele-specific silencing of mutant htt with SNP-specific siRNAs (van Bilsen et al., 2008; Zhang et al., 2009b). Indeed HD patients carry different SNPs, requiring the development of at least five different siRNAs, to target 75% of the European and United States HD population (Lombardi et al., 2009; Pfister et al., 2009). However, the advantage of the approach described in the current paper is that it requires only 1 AON to treat all HD patients and would be applicable in other polyQ diseases. Furthermore, siRNAs are double stranded oligonucleotides and these have been described to cause off-target effects by the sense strand, (Fedorov et al., 2006) as well as striatal toxicity (Grimm et al., 2006; McBride et al., 2008). In addition, RNA interference is an endogenous process; addition of siRNAs might cause toxicity due to an overload of the endogenous system. Recently, nucleic acids conjugates, with

Figure 8. (CUG), AON does not reduce other polyQ-containing proteins. Western blot of control (FLB73) fibroblasts treated with 100nM (CUG)$_7$, non-htt specific h40AON2 (Control AON), and non-transfected (Mock I). TATA box binding protein (TBP) and ataxin-3 are not reduced 72 hours after treatment with (CUG)$_7$. β-actin is used as loading control.
CHAPTER 3

different chemistries than the AONs used in the current study, were used for allele-specific silencing of mutant htt. PNAs consisting of 1 guanine, followed by 6 CTGs, complementary to the CAG repeat, were found to specifically reduce mutant htt and ataxin-3 protein levels in patient-derived cells (Hu et al., 2009A; Hu et al., 2011). Although the reduction in protein levels by PNA transfection was highly efficient with very long stretches of CAGs, there was only a minor decrease when the number of CAG repeats that occur most frequently in the patient population was targeted (Hu et al., 2009A; Hu et al., 2009B). Testing a variety of modifications resulted in oligonucleotides with a thymine (T) LNA nucleotide at every third base (LNA(T)) and 2’O,4’O-C-ethyl nucleic acid (cET) which show higher selectivity (2.9 and 3.7 fold) for mutant alleles with 41 CAG repeats (Gagnon et al., 2010).

Table 1. Number of uninterrupted CAGs and codons that encode for glutamine in CAG repeat enclosing transcripts as determined by Sanger sequencing and a summary of the effect of (CUG), treatment in those transcripts.

<table>
<thead>
<tr>
<th>Transcript Name</th>
<th>Cell Line</th>
<th>Glutamine stretch</th>
<th>Uninterrupted CAGs</th>
<th>Significant reduction after 100nM (CUG), AON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Allele 1</td>
<td>Allele 2</td>
<td>Allele 1</td>
</tr>
<tr>
<td>AR</td>
<td>Control</td>
<td>22</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>23</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>ATN1</td>
<td>Control</td>
<td>19</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>12</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DRPLA</td>
<td>20</td>
<td>70</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>SCA1</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>ATN1</td>
<td>DRPLA</td>
<td>29</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>SCA1</td>
<td>29</td>
<td>52</td>
<td>14</td>
</tr>
<tr>
<td>ATXN2</td>
<td>Control</td>
<td>20</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>20</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>ATXN3</td>
<td>Control</td>
<td>17</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>19</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>SCA3</td>
<td>20</td>
<td>74</td>
<td>18</td>
</tr>
<tr>
<td>GLS</td>
<td>Control</td>
<td>8</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>HTT</td>
<td>Control</td>
<td>19</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>20</td>
<td>46</td>
<td>18</td>
</tr>
<tr>
<td>TBP</td>
<td>Control</td>
<td>37</td>
<td>38</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>35</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>ZNF384</td>
<td>Control</td>
<td>15</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>HD</td>
<td>15</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

Abbreviations: AR, androgen receptor; ATN1, atrophin-1; ATXN1, ataxin-1; ATXN2, ataxin-2; ATXN3, ataxin-3; GLS, glutaminase; HTT, huntingtin; TBP, TATA box binding protein; ZNF384, zinc finger protein 384. Reduced transcripts after (CUG), treatment are depicted in bold.
AONs are a promising therapeutic tool, as was recently shown by phase I and phase I/II clinical trials in Duchenne muscular dystrophy (DMD) boys carrying specific deletions in the DMD gene (GOEMANS et al., 2011). Local and systemic (subcutaneous) delivery of a specific 2OMe modified AON induced exon 51 skipping in the DMD gene on transcript level allowing the synthesis of novel, internally deleted, but likely (semi-) functional, dystrophin proteins without clinically apparent adverse events (van Deutekom et al., 2007). AONs have also been used for the treatment of neurodegenerative disorders and are found to be taken up by neurons when delivered into the cerebral lateral ventricles. As treatment for ALS 2′-O-methoxyethyl modified deoxynucleotides infused intraventricularly were found to reduce both SOD1 transcript and protein levels in rats and rhesus monkeys, which resulted in a slower disease progression (SMITH et al., 2006). Similarly modified oligonucleotides for spinal muscular atrophy (SMA) resulted in putative therapeutic levels in all regions of the spinal cord after intrathecal infusion in non-human primates (PASSINI et al., 2011).

The exact mechanism by which the AONs are used in the current study to reduce transcript levels and why they show both an allele and gene preference is not known. This selective repeat-length dependent reduction was also seen in myotonic dystrophy type 1 after (CAG), AON treatment (MULDERS et al., 2009). Since 2OMe PS modified AONs are nuclease and RNase H resistant, RNase H-induced cleavage or RISC mediated degradation of dsRNA is not likely to be involved (MULDERS et al., 2009). Another explanation could be RNase H-independent translational blocking by (CUG), AON binding to the transcript, preventing binding or steric blockage of the ribosomal units. However, translational blocking is not likely to be involved since htt transcript levels are also reduced (HU et al., 2009A). Reduction of transcript levels are not thought to be caused by interference of the (CUG), AON during cDNA synthesis. Addition of (CUG), AON just prior to the mRNA before cDNA synthesis did not result in reduced htt transcript levels (data not shown). A more likely explanation for the allele-specific effect of the (CUG), AON shown in the current paper could be caused by structural differences in transcripts with normal and expanded repeats. Expanded CAG repeats are known to from hairpin structures (DE MEZER et al., 2011). (CUG), AON binding could stabilize this CAG RNA hairpin, resulting in selective breakdown of the mutant transcripts. Another explanation could be that the expanded CAG repeats have a more open structure, making them more accessible for AON binding, thereby leading to induction of selective breakdown, resulting in a lower mRNA expression. These two models are not mutually exclusive and other mechanisms may as well be involved.

However, these results show that reduction of the mutant mRNA and/or its translation are promising generic routes towards therapy of triplet expansion diseases. Our future plans would be unraveling the exact mechanism of the reduction of HTT transcripts by the AON and in vivo testing of the toxicity and delivery of the (CUG), in animal models of polyQ diseases.

Here we show the first evidence of a specific reduction of mutant huntingtin, ataxin-1 and -3, and atrophin-1 transcript levels using 2OMe PS modified AONs that recognizes pure CAG repeat stretches, suggesting that a single AON is potentially applicable to polyQ neurodegenerative diseases with an expanded pure CAG repeat.
3.6. Acknowledgments

Judith C.T. van Deutekom and Susan A.M. Mulders are employed by Prosensa Therapeutics B.V. (Leiden, The Netherlands). Prosensa Therapeutics B.V. holds a patent on the use of AONs to reduce CAG and GTG repeat containing transcripts and may (ultimately) benefit from the application of the submitted information. The LUMC does not have any patents on the reported area and has no financial relationship with Prosensa in the field of triplet expansion diseases, nor foresees to benefit otherwise from the use of the reported information.

This work was supported by the Center for Biomedical Genetics (The Netherlands); and Agentschap NL - IOP Genomics IGE07001 (The Netherlands).
3.7. Supplementary Material

Table S1. Used primers for Sanger sequencing and (quantitative) RT-PCR.

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Direction</th>
<th>Amplifying the CAG repeat</th>
<th>Without CAG repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTT</td>
<td>Forward</td>
<td>ATGGCGACCCTGGAAGGACTG</td>
<td>ATGGCGACCTGGAAAAAG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGAGGCAGCAGCGGGCTG</td>
<td>CTGCTGCTGGAAGGACTTG</td>
</tr>
<tr>
<td>AR</td>
<td>Forward</td>
<td>GCCTACGGGAGAGCTTTCC</td>
<td>TGCAACTCTTTCAGCAACAG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CTGACCCCGAGCGGAGTACGT</td>
<td>TCGAAGTGGCCCCCTAAGTAA</td>
</tr>
<tr>
<td>ATXN1</td>
<td>Forward</td>
<td>TGGAGGCTATTTCCACTCTG</td>
<td>TGGACGTACTGTTCTG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGGAGGCTATTTCCACTCTG</td>
<td>TGGACGTACTGTTCTG</td>
</tr>
<tr>
<td>ATXN2</td>
<td>Forward</td>
<td>CCTCACCATGTCGGCTGAAG</td>
<td>CCTCGGCTCAGACTGT</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GGAGACCGGAGGACGAGC</td>
<td>GAGAAAGGAGGACGAGGAAG</td>
</tr>
<tr>
<td>ATXN3</td>
<td>Forward</td>
<td>GAGCTTCGGAAGAGACGAGA</td>
<td>GGGGACCTATCAGGAAGAG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GATCACTCCCAGTGCTCTCT</td>
<td>CAAGTGCTTGCAGACTCT</td>
</tr>
<tr>
<td>ATN1</td>
<td>Forward</td>
<td>CACCACACAGTCTCAACACCA</td>
<td>TCAGAGCAGGTTGCTCTACA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GAGACATGGGCTAGGGGTGT</td>
<td>GTAGCGGAGGAGTGTTG</td>
</tr>
<tr>
<td>GLS</td>
<td>Forward</td>
<td>TAGGCGGAGCGGAAGGAAGA</td>
<td>ACCCAAGTAGACTGCCCTT</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GCTCAACAGGGGAGGAGT</td>
<td>GCTCAACAGGGGAGGATG</td>
</tr>
<tr>
<td>TBP</td>
<td>Forward</td>
<td>GACCCCAAGCGCTATTCAAGA</td>
<td>CCACAGCTTCTCCACTACA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TTGACTGCTGAACGGCTGCA</td>
<td>GGCGTACAATCCCAGAATC</td>
</tr>
<tr>
<td>ZNF384</td>
<td>Forward</td>
<td>ACATATGCGCAAACACAACC</td>
<td>CCACCACACTTCCAGTCTCC</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CCAGGAGACTGGAAGGTGTG</td>
<td>TGACAGTGGACAGATGCTCC</td>
</tr>
<tr>
<td>ACTB</td>
<td>Forward</td>
<td>GGACTTCGAGCAAGAGATGG</td>
<td>AGCACTGTGTTGGCTACAG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GGACTTCGAGCAAGAGATGG</td>
<td>AGCACTGTGTTGGCTACAG</td>
</tr>
<tr>
<td>RPL22</td>
<td>Forward</td>
<td>TCAGGGTGACTTGTGCTCTA</td>
<td>TCAGGGTGACTTGTGCTCT</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TCAGGGTGACTTGTGCTCTA</td>
<td>TCAGGGTGACTTGTGCTCT</td>
</tr>
</tbody>
</table>

All primer sequences are from 5' - 3'. Abbreviations are as follows: AR, androgen receptor; ATN1, atrophin-1; ATXN1, ataxin-1; ATXN2, ataxin-2; ATXN3, ataxin-3; GLS, glutaminase; HTT, huntingtin; TBP, TATA box binding protein; ZNF384, zinc finger protein 384; ACTB, β-actin; RPL22: ribosomal protein L22.
Melvin M. Evers 1
Hoang-Dai Tran 1
Ioannis Zalachoras 2
Onno C. Meijer 2
Johan T. den Dunnen 1,3,4
Gert-Jan B. van Ommen 1
Annemieke Aartsma-Rus 1
Willeke M.C. van Roon-Mom 1

1 Department of Human Genetics, Leiden University Medical Center
2 Department of Endocrinology, Leiden University Medical Center
3 Leiden Genome Technology Center, Leiden University Medical Center
4 Department of Clinical Genetics, Leiden University Medical Center
Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification

Nucleic Acid Therapeutics 2014, 24(1):4-12
4.1. Abstract

Huntington’s disease (HD) is a progressive autosomal dominant disorder, caused by a CAG repeat expansion in the HTT gene, which results in expansion of a polyglutamine stretch at the N-terminal end of the huntingtin protein. Several studies have implicated the importance of proteolytic cleavage of mutant huntingtin in HD pathogenesis and it is generally accepted that N-terminal huntingtin fragments are more toxic than full-length protein. Important cleavage sites are encoded by exon 12 of HTT. Here we report proof of concept using antisense oligonucleotides to induce skipping of exon 12 in huntingtin pre-mRNA, thereby preventing the formation of a 586 amino acid N-terminal huntingtin fragment implicated in HD toxicity. In vitro studies showed successful exon skipping and appearance of a shorter huntingtin protein. Cleavage assays showed reduced 586 amino acid N-terminal huntingtin fragments in the treated samples. In vivo studies revealed exon skipping after a single injection of antisense oligonucleotides in the mouse striatum. Recent advances to inhibit the formation of mutant huntingtin using oligonucleotides seem promising therapeutic strategies for HD. Nevertheless, huntingtin is an essential protein and total removal has been shown to result in progressive neurodegeneration in vivo. Our proof of concept shows a completely novel approach to reduce mutant huntingtin toxicity not by reducing its expressing levels, but by modifying the huntingtin protein.
4.2. Introduction

Polyglutamine (polyQ) diseases are a group of autosomal dominant neurodegenerative disorders caused by a CAG triplet repeat expansion in protein coding regions of the genome. The most prevalent polyQ disorder, Huntington's disease (HD), is caused by a CAG repeat expansion in the first exon of the \(HTT\) gene on chromosome 4p16. The expanded CAG transcript is translated into a mutant huntingtin (htt) protein with an expanded polyQ tract at the N-terminus. Carriers of 40 or more CAG repeats will develop HD, whereas people with 35 to 39 repeats show reduced penetrance (McNeil et al., 1997). The disease is characterized by motor, psychiatric and cognitive impairments and the typical age of onset lies between 30 and 50 years and is inversely correlated to the number of CAGs (Andrew et al., 1993).

In HD, insoluble protein aggregates are found in the nucleus and cytoplasm of cells, indicating that htt protein misfolding is a common feature (Ross and Tabrizi, 2011). Major neuropathology occurs in the striatum but degeneration is seen throughout the brain when the disease progresses (Vonsattel and Difiglia, 1998). Many cellular processes are affected in HD, as is evident from transcriptional de-regulation, mitochondrial dysfunction, and impaired vesicle transport (Ross and Tabrizi, 2011). Several studies have implicated the importance of apoptosis and specifically proteolytic cleavage of mutant htt in HD pathogenesis (Ehrnhoefer et al., 2011). Exon 1 of the \(HTT\) gene with an expanded CAG repeat is sufficient to induce symptoms in the R6/2 mouse model of HD (Mangiarini et al., 1996), also shorter htt fragments seems to be more pathogenic than longer htt fragments (Crook and Housman, 2011). Aggregates in brains of HD patients can be stained with antibodies directed at N-terminal epitopes but not C-terminal epitopes of htt (Lunkes et al., 2002), suggesting that aggregates contain truncated N-terminal htt fragments. In apoptotic cells, htt is cleaved by cysteine aspartic acid proteases, called caspases (Goldberg et al., 1996). Mutations in caspase-3 at amino acid positions 513 and 552 and caspase-6 motifs at position 586 in mutant htt resulted in cleavage-resistant neuronal and non-neuronal cells with reduced toxicity and less aggregates in vitro (Wellington et al., 2000). In vivo it was also shown that mutation of amino acid position 586 in the caspase-6 cleavage motif resulted in reversal of the HD phenotype in a YAC128 mouse model (Graham et al., 2006; Poujade et al., 2009). These mice express the full human genomic HTT, which is translated into a mutant htt protein with 128 glutamines. Using the same YAC128 model, no improvement of HD phenotype was seen after mutations in the caspase-3 cleavage sites at amino acid positions 513 and 552. This suggests that cleavage at position 586 is an important step in HD neuropathology and results in neuronal dysfunction and neurodegeneration (Graham et al., 2006).

Recent advances to inhibit the formation of mutant htt using oligonucleotides seem promising therapeutic strategies for HD (Sah and Aronin, 2011). These approaches make use of RNA interference (RNAi), RNAi-like mechanisms using single-stranded RNAs (ssRNAs) or antisense oligonucleotides (AONs) (Sah and Aronin, 2011; Yu et al., 2012). Lowering mutant htt protein levels would prevent all downstream toxic effects, but complete suppression of
htt may not be desirable since wild-type htt has numerous cellular functions. Htt is reported to act as protector of brain cells from apoptotic stimuli (Rigamonti et al., 2000) and is required in adult neurons and testis (Dragatis et al., 2000). Knock-out of the homologous htt mouse gene was found to be early embryonic lethal (Zeitlin et al., 1995) and htt inactivation in adult mice was shown to result in progressive neurodegeneration (Dragatis et al., 2000). However, non-allele-specific reduction of both normal and mutant htt transcripts up to 75% was found to be well tolerated in HD rodents and non-human primates (Boudreau et al., 2009; Drouet et al., 2009; McBride et al., 2011; Kordasiewicz et al., 2012) and resulted in phenotypic reversal up to 4 months post treatment (Kordasiewicz et al., 2012). Although studies so far have shown that lowering of htt levels can be well tolerated, safety and specificity of htt transcript lowering drugs after long-term exposure need to be assessed.

Allele-specific reduction would be preferred since this would leave the wild-type htt protein levels unchanged. This was achieved with oligonucleotides directed against single nucleotide polymorphisms (SNPs) unique to the mutant htt transcript (VAN BILSEN et al., 2008; Lombardi et al., 2009; PFISTER et al., 2009; Warby et al., 2009; Zhang et al., 2009; Carrol et al., 2011). Another approach for an allele-specific reduction of mutant htt is targeting the expanded CAG repeat. Oligonucleotides complementary to the CAG repeat were found to result in allele-specific reduction of htt transcript and protein levels in patient derived cells (Krol et al., 2007; Hu et al., 2009; Gagnon et al., 2010; Yu et al., 2012; Chapter 3).

A novel way to alter toxicity of the mutant htt protein is through protein modification. The major advantage of this approach is that htt transcript and protein levels are unchanged. Using AONs it is possible to mask exons from the splicing machinery resulting in exclusion of the targeted exon (Spitali and Aartsma-Rus, 2012). When the reading frame is intact or restored after exon skipping there is subsequent translation of a modified protein. This exon skipping is a promising therapeutic tool that is already in phase II/III clinical trial for Duchenne muscular dystrophy (DMD) (Cirak et al., 2011; Van Putten and Aartsma-Rus, 2011).

In this study we use 2’O-methyl modified AONs with a phosphorothioate backbone to induce an in-frame partial exon 12 skip in human htt pre-mRNA. This resulted in a shorter htt protein lacking the 552 caspase-3 and 586 caspase-6 cleavage site, while total htt protein levels were unaltered. Using in vitro caspase-6 cleavage assay, AON treated samples showed less 586 N-terminal htt fragments implied in expanded htt toxicity. Injection of a single dose of AONs in the mouse striatum also resulted in removal of the same 552 caspase-3 and 586 caspase-6 cleavage sites, further supporting the concept that proteolytic site removal by exon skipping could be a potential therapeutic approach to prevent formation of toxic N-terminal htt fragments.
4.3. Materials and Methods

Antisense oligonucleotide design

Our AONs were designed following the guidelines described by Aartsma-Rus (AARTSMA-RUS, 2012). In short, the AONs were designed to anneal to in silico predictions of potential exonic splicing enhancer sites (ESEs) (DESMET et al., 2009), which have been shown to be an efficient modulator of splicing (AARTSMA-RUS et al., 2005; WILTON et al., 2007). Primarily, AON design was based on targeting an open region in the secondary structure of the target exon as predicted by m-fold (ZUKER, 2003) and ensuring favorable thermodynamic properties (AARTSMA-RUS et al., 2009). Furthermore, cytosine-phosphate-guanine (CpG) dinucleotides were avoided in the AON design, as these potentially activate the Toll-like receptor-9 inflammatory response (BAUER et al., 2001). Finally, sequences were BLAST-verified using megablast general algorithm parameters and short input sequence for the absence of stretches more than 15 homologous nucleotides to the entire genomic sequence of the relevant species.

<table>
<thead>
<tr>
<th>Table 1. Antisense oligonucleotides sequences used for transfection and injection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AON Name</td>
</tr>
<tr>
<td>AON12.1</td>
</tr>
<tr>
<td>Control AON</td>
</tr>
<tr>
<td>mAON12.1</td>
</tr>
<tr>
<td>mAON12.2</td>
</tr>
<tr>
<td>mAON13</td>
</tr>
<tr>
<td>Scrambled AON</td>
</tr>
</tbody>
</table>

Cell culture and transfection

Patient derived fibroblasts from HD patients (GM04022, purchased from Coriell Cell Repositories, Camden, USA) and controls (FLB73, a kind gift from Dr. M.P.G. Vreeswijk, LUMC) were cultured at 37°C and 5% CO2 in Minimal Essential Medium (MEM) (Gibco Invitrogen, Carlsbad, USA) with 15% heat inactivated fetal bovine serum (FBS) (Clontech, Palo Alto USA), 1% Glutamax (Gibco) and 100 U/ml penicillin/streptomycin (Gibco).

AON transfection was performed in a 6-wells plate with 3 µl of Lipofectamine 2000 (Life Technologies, Paisley, UK) per well. AON and Lipofectamine 2000 were diluted in MEM to a total volume of 500 µl and mixtures were prepared according to the manufacturer’s instruction. Four different transfection variables were used: 1) transfection with 1-200 nM AON12.1, 2) transfection with h40AON2 directed against exon 40 of the DMD gene (Control AON) (AARTSMA-RUS et al., 2002), 3) transfection without AON (Mock). For AON sequences, see Table 1. Mixtures were added to a total volume of 1 ml of MEM. Four hours after transfection, medium was replaced with fresh medium containing 5% FBS. A control AON with a 5’ fluorescein label was used to ascertain optimal transfection efficiencies by counting the number of fluorescent nuclei (in general, over 80% of all nuclei). All AONs consist of 2’-O-methyl RNA and contain a full-length phosphorothioate backbone (Eurogentec, Liege, Belgium).
CHAPTER 4

RNA analysis

Twenty four hours after the first transfection total RNA was isolated from cells using the Aurum Total RNA Mini Kit (BioRad, Hercules, USA), with an on-column DNase treatment for 30 minutes. RNA was eluted in 40 μl elution buffer and cDNA was synthesized from 500ng total RNA using the Transcriptor First Strand cDNA Synthesis Kit with Random Hexamer primers at 65°C (Roche, Mannheim, Germany).

PCR was performed using 2 μl cDNA, 10x PCR buffer with 1.5 mM MgCl₂ (Roche), 0.25 mM dNTPs, 10 pmol of both forward and reverse primer (Eurogentec), 1U FastStart Taq DNA Polymerase (Roche), and PCR grade water to a final volume of 20 μl. PCR was performed with primers flanking exon 9 to 16 of the human sequence (see Table 2). The PCR program started with a 4 min initial denaturation at 95°C, followed by 35 cycles of 30 sec denaturation at 95°C, 30 sec annealing at 59°C, 70 sec elongation at 72°C, after which a final elongation step was performed at 72°C for 7 min.

Lab-on-a-Chip was performed on the Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany), using the Agilent DNA 1000 Kit.

The qPCR was performed on RNA extracted from striatal tissue isolated from mouse brain, using 2 μl of 5x diluted cDNA, 20x EvaGreen-qPCR dye (Biotium, Hayward, USA), 10x PCR buffer with 1 mM MgCl₂ (Roche), 0.25 mM dNTPs (Roche), 2.5 pmol forward primer, 2.5 pmol reverse primer, 0.35U FastStart Taq DNA Polymerase (Roche), and PCR grade water to a total volume of 10 μl. Primer pairs located in various exons of htt were selected for qPCR using Primer3 software (Rozen and Skaletsky, 2000) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (Ywhaz) and ribosomal protein L22 (Rpl22) were used as reference genes. (For primer list, see Table 2). The qPCR was performed using the LightCycler 480 (Roche). Initial denaturation was 10 min. at 95°C, followed by 45 cycles of 10 sec. denaturation at 95°C, 30 sec. annealing at 59°C and 20 sec. elongation at 72°C. The final elongation was performed 5 min. at 72°C.

Primer efficiencies were determined using LinRegPCR v2012.0 with the raw data amplification curves as input. The raw data were baseline corrected and absolute transcript level expressions (N0) were calculated as described previously (Ruijter et al., 2009). All samples were run in triplicate on a plate. On all plates both reference genes were included to correct for inter-plate variance.

Sanger sequencing

Full-length and skipped products were amplified using exon 9 forward or htt exon 16 reverse primer (see Table 2). PCR products were loaded on agarose gel and bands were extracted using the QIAquick Gel Extraction Kit (QIAGen). The purified products were re-amplified, purified, and analyzed by Sanger sequencing, using the Applied Biosystems 96-capillary 3730XL system (Life Technologies Corporation, Carlsbad, USA) with the Applied Biosystems BigDye Terminator v3.1 kit.
Table 2. Primer sequences used for Sanger sequencing and (quantitative) RT-PCR.

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Species</th>
<th>Primer Name</th>
<th>Application</th>
<th>Sequence (5' - 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTT</td>
<td>Human</td>
<td>hHttEx9Fw1</td>
<td>RT-PCR</td>
<td>GAGCTTCTGCAAACCTTGAC</td>
</tr>
<tr>
<td>HTT</td>
<td>Human</td>
<td>hHttEx16Rev1</td>
<td>RT-PCR</td>
<td>CTTCACGGTACCCCTACAT</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx11Fw1</td>
<td>RT-PCR</td>
<td>TCCAGGTAGATGTACGAG</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx14Rev1</td>
<td>RT-PCR</td>
<td>CATATGCCCTTTCTCAAA</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx12Fw1</td>
<td>qRT-PCR</td>
<td>CCACCTCTGTGGTTGTTG</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx12Rev1</td>
<td>qRT-PCR</td>
<td>TGGGATCTAGGCTGCTAG</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx13Fw1</td>
<td>qRT-PCR</td>
<td>GTTATGATGGCGATAGCC</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx13Rev1</td>
<td>qRT-PCR</td>
<td>GCTCCTCCTGGCTGCTCTA</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx27Fw1</td>
<td>qRT-PCR</td>
<td>ACGGAAGGGAGGAGAAAG</td>
</tr>
<tr>
<td>Htt</td>
<td>Mouse</td>
<td>mHttEx27Rev1</td>
<td>qRT-PCR</td>
<td>CACCAAATTTCTTGGACTA</td>
</tr>
<tr>
<td>Rpl22</td>
<td>Mouse</td>
<td>mRpl22Ex3Fw1</td>
<td>qRT-PCR</td>
<td>AGGATCGTCGACCATCGA</td>
</tr>
<tr>
<td>Rpl22</td>
<td>Mouse</td>
<td>mRpl22Ex3Rev</td>
<td>qRT-PCR</td>
<td>TTGGAGAAGGCACCTCTG</td>
</tr>
<tr>
<td>Ywhaz</td>
<td>Mouse</td>
<td>mYwhazEx4Fw1</td>
<td>qRT-PCR</td>
<td>TCTGGCCCTCAACTTCTCTG</td>
</tr>
<tr>
<td>Ywhaz</td>
<td>Mouse</td>
<td>mYwhazEx4Rev</td>
<td>qRT-PCR</td>
<td>AGGCTTTCTTGGGGAGTTC</td>
</tr>
</tbody>
</table>

Abbreviations: HTT, huntingtin; Rpl22, ribosomal protein L22; Ywhaz, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide.

Protein isolation, caspase-6 assay and Western blotting

Cells were detached from the culture surface with a 0.5% Trypsin/EDTA solution three days after transfection. After washing twice with HBSS, cells were resuspended in 200 μl ice cold caspase lysis buffer, containing 50 mM Hepes, 50 mM NaCl, 10 mM EDTA, 10 mM DTT, 0.1% CHAPS. Next, samples were sonicated 3 times for 5 seconds using ultrasound with an amplitude of 60 at 4°C. After 1 hour incubation in a head-over-head rotor at 4°C, the extract was centrifuged for 15 min at 10,000 g and 4°C and supernatant was isolated. Protein concentrations were determined by the bicinchoninic acid kit (Thermo Fisher Scientific, Waltham, USA) using Bovine Serum Albumin as a standard. Samples were snap frozen and stored at -80°C.

For *in vitro* caspase cleavage, 30 μg protein lysate was incubated with 0.5 to 1.5 U human recombinant caspase-6 (Calbiochem, Darmstadt, Germany) for 5 hours at 37°C.

Protein extracts were separated by Criterion XT Tris-Acetate Gel, 3–8%, 12-wells (BioRad). For each sample both the PageRuler prestained and Spectra Multicolor High Range protein ladders (Thermo Fisher Scientific) were used as markers. Gels were blotted onto a nitrocellulose membrane using the Transblot Turbo (BioRad) for 30 min at 2.5 A. Membranes were blocked with Tris Buffered Saline (TBS) containing 5% non-fat milk powder (Proftar Plus, Nutricia, Zoetermeer, the Netherlands). The antibodies used for detection of htt were 4C8 (MAB2166) for htt (Millipore, Billerica, USA) dilution 1:1,000. A β-actin antibody (mouse AC-15 (Abcam, Cambridge, UK), dilution 1:2000) was used as loading control. Secondary antibody was goat α-mouse-IRDye800 (LI-COR Biosciences, Lincoln, USA), diluted 1:5,000 in block buffer. Odyssey scanner (LI-COR) was used to visualize infrared bands. Intensities of protein
bands were quantified using Odyssey software. The skipping efficiencies were calculated as described in calculations and statistical analysis paragraph.

In vivo injection into mice

Mouse htt specific AONs (mAON12.1, mAON12.2, and mAON13) and scrambled control AONs were injected in anesthetized C57bl/6j male mice between the ages of 12-14 weeks (Janvier SAS, France). For AON list, see Table 1. Animals were singly housed in individually ventilated cages (IVC) at a 12 hour light cycle with lights on at 7 am. Food and water were available ad libitum. All animal experiments were carried out in accordance with European Communities Council Directive 86/609/EEC and the Dutch law on animal experiments and were approved by the Leiden University animal ethical committee (protocol number: 11203). Animals were anesthetized with a cocktail of Hypnorm-Dormicum-demineralized water in a volume ratio of 1.33:1:3. The depth of anesthesia was confirmed by examining the paw and tail reflexes. When mice were deeply anesthetized they were mounted on a Kopf stereotact (David Kopf instruments, Tujunga, USA). A total of 30 μg AON mix diluted in 2.5 μl sterile saline was bilaterally injected at the exact locations 0.50mm frontal from bregma, ±2.0mm medio-lateral, and -3.5mm dorso-ventral. For injections, customized borosilicate glass micro-capillary tips of approximately 100 μm in diameter, connected to a Hamilton needle (5 μl, 30 gauge) were used. The Hamilton syringe was connected to an injection pump (Harvard apparatus, Holliston, MA, USA) which controlled the injection rate set at 0.5 μl/min. After surgery the animals were returned to the home cage and remained undisturbed until sacrifice, with the exception of daily weighing in order to monitor their recovery from surgery. After 7 days the mice were sacrificed by intraperitoneal injection of overdose Euthasol (ASTfarma, Oudewater, the Netherlands) and brain tissue isolated and snap frozen till further analysis.

Calculations and statistical analysis

RNA and protein skipping percentages were calculated using the following formula: Skipping % = (Molarity skipped product / (Total molarity full length product + skipped product)) * 100%. The 586 N-terminal htt fragment levels were calculated using β-actin as reference. The skipping percentages were analyzed using a paired two-sided Student t test. Differences were considered significant when P < 0.05.
4.4. Results

Exon 12 skipping resulted in a shorter htt protein resistant to caspase-6 cleavage

The first amino acid of the 586 caspase-6 site previously implicated in disease pathology (GRAHAM et al., 2006), is encoded in exon 12 and the last three amino acids are encoded in exon 13. Exon 12 also encodes two caspase-3 sites at amino acids 513 and 552 (WELLINGTON et al., 1998; WELLINGTON et al., 2000). Our initial aim was to generate a shorter htt protein lacking these 3 caspase sites by skipping both exon 12 and 13. This double exon skip would be necessary to maintain the open reading frame and subsequently protein translation. Therefore, we transfected various AONs (Table 1) in patient derived fibroblasts, total RNA was isolated after 24 hours and cDNA was amplified using htt primers flanking the skipped exon to examine skipping efficiencies.

However, after transfection of one of the exon 12 AONs, AON12.1, that targets an ESE in the 3’ part of exon 12, a 135 base pair partial skip of exon 12 was observed (Figure 1a). This in-frame skip was confirmed by Sanger sequencing (Figure 1b). The highest skipping percentage of AON12.1 in patient derived fibroblasts was 59.9% (±0.7%) at a concentration of 50 nM (Figure 1c). The partial exclusion of the 3’ part of htt exon 12 can be explained by activation of a cryptic 5’ splice site present in exon 12 (AG|GTCAG (ZHANG, 1998)) (Figure 1d). A thus modified htt protein also lacks the active caspase-3 site at amino acid 552 (DLND), and the isoleucine (I) of the active caspase-6 site at amino acid 586 (IVLD) is replaced by a glutamine (Q).

Western blot analysis using the 4C8 antibody indeed revealed a 5 kDa shorter htt protein (Figure 2a), which is in concordance with the predicted 45 amino acid skip. Three days after a single AON12.1 transfection, 27.7% (±5.4%) of total htt protein levels consisted of this shorter htt protein (Figure 2b). There was no decreased cell viability after AON transfection in vitro (Figure S1).

To show a reduction in the amount of the 586 N-terminal htt protein fragments that are normally formed after caspase-6 cleavage, we performed an in vitro caspase-6 assay. Protein was isolated from human fibroblasts three days after treatment with 50 nM of AON12.1. After samples were incubated with recombinant active caspase-6, the 586 N-terminal htt protein fragment was detected at 98 kDa by Western blot (Figure 2a). Samples treated with AON12.1 resulted in a 48.9% (±11.2%) reduction of these 586 N-terminal htt protein fragments (Figure 2c). Furthermore, changing the first amino acid of the amino acid 583 to 586 caspase-6 motif is sufficient to prevent the formation of the toxic 586 N-terminal htt protein fragments.
In vivo htt exon 12 skipping

To investigate the potential of htt exon skipping in vivo and to test if removal of the amino acid sequence surrounding the 586 caspase-6 cleavage site could be harmful in vivo, we designed AONs homologous to the mouse sequence. Since mice do not exhibit the cryptic splice site responsible for the partial skip in human cells, we could only investigate the in-frame full skip of both exon 12 and 13. This required the combined application of three AONs: mAON12.1, mAON12.2, and mAON13.

As proof of principle, murine C2C12 cells were transfected with 200nM of mAON12.1, mAON12.2, and mAON13. This resulted in a skip of both exons with an efficiency of 86.8% (±5.6) (Figure S2).
Next, a single dose of 30 μg scrambled AON or 30 μg mAON12.1, mAON12.2, and mAON13 (10 μg per AON) was injected bilaterally into the mouse striatum. After 7 days the mice were sacrificed and expression levels of exon 12 and 13 in the mouse htt transcript were assessed by qRT-PCR (Figure 3). Exon 12 was significantly reduced by 21.5% (±8.5%) and exon 13 was significantly reduced by 23.1% (±8.3%). Exon 27, downstream of the area targeted for skipping, was not reduced.

This reduction in htt exon 12 and 13 after single injection in the mouse striatum further supports the concept that exon skipping could be a potential therapeutic approach to prevent formation of toxic 586 N-terminal htt fragments.
4.5. Discussion

Our results provide proof of concept that AON-mediated exon skipping can remove the caspase-3 and caspase-6 motifs from the htt protein, both in vitro and in vivo. In vitro skipping, at least in the human transcript, counteracted the formation of the 586 N-terminal htt protein fragment implicated in toxicity of expanded htt. This htt protein modification is therefore a novel potential therapeutic approach. Our results in patient-derived fibroblasts show that a single AON can remove the 3' part of exon 12 from the human htt mRNA through activation of a cryptic splice site in exon 12. This results in the formation of a shorter htt protein resistant to caspase-6 cleavage. A single injection of AONs targeting htt exon 12 and 13 into the striatum of control mice already resulted in a 22% reduction of htt exon 12 and 13. In vivo skipping efficiencies are known to be lower than in vitro and 20 to 25% AON-induced splicing already has been shown to result in phenotypic improvements in DMD (TANGANYIKA-DE WINTER et al., 2012) and Usher syndrome mice (LENTZ et al., 2013).

Possibly, not only this 586 N-terminal htt fragment, but smaller fragments may be toxic entities (SATHASIVAM et al., 2013; LUNKES et al., 2002; WALDRON-ROBY et al., 2012). However, the formation of the 586 N-terminal mutant htt protein fragments by caspase-6 cleavage was found to be crucial in the pathogenesis of HD (GRAHAM et al., 2006; WELLINGTON et al., 2000). Notably, caspase-6 is activated in the striatum and frontal cortex of (pre-symptomatic) HD patients and this activation inversely correlates with the age of disease onset, as well as with the CAG repeat size (GRAHAM et al., 2010). Mice expressing the 586 N-terminal htt expanded polyQ fragment develop symptoms similar to mouse models with shorter N-terminal polyQ fragments (WARBY et al., 2008; TEBBENKAMP et al., 2011; WALDRON-ROBY et al., 2012) and removal of the 586 caspase-6 site from the full-length mutant htt protein, prevents this phenotype (GRAHAM et al., 2006; POULADI et al., 2009), underscoring the significance of this particular htt protein fragment, and suggesting that modifying the htt protein using AONs to prevent the formation of the N-terminal 586 htt fragment would be beneficial. That caspase-6 is not exclusively responsible...
for the formation of the 586 N-terminal htt fragment was concluded from experiments where a transgenic HD mouse model was crossed with a caspase-6 knock-out mouse. These mice did show the same 586 amino acid N-terminal htt fragment, suggesting that other proteases can also cleave the caspase-6 motif (Gafni et al., 2012). Our exon skip approach does not target the proteases, but removes the proteolytic motif proper, implicated in enhanced toxicity from the htt protein (Warby et al., 2008; Tebbenkamp et al., 2011; Waldron-Roby et al., 2012).

A key question for translating genetic therapies into clinical applications for neurodegenerative disorders is how to administer AONs into the human brain. Since AONs do not cross the blood-brain-barrier, a more invasive delivery method was applied by intracranial injection (Miller et al., 2013). AONs thus infused have been shown to diffuse throughout the non-human primate brain and could be detected in the nuclei and cell bodies of neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes in the striatum, hippocampus, cerebellum, cortex, and spinal cord (Kordasiewicz et al., 2012). The stability, potency, and broad distribution of AONs in the brain marks them as good candidate for potential htt lowering therapeutic for HD.

In our approach, AON-mediated reduction of the toxic N-terminal htt fragment is achieved without lowering of overall htt expression. This would be an advantage over non-allele-specific htt reduction approaches. In HD there is a gain of toxic function of the mutant htt protein, but regular htt is important for normal cellular function (Dragatsis et al., 2000) and is essential during development (Zeitlin et al., 1995). Kordasiewicz et al. showed that 4 months repression of total htt of around 50% to 75% did not produce side effects in rats and non-human primates (Kordasiewicz et al., 2012). However, the effects of non-allele-specific lowering of htt over longer time periods has not yet been studied. This is important since HD carriers or patients probably have to be treated lifelong.

For this AON-mediated htt protein modification a single AON would be applicable to the entire HD patient population. Furthermore, by specifically removing critical caspase motifs in htt, there is less chance of unwanted side effects that could result from pharmacological inhibition of overall caspase-6 activity. On the other hand, while it is plausible to expect that the removal of a small stretch of 45 internal amino acids from htt will not, or only modestly, affect htt function - and only after the start of treatment - the extent of this remains to be established. We aim to study this further, as well as the effect on the HD-phenotype, by sustained intraventricular infusion of exon skipping AONs in HD animal models.

In conclusion, in the current manuscript we provide proof of principle for a novel approach to reduce mutant htt toxicity by modifying the protein proper, without changing its protein level. This would provide a valuable addition to the emerging field of AON treatment strategies for neurodegenerative disorders.
4.6. Acknowledgements

This work was supported by the Center for Biomedical Genetics (the Netherlands), Center for Medical Systems Biology (OCM/IZ), and Integrated European Project in Omics Research of Rare Neuromuscular and Neurodegenerative Diseases (Neuromics). The authors would like to thank Neil MacCallum, and Astrid Coolen for technical assistance.
4.7. Supplementary Material

Supplementary Materials and Methods

Cell culture mouse cells

Mouse myoblasts C2C12 (ATCC, Teddington, UK) were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Gibco) with 10% FBS, 1% glucose, 2% Glutamax and 100 U/ml P/S. For AON sequences, see Table 1.

PCR mouse huntingtin

PCR was performed with forward and reverse primer in respectively exon 9 and 14 of the mouse htt sequence (see Table 2).

Cell viability assay

Two days after transfection in a 96-wells plate, cells were prepared for Cellomics multiparameter cytotoxicity version 3 (Thermo Fisher Scientific) measurements, according to manufacturer’s instructions. Cell viability was analyzed on the Array Scan VTI reader (Thermo Fisher Scientific) using the following absorption/emission filter sets: (1) total nuclear intensity: 350/461 nm, (2) lysosomal mass: 646/674 nm, and (3) cell permeability: 491/509 nm. All transfections were performed in triplicates on one plate.

Supplementary Figures

![Supplementary Figures](image)

Figure S1. No negative effect htt AON treatment on cell viability *in vitro*. Control fibroblasts were transfected with htt AONs inducing partial skip of exon 12 (AON12.1), control AON, and non-transfected (mock). Mean ± SD, n = 2. The (a) total nuclear intensity, (b) lysosomal mass, and (c) cell permeability were measured. Mean ± SD, n = 2.
Figure S2. Skipping murine htt exon 12 and 13 in vitro. Mouse C2C12 cells were transfected with murine htt AONs, control AON, scrambled AON, and not transfected (Mock). (a) Agarose gel analysis of the htt transcript with primers flanking exon 12 and 13. Skipping of htt exon 12 and 13 is seen after transfection with mAON12.1, mAON12.2, and mAON13. (b) Lab-on-a-Chip analysis of double-exon skipping after AON treatment. Mean ± SD, data were evaluated using paired student t-test, *** P<0.001, relative to mock transfection, n = 4.
Melvin M. Evers 1
Hoang-Dai Tran 1
Ioannis Zalachoras 2
Barry A. Pepers 1
Onno C. Meijer 2
Johan T. den Dunnen 1,3,4
Gert-Jan B. van Ommen 1
Annemiek Aartsma-Rus 1
Willeke M.C. van Roon-Mom 1

1 Department of Human Genetics, Leiden University Medical Center
2 Department of Endocrinology, Leiden University Medical Center
3 Leiden Genome Technology Center, Leiden University Medical Center
4 Department of Clinical Genetics, Leiden University Medical Center
Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: Removal of the CAG containing exon
5.1. Abstract

Spinocerebellar ataxia type 3 is caused by a polyglutamine expansion in the ataxin-3 protein, resulting in gain of toxic function of the mutant protein. The expanded glutamine stretch in the protein is the result of a CAG triplet repeat expansion in the penultimate exon of the ATXN3 gene. Several gene silencing approaches to reduce mutant ataxin-3 toxicity in this disease aim to lower ataxin-3 protein levels but since this protein is involved in deubiquitination and proteasomal protein degradation, its long-term silencing might not be desirable. Here, we propose a novel antisense oligonucleotide-based protein modification approach to reduce mutant atxin-3 toxicity by removing the toxic polyglutamine repeat from the ataxin-3 protein through antisense mediated exon skipping and maintaining important wild-type functions of the protein. In vitro studies showed that the ubiquitin binding capacity of ataxin-3 was unaffected after exon skipping and in vitro. Our in vivo studies showed no toxic properties of the novel truncated ataxin-3 protein. These results suggest a novel therapeutic approach to reduce polyglutamine-induced toxicity in spinocerebellar ataxia type 3.
5.2. Introduction

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is one of nine known polyglutamine (polyQ) disorders. PolyQ disorders are autosomal dominant neurodegenerative disorders caused by expansion of a CAG triplet in the coding region of a gene. This CAG repeat is translated into an extended glutamine stretch in the mutant protein, which causes a gain of toxic function inducing neuronal loss in various regions throughout the brain (Bauer and Nukina, 2009). A hallmark of all polyQ disorders is the formation of large insoluble protein aggregates containing the expanded disease protein. Whether these large aggregates are neurotoxic or neuroprotective is still under debate (Takahashi et al., 2010).

In SCA3, the CAG repeat is located in the penultimate exon of the ATXN3 gene on chromosome 14q32.1. Healthy individuals have a CAG repeat ranging from 10 to 51, whereas SCA3 patients have an expansion of 52 repeats or more (Cummings and Zoghbi, 2000). Transgenic mice expressing either a mutant ataxin-3 cDNA fragment (Ikeda et al., 1996) or the mutated full-length genomic sequence (Cemal et al., 2002; Gotti et al., 2004), showed a clear ataxic phenotype with a more severe phenotype in the animals carrying larger repeats (Bichelmeier et al., 2007), demonstrating a relationship between CAG repeat length and disease severity. The ATXN3 gene codes for the ataxin-3 protein of 45 kDa, which acts as an isopeptidase and is thought to be involved in deubiquitination and proteasomal protein degradation (Burnett et al., 2003; Scheel et al., 2003; Schmitt et al., 2007). The ataxin-3 protein contains an N-terminal Josephin domain that displays ubiquitin protease activity and a C-terminal tail with 2 or 3 ubiquitin interacting motifs (UIMs), depending on the isoform (Goto et al., 1997). Although in the past decade there has been extensive research into the SCA3 disease mechanisms (Matos et al., 2011), it is still not completely understood how the ataxin-3 polyQ expansion results in the observed pathology.

The most promising recent therapeutic strategy under development for polyQ disorders is reducing levels of mutant polyQ proteins using RNA interference (RNAi) and antisense oligonucleotides (AONs). As potential gene silencing treatment for SCA3, non-allele-specific reduction of ataxin-3 has been tested in both mice (Schmitt et al., 2007) and rats (Alves et al., 2010). The treated rodents were viable and displayed no overt phenotype, suggesting that ataxin-3 is a non-essential protein. However, ataxin-3 might also have a protective role, since in flies ataxin-3 was found to alleviate neurodegeneration induced by mutant polyQ proteins (Warrick et al., 2005). Whether this is also true in humans is not known. The results in flies favors selective inhibition of mutant ataxin-3 protein levels over a total reduction of ataxin-3 protein levels. Successful allele-specific reduction of the mutant ataxin-3 transcript was shown using lentiviral small hairpin RNAs directed against a single nucleotide polymorphism (SNP) in the ATXN3 gene in vitro (Miller et al., 2003) and in vivo (Alves et al., 2008; Nobrega et al., 2013). However, this approach is limited to SCA3 patients carrying a heterozygous SNP in the ATXN3 gene. Semi-allele-specific reduction of mutant ataxin-3 has also been achieved by targeting the expanded CAG repeat using single stranded AONs in vitro (Hu et al., 2009; Hu et al., 2011;
We here introduce a novel way to reduce toxicity of the ataxin-3 protein through protein modification. Using AONs it is possible to mask exons in the pre-mRNA from the splicing machinery resulting in exclusion of the targeted exon (Spitali and Aartsma-Rus, 2012). If the reading frame remains intact, subsequent translation yields an internally truncated protein. This has the major advantage that the polyQ-containing part of the protein is removed, while maintaining global ataxin-3 protein levels. AON-mediated exon skipping is a promising therapeutic tool that is already in phase II/III clinical trial for Duchenne muscular dystrophy (DMD) (Cirak et al., 2011; van Putten and Aartsma-Rus, 2011).

In this study we used 2’O-methyl modified AONs with a phosphorothioate backbone to induce an in-frame exon skip in the ataxin-3 pre-mRNA. This resulted in a modified ataxin-3 protein lacking the polyQ repeat, while total ataxin-3 protein levels were unaltered and its functional domains remained intact. We showed that this modified protein retains its ubiquitin binding capacity. No cell death was seen after exon skipping, suggesting this modified protein did not induce in vitro toxicity. Injection of a single dose of AONs in the mouse cerebral ventricle resulted in exon skipping in the cerebellum, the brain area most affected in SCA3. These results suggest exon skipping could be a promising novel therapeutic approach to reduce polyglutamine-induced toxicity in SCA3.
5.3. Materials and Methods

Cell culture and transfection

Patient derived fibroblasts from SCA3 patients (GM06151, purchased from Coriell Cell Repositories, Camden, USA) and controls (FLB73, a kind gift from Dr. M.P.G. Vreeswijk, LUMC) were cultured at 37°C and 5% CO2 in Minimal Essential Medium (MEM) (Gibco Invitrogen, Carlsbad, USA) with 15% heat inactivated fetal bovine serum (FBS) (Clontech, Palo Alto USA), 1% Glutamax (Gibco) and 100 U/ml penicillin/streptomycin (Gibco). Mouse myoblasts C2C12 (ATCC, Teddington, UK) were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Gibco) with 10% FBS, 1% glucose, 2% Glutamax and 100 U/ml P/S.

AON transfection was performed in a 6-well plate with 3 μl of Lipofectamine 2000 (Life Technologies, Paisley, UK) per well. AON and Lipofectamine 2000 were diluted in MEM to a total volume of 500 μl and mixtures were prepared according to the manufacturer’s instruction. Four different transfection conditions were used: 1) transfection with 1-200 nM AONs, 2) transfection with non-relevant h40AON2 directed against exon 40 of the DMD gene (Control AON) (AARTSMA-RUS et al., 2002), 3) transfection with scrambled AON (Scrambled), and 4) transfection without AON (Mock). For AON sequences, see Table 1. Mixtures were added to a total volume of 1 ml of MEM. Four hours after transfection, medium was replaced with fresh medium containing 5% FBS. All AONs consisted of 2’-O-methyl RNA and contained a full-length phosphorothioate modified backbone (Eurogentec, Liege, Belgium).

Plasmids and mutations

Full length as well as AON9.2 and AON10 induced skipped ataxin-3 fragments were PCR-amplified with ATXN3-specific primers (see Table 2) and cloned into pIVEX 1.4 WG vector that contained 6 His tags (His6-ataxin-3 full length and His6-ataxin-3Δ59aa, respectively). Three μg of vector DNA was used as template for cell free protein production using the RTS 100 kit together with the RTS ProteoMaster (Roche). His6-tagged beta-glucuronidase (GUS) (5 Prime) was taken along as control vector.

Leucine to alanine mutations in the UIMs were performed using the QuickChange II Site-Directed Mutagenesis kit (Agilent Technologies, Waldbronn, Germany) following manufacturer’s instructions, using forward and reverse primers containing the desired mutation (see Table 2).
CHAPTER 5

RNA analysis

Twenty four hours after the first transfection, total RNA was isolated from cells using the Aurum Total RNA Mini Kit (BioRad, Hercules, USA), with an on-column DNase treatment for 30 minutes. Brain tissue was homogenized using ceramic MagNA Lyser beads (Roche, Mannheim, Germany) by grinding in a Bullet Blender (Next Advance, Averill Park, USA) according to manufacturer’s instructions. RNA was eluted in 40 μl elution buffer and cDNA was synthesized from 1 μg total RNA using the Transcriptor First Strand cDNA Synthesis Kit with Random Hexamer primers at 65°C (Roche).

PCR was performed using 2 μl cDNA, 10x PCR buffer with 1.5 mM MgCl₂ (Roche), 0.25 mM dNTPs, 10 pmol of both forward and reverse primer (Eurogentec), 1U FastStart Taq DNA Polymerase (Roche), and PCR grade water to a final volume of 20 μl. PCR was performed with primers for human and mouse ataxin-3 (see Table 2). The PCR program started with a 4 min initial denaturation at 95°C, followed by 35 cycles of 30 sec denaturation at 95°C, 30 sec annealing at 59°C, 45 sec elongation at 72°C, after which a final elongation step was performed at 72°C for 7 min. Lab-on-a-Chip was performed on the Agilent 2100 Bioanalyzer (Agilent Technologies), using the Agilent DNA 1000 Kit.

The qPCR was performed on RNA extracted from tissue isolated from mouse brain, using 2 μl of 5 times diluted cDNA, 20 times EvaGreen-qPCR dye (Biotium, Hayward, USA), 10 times PCR buffer with 1 mM MgCl₂ (Roche), 0.25 mM dNTPs (Roche), 2.5 pmol forward primer, 2.5 pmol reverse primer, 0.35U FastStart Taq DNA Polymerase (Roche), and PCR grade water to a total volume of 10 μl. Primer pairs located in various exons of ataxin-3 were selected for qRT-PCR using Primer3 software (ROZEN AND Skaletsky, 2000) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (Ywhaz) and ribosomal protein L22 (Rpl22) were used as reference genes. (For primer list, see Table 2). The qRT-PCR was performed using the LightCycler 480 (Roche). Initial denaturation was 10 min. at 95°C, followed by 45 cycles of 10 sec. denaturation at 95°C, 30 sec. annealing at 60°C and 20 sec. elongation at 72°C. The final elongation was performed 5 min. at 72°C.

Primer efficiencies were determined using LinRegPCR v2012.0 with the raw data amplification curves as input. The raw data were baseline corrected and absolute transcript level expressions (N0) were calculated as described previously (Ruijter et al., 2009). All samples were run in triplicate on a plate. On all plates both reference genes were included to correct for inter-plate variance.

Sanger sequencing

Full length and skipped products were amplified using primers flanking ataxin-3 exon 9 and 10 (see Table 2). PCR products were loaded on agarose gel and bands were extracted using the QIAquick Gel Extraction Kit (QIAGen, Valencia, USA). The purified products were re-amplified, purified, and analyzed by Sanger sequencing, using the Applied Biosystems 96-capillary 3730XL system (Life Technologies Corporation, Carlsbad, USA) with the Applied Biosystems BigDyeTerminator v3.1 kit.
Protein isolation, ubiquitin binding assay and Western blotting

Cells were detached from the culture surface with a 0.5% Trypsin/EDTA solution. After washing twice with HBSS, cells were resuspended in 200 μl ice cold lysis buffer, containing 15 mM Heps, pH 7.9, 200 mM KCl, 10 mM MgCl$_2$, 1% NP40, 10% glycerol, 20 μg/ml BSA, and 1 tablet Complete mini protease inhibitor EDTA free (Roche) per 10 ml buffer. Next, samples were sonicated 3 times for 5 seconds using ultrasound with an amplitude of 60 at 4°C. After 1 hour incubation in a head-over-head rotor at 4°C, the extract was centrifuged for 15 min at 10,000 g and 4°C and supernatant was isolated. Protein concentrations were determined by the bicinchoninic acid kit (Thermo Fisher Scientific, Waltham, USA) using Bovine Serum Albumin (BSA) as a standard. Samples were snap frozen and stored at -80°C.

His6-ataxin-full length and His6-ataxin-3Δ59aa proteins were bound to TALON metal affinity beads (Clontech) for 30 minutes. The ataxin-3-bound beads were incubated at 4°C with 5 μg poly-ubiquitin chains (Enzo Life Sciences, Farmingdale, USA). Binding reactions contained 15 mM Heps, pH 7.9, 200 mM KCl, 10 mM MgCl$_2$, 1% NP40, 10% glycerol, and 20 μg/ml BSA. Beads were washed extensively and bound proteins were removed from the beads by 2
hours incubation at 23°C with 2 μg Factor Xa Protease (New England Biolabs, Ipswich, United Kingdom) per reaction.

Protein extracts were separated by SDS-PAGE, with 10% acryl/bisacrylamide 1:37.5 separating gels, or Any kD precast TGX gels (BioRad). For each gel the PageRuler prestained protein ladder (Thermo Fisher Scientific) was used as marker. Electrophoresis was performed until the lowest marker reached the bottom of the gel. Gels were blotted onto nitrocellulose membranes using the Transblot Turbo (BioRad) for 30 min at 2.5 A. Membranes were blocked with Tris Buffered Saline (TBS) containing 5% non-fat milk powder (Profitar Plus, Nutricia, Zoetermeer, the Netherlands).

The mouse SCA3-1H9 antibody was used for detecting ataxin-3 (Millipore, Billerica, USA), dilution 1:1000, or rabbit His-tag 2365 (Cell Signaling Technology, Danvers, USA). To detect expanded polyQ stretches we used mouse 1C2 (Eurogentec), dilution 1:500. To detect ubiquitin chains, we used rabbit ubiquitin-protein conjugates (Enzo Life Sciences), diluted 1:2000. Secondary antibodies were goat α-mouse-IRDye800, goat α-rabbit-IRDye800 (LI-COR Biosciences, Lincoln, USA), or goat α-mouse-horseradish peroxidase (HRP) (Santa Cruz Biotechnology, USA), diluted 1:5,000 in block buffer. Horseradish peroxidase was activated by ECL+ reagent (GE Healthcare, Buckinghamshire, United Kingdom) to visualize positive staining on film or Odyssey scanner (LI-COR) was used to visualize infrared bands. Intensities of protein bands were quantified using Odyssey software. The skipping efficiencies were calculated as described in the calculations and statistical analysis paragraph.

AON injection into mice

Mouse ataxin-3 specific AONs (mAON9.1 and mAON10) and scrambled control AONs (Table 1) were injected in anesthetized 12-14 week old C57bl/6j male mice (Janvier SAS, France). Animals were singly housed in individually ventilated cages (IVC) at a 12 hour light cycle with lights on at 7 am. Food and water were available ad libitum. All animal experiments were carried out in accordance with European Communities Council Directive 86/609/EEC and the Dutch law on animal experiments and were approved by the Leiden University animal ethical committee (protocol number: 12186). A total of 40 μg AON mix diluted in 5 μl sterile saline was injected into the left lateral ventricle at 0.22 mm anterior-posterior, 1.5 mm medio-lateral, and -2.5 mm dorso-ventral relative to bregma, using borosilicate glass micro-capillary tips connected to a Hamilton syringe (5 μl, 30 gauge). The Hamilton syringe was connected to an injection pump (Harvard apparatus, Holliston, MA, USA), which controlled the injection rate set at 0.5 μl/min. After 7 days the mice were sacrificed and brain isolated and frozen for qRT-PCR analysis.

Calculations and statistical analysis

RNA and protein skipping percentages were calculated using the following formula: Skipping% = (Molarity skipped product / (Total molarity full length product + skipped product)) * 100%. The skipping percentages were analyzed using a paired two-sided Student t test. Differences were considered significant when P < 0.05.
5.4. Results

AON mediated skipping of ataxin-3 exon 9 and 10 *in vitro*

The CAG repeat in the *ATXN3* gene is located in exon 10, which is 119 nucleotides in length. Thus skipping will disrupt the reading frame. To preserve the reading frame exon 9 (97 nucleotides) and 10 need to be skipped simultaneously. Various AONs were designed targeting exon internal sequences of ataxin-3 exon 9 and 10 and transfected in human fibroblasts (**Table 1**). PCR analysis revealed a 97 nucleotide skip after transfection with 100nM of AON9.1 (efficiency = 59.2% ±1.0%) (**Figure 1a and b**). Sanger sequencing confirmed that this was a skip of exon 9. Transfection with 100 nM AON9.2 resulted in a skip of 55 nucleotides (efficiency = 62.3% ±3.7%) instead of the anticipated 97 nucleotides (**Figure 1a and c**). Sanger sequencing revealed that this fragment was a partial skip product that still contained the 5’ part of exon 9. In silico analysis showed the existence of a cryptic 5’ splice site AG|GTCCA in exon 9 that could explain the occurrence of this shorter fragment (ZHANG, 1998). Successful skipping of exon 10 was achieved with 50 nM AON10 (efficiency = 96.3% ±0.3%) (**Figure 1a and d**), as confirmed by Sanger sequencing.

Co-transfection of AON9.1 and AON10 and AON9.2 and AON10 resulted in a skip of respectively 216 and 174 nucleotides (**Figure 2**). The efficiency of the AON9.1 and AON10 induced double skip was 77.0% (±0.9%) in control fibroblasts (**Figure 2d and e**). The efficiency of AON9.2 and AON10 co-transfection was 97.8% (±0.8%) in control fibroblasts (**Figure 2d and e**). The unexpected in-frame partial skip of exon 9 with AON9.2 resulted in an alternative approach to remove the CAG repeat containing exon from the ataxin-3 transcript (**Figure 2**).

Figure 1. Single exon skipping of ataxin-3 pre-mRNA *in vitro*. Control fibroblasts were transfected with ataxin-3 AONs, control AON, and non-transfected (mock) and RNA was isolated after 24 hours. (**a**) Agarose gel analysis of the ataxin-3 transcript with primers flanking exon 9 and 10 (full-length, grey arrowhead). Transfection with 50 nM AON against exon 9 resulted in a product lacking the entire exon 9 (AON9.1, white arrowhead) or lacking the 3’ part of exon 9 (AON9.2, two white arrowheads). Transfection with 50 nM AON10 resulted in a product lacking exon 10 (three white arrowheads). Fibroblasts were transfected with concentrations ranging from 10 to 200 nM per ataxin-3 AON and Lab-on-a-Chip analysis was performed to calculate exon skip levels for (**b**) AON9.1, (**c**) AON9.2, and (**d**) AON10. Mean ± SD, data were evaluated using paired student t-test, *P < 0.05, **P < 0.01, ***P < 0.001, relative to mock transfection, n = 4.
Modified ataxin-3 protein maintains its ubiquitin binding capacity

To investigate if AON transfection resulted in a modified ataxin-3 protein, control and SCA3 fibroblasts were transfected with AONs targeting exon 9 and 10 and protein was isolated three days after transfection. We did not see a negative effect on cell viability after AON treatment in
either control or SCA3 fibroblasts (Figure S1). Western blot analysis using an ataxin-3-specific antibody revealed a modified band of approximately 35 kDa after the complete skip of exon 9 and 10 (ataxin-3 Δ72aa) (Figure 3a); 11.4% (±5.1%) and 6.2% (±1.9%) of total ataxin-3 protein levels consisted of this modified ataxin-3 Δ72aa protein, in respectively control and SCA3 fibroblasts (Figure 3b and c).

The partial exon skip resulted in a novel 37 kDa protein (ataxin-3 Δ59aa) (Figure 3a). 27.1% (±9.0%) and 15.9% (±3.2%) of total ataxin-3 protein levels consisted of this 59 amino acids shorter ataxin-3 protein, in respectively control and SCA3 cells (Figure 3b and c). The ataxin-3 Δ72aa protein was also formed, suggesting that AON9.2 and AON10 transfection also resulted in some ataxin-3 Δ72aa protein. The consistent lower percentage of exon skipping in SCA3 cells were caused by the lower AON transfection efficiencies in the diseased cells as compared to control cells.

A significant reduction in expanded polyQ containing ataxin-3 was shown using the 1C2 antibody, that recognizes long glutamine stretches (Trottier et al., 1995) (Figure 3a) in the

![Figure 3. Modified ataxin-3 protein after exon 9 and 10 skipping.](image)

Human control and SCA3 fibroblasts were transfected with 50nM of each AON. (a) Transfection with AON9.1 and AON10, or AON9.2 and AON10 resulted in modified ataxin-3 proteins of 35 kDa (ataxin-3 Δ72aa) and 37 kDa (ataxin-3 Δ59aa), respectively. The modified protein products were shown using an ataxin-3 specific antibody. The reduction in polyQ-containing mutant ataxin-3 was shown with the polyQ antibody 1C2. Densitometric analysis was used after transfection with AONs. Ataxin-3 Δ72aa (white bars) and ataxin-3 Δ59aa (black bars) in (b) control and (c) SCA3 cells. Mean ± SD, data were evaluated using paired student t-test, * P < 0.05, ** P < 0.01, *** P < 0.001, relative to mock, n = 5.
samples with the full and partial exon skip approaches. This indicates a reduction of expanded polyQ-containing ataxin-3 in SCA3 patient derived fibroblasts after AON transfection.

Figure 4. Full-length and modified ataxin-3 protein displays identical ubiquitin binding.

(a) Schematic representation of the known functional domains of the ataxin-3 protein involved in deubiquitination. The ataxin-3 protein consists of an N-terminal (Josephin) domain with ubiquitin protease activity and a C-terminal tail with the polyQ repeat and 3 ubiquitin interacting motifs (UIMs). After exon skipping (ataxin-3 Δ59aa), the polyQ repeat is removed, leaving the Josephin domain and UIMs intact.

(b) Overview of a leucine (L) to alanine (A) substitution in UIM 1 (L229A), UIM 2 (L249A) or both (L229A/L249A) in full-length ataxin-3 and ataxin-3 Δ59aa.

(c) Ubiquitin binding assay. HIS-tagged full-length ataxin-3 and ataxin-3 Δ59aa-bound ubiquitylated proteins were analyzed by Western blot. HIS control and beads only were taken along as negative control. The modified ataxin-3 Δ59aa lacking the polyQ repeat showed identical ubiquitylated protein binding as unmodified ataxin-3. (n = 3)
The polyQ repeat in the ataxin-3 protein is located between the second and third UIM (Figure 4A). Both full and partial exon skip approaches resulted in removal of the polyQ repeat, preserving the Josephin domain, nuclear export signal (NES), and UIMs. To investigate whether the ubiquitin binding capacities of the UIMs in ataxin-3 are still intact after protein modification, poly-ubiquitin chains were incubated with purified cell free produced full-length ataxin-3 and ataxin-3 Δ59aa protein. As negative controls, we produced 3 different ataxin-3 protein products containing 1 amino acid substitutions from leucine (L) to alanine (A) in UIM 1 (L229A), UIM 2 (L249A), or both (L229A/L249A) (Figure 4b). Single amino acid changes in UIM 1 (L229A) already showed reduced binding of ataxin-3 to poly-ubiquitin chains, whereas double UIM mutated ataxin-3 (L229A/L249A) resulted in a nearly complete elimination poly-ubiquitin binding (Figure 4c). This is consistent with previously described data (BURNETT et al., 2003). The negative HIS control protein did not bind ubiquitylated proteins as expected. Ataxin-3 Δ59aa bound poly-ubiquitin chains comparable to full-length ataxin-3, indicating that its ubiquitin binding capacity after protein modification is still intact (Figure 4c).

AON mediated skipping of ataxin-3 exon 9 and 10 in mouse

To examine ataxin-3 exon skipping in the mouse brain and to determine if the modified protein is not harmful, we designed AONs specific to the mouse sequence. Since mice do not exhibit the cryptic splice site that is responsible for the partial exon 9 skip in the human transcript, we only investigated the full skip of exon 9 and 10. Transfection of 200 nM of each murine AON9 (mAON9) and AON10 (mAON10) in mouse C2C12 cells showed a skip of both exons with an efficiency of 31.7% (±2.4%) (Figure 5a). Sanger sequencing confirmed this in-frame double exon skip (Figure 5b). Transfection with mAON9 and mAON10 resulted in formation of a modified protein of 34 kDa (Figure 5c).

![Figure 5. Double exon skipping of murine ataxin-3 pre-mRNA in vitro. Mouse C2C12 cells were transfected with murine ataxin-3 AONs, control AON, scrambled AON, and not transfected (Mock). (a) Agarose gel analysis of the ataxin-3 transcript with primers flanking exon 9 and 10. Skipping of ataxin-3 exon 9 and 10 was seen after transfection with mAON9.1 and mAON10. (b) Sanger sequencing confirmed the precise skipping of exon 9 and 10. (c) Transfection with mouse AON9.1 and AON10 resulted in the appearance of a modified ataxin-3 protein of 34 kDa.](image-url)
Next, a single intra-cerebral ventricular (ICV) injection was administered of 40 μg ataxin-3 AON mix (20 μg per AON) or 40 μg scrambled AON. After 7 days the mice were sacrificed and skipping efficiency in the cerebellum was assessed by qRT-PCR (Figure 6). Exon 9 was found significantly reduced by 44.5% (±7.6%) and exon 10 was reduced by 35.9% (±14.1%) after a single ICV injection of AONs as compared to scrambled AON. Exon 4, upstream, and exon 11, downstream of the area targeted for skipping were not reduced, demonstrating a specific skip of ataxin-3 exon 9 and 10 in vivo.

Figure 6. Reduction of mouse ataxin-3 exon 9 in vivo. Seven days after a single injection consisting of mAON9 and mAON10 (20 μg each) into the mouse cerebral ventricle. qRT-PCR analysis of cerebellar tissue showed reduced exon 9 and 10 transcript levels, whereas exon 4 and 11 levels were not affected. Mean + SD, data were evaluated using paired student t-test, * P < 0.05, n = 3.
5.5. Discussion

In the current study we show a novel approach to reduce toxicity of the mutant ataxin-3 protein through skipping of the CAG repeat containing exon in the ataxin-3 transcript. The resulting modified ataxin-3 protein lacks the polyQ repeat that is toxic when expanded, but maintains its ubiquitin binding properties. ICV administration of these AONs in mice resulted in skipping of the CAG repeat-containing exon in the cerebellum of control mice, proving distribution and efficiency of ataxin-3 exon skipping after ICV injection in vivo.

There was no negative effect on cell viability after AON treatment in both control and SCA3 fibroblasts and also no overt toxicity in vivo. There are several known important functional domains in ataxin-3 that have been implicated to be involved in the SCA3 pathogenesis. Skipping of exon 9 and 10 described here resulted in removal of sequences encoding the calcium-dependent calpain cleavage and nuclear localization signal (NLS), both located in exon 9. Following to the weak NLS located in the C-terminus (MACEDO-RIBEIRO et al., 2009), the ataxin-3 protein has two strong NES located at the N-terminal part (MACEDO-RIBEIRO et al., 2009). In SCA3 it is thought that proteolytic cleavage of mutant ataxin-3 results in C-terminal fragments lacking the NES but containing the polyglutamine stretch, resulting in localization of the toxic C-terminal fragments into the nucleus and formation of nuclear inclusion bodies (BICHELMEIER et al., 2007; COLOMER GOULD et al., 2007). Recent studies in a mutant N-terminal ataxin-3 mouse model showed that N-terminal fragments, lacking the NLS, reside in the cytosol and form cytoplasmic inclusion bodies with subsequent neuronal degeneration (HUBENER et al., 2011). Both above described mutant C- and N-terminal ataxin-3 fragments could be the result of calpain cleavage at amino acid 260 (HAACKE et al., 2007). Skipping of exon 9 and 10 will also result in removal of an arginine/lysine-rich motif around amino acid 285 that was found to be a potential valosin containing protein (VCP) binding domain (DOSS-PEPE et al., 2003; BOEDDRICH et al., 2006). The ataxin-3-VCP complex is thought to be involved in assisting targeted proteins to the proteasome (WANG et al., 2006). In flies, co-expression of mutant ataxin-3 and VCP, resulted in alleviation of ataxin-3 aggregation and neurotoxicity in photoreceptor neurons (BOEDDRICH et al., 2006). Whether removal of the VCP binding domain by exon skipping causes impaired degradation of target substrates needs to be assessed in future studies.

As potential gene silencing treatment for SCA3, both non-allele and allele-specific reduction of (mutant) ataxin-3 have been tested. The main advantage of the AON-based protein modification approach compared to existing gene silencing approaches is the preservation of overall ataxin-3 transcript and protein levels. Only the polyQ stretch and a small portion of the surrounding amino acids of the protein are removed and the N-terminal Josephine domain and C-terminal ubiquitin binding motifs are preserved. We validated this by showing that the modified ataxin-3 protein retains its normal ubiquitin binding function. Furthermore, the exon skipping approach described here has the advantage that one set of AONs can be applied to all SCA3 patients. This in contrast with a previously described SNP-specific approach (MILLER et al., 2003; ALVES et al., 2008) that is only applicable for 70% of the patients who have the
targeted SNP in their ATXN3 gene (Gaspar et al., 2001).

That AONs are a promising therapeutic tool was recently shown in phase I and phase I/II clinical trials in DMD (Cirak et al., 2011; Goemans et al., 2011). As treatment for neurodegenerative disorders, AONs with a phosphorothioate backbone are very promising and are currently tested in phase I and phase I/II clinical trials for amyotrophic lateral sclerosis (ClinicalTrials.gov, 2009) and, more recently, a phase I trial has been initiated for spinal muscular atrophy (Rigo et al., 2012). After injection into the cerebrospinal fluid in non-human primates, AONs diffuse to the brain areas affected most in SCA3, which are the cerebellum, basal ganglia, and pons (Kordasiewicz et al., 2012). In transgenic HD mice, the most pronounced mutant huntingtin protein reduction was seen after AON infusion for a limited period of time. Furthermore, several months after the last AON infusions there were sustained phenotypic improvements (Kordasiewicz et al., 2012).

The above results are very promising but future experiments will have to determine the best route of administration to the brain, optimal dosage, and treatment regime. Future experiments are required to evaluate whether polyQ skipping improves the SCA3 induced phenotype using transgenic SCA3 mice. Furthermore, it will also be necessary to assess whether the modified ataxin-3 protein is not toxic in vitro and in vivo and whether exon skipping results in altered localization, function, or aggregation.

In conclusion, we show that it is possible to remove the toxic polyQ repeat from a polyQ disease-causing protein and that this modified ataxin-3 protein exhibits regular ubiquitin binding. We also show the in vivo potential of this approach as CAG repeat-containing exon skip in the cerebellum was seen after a single ICV injection.

5.6. Acknowledgements

The authors would like to thank Lodewijk Toonen and Nisha Verwey for technical assistance. This work was supported by AtaxiaUK (United Kingdom), patiëntenvvereniging Autosomaal Dominante Cerebellaire Ataxia (ADCA) (the Netherlands), the Center for Biomedical Genetics (the Netherlands), and Center for Medical Systems Biology (OCM/IZ).
5.7. Supplementary material

Figure S1. No negative effect on cell viability after ataxin-3 AON treatment in control fibroblasts. Control fibroblasts were transfected in a 96-wells plate with ataxin-3 AONs inducing partial skip of exon 9 and complete skip of exon 10 (AON9.2 + AON10), control AON, and non-transfected (mock). Two days after transfection cells were prepared for Cellomics multiparameter cytotoxicity version 3 (Thermo Fisher Scientific) measurements, according to manufacturer’s instructions. Cell viability was analysed on the Array Scan VTI reader (Thermo Fisher Scientific) using the following absorption/emission filter sets: (a) total nuclear intensity: 350/461 nm, (b) lysosomal mass: 646/674 nm, and (c) cell permeability: 491/509 nm. All transfections were performed in triplicates on one plate. Mean ± SD, n = 2.
General discussion & Future perspective
6.1. Introduction

In this thesis I have discussed various AON-mediated therapies to reduce polyQ-induced toxicity, particularly in HD and SCA3. These expanded polyQ proteins are known to undergo proteolytic processing and this results in polyQ-containing protein fragments that are considered to be the main toxic entities in polyQ disorders. By targeting the polyQ-encoding transcripts, translation of mutant polyQ protein is reduced or the polyQ protein is modified. This is achieved by targeting the CAG repeat directly (chapter 3), removing the motifs that are implicated in the formation of polyQ fragments (chapter 4), or by removal of the CAG repeat-encoding exon (chapter 5).

Recently however, it has also been suggested that the polyQ pathogenesis is not only caused by polyQ protein toxicity. The significance of these novel findings will be assessed together with implication for the AON-mediated treatments proposed in this thesis. Subsequently, I will discuss the prospect of applying similar AON-mediated therapies to other polyQ disorders. Finally, using existing knowledge from preclinical studies with AONs in rodents and clinical trials with disease-modifying drugs, I will discuss what is required for the enrolment of future clinical trials of genetic therapies in polyQ diseased patients.
6.2. Main findings

In this thesis I propose various novel genetic therapies for polyQ disorders, aiming at reducing and/or modifying polyQ disease-causing proteins. While much research has been done on the underlying polyQ disease mechanisms, knowledge on mRNA and protein regulation and expression levels are limited. Chapter 2 describes differences in HTT RNA and htt protein expression in adult-onset HD with less mutant HTT mRNA, but equal wild-type and mutant htt protein levels. Juvenile HD subjects did show less mutant htt protein expression compared to wild-type, indicating subtle differences in htt protein expression between adult-onset and juvenile HD.

In chapter 3, CUG triplet-repeat AONs are used to reduce mutant polyQ transcript and protein levels in several polyQ disorders. A slight reduction in wild-type CAG transcript levels was observed as well, showing that the (CUG), AON is not completely specific for the mutant allele. However, several other non-expanded CAG-containing transcripts investigated were not affected by (CUG), AON treatment, implying the preference of the (CUG), AON for the expanded transcript. Furthermore, chapter 2 describes that the basal levels of mutant HTT mRNA and protein are equal or lower than wild-type, providing feasibility for AONs such as the (CUG), AON described in chapter 3, that are not completely specific for the mutant HTT allele.

Next to specifically targeting the expanded CAG repeat transcripts to reduce the translation of mutant polyQ protein, chapter 4 reports on removing motifs that are implicated in the formation of toxic polyQ fragments. Preventing the formation of a 586 amino acid N-terminal htt fragment, implicated in HD toxicity, is achieved by AONs that induce skipping of exon 12 in HTT pre-mRNA. This resulted in a shorter protein lacking the caspase-6 cleavage motif with subsequently reduced 586 amino acid N-terminal htt fragments. This proof of concept shows a completely novel approach to reduce mutant htt toxicity not by reducing its expression levels, but by modifying the protein.

A more direct genetic approach to reduce polyQ-induced toxicity is shown in chapter 5, where the toxic polyQ repeat is removed from the ataxin-3 protein through AON-mediated skipping of the CAG repeat-enclosing ATXN3 exon 10. A modified ataxin-3 protein is formed that lacks the toxic polyQ repeat, but may well maintain many important wild-type functions of the protein.

In chapter 4 and 5 the feasibility of the AONs is shown in vivo by ICV injections of the murine AONs into control mice. Above described results suggest that both targeting the CAG repeat directly, or AON-mediated exon skipping may be suitable therapeutic approaches to reduce polyQ-induced toxicity in HD, SCA3 and other polyQ disorders.
 Until recently it was believed that polyQ disorders are solely the result of gain of toxic protein function and to a lesser extent, loss of wild-type protein function. Recent findings have shown that the molecular pathogenesis of these disorders is more complex. More and more observations suggest that next to polyQ protein toxicity, RNA toxicity and bidirectional transcription are also involved in the polyQ disease pathogenesis. These potential novel toxic mechanisms have to be taken into account when designing an AON-mediated disease-modifying treatment.

CAG repeat-induced RNA toxicity

Recently, in patient-derived juvenile HD fibroblasts expanded CAG repeat-induced RNA foci were shown (de Mezer et al., 2011), suggesting a RNA toxicity component in HD. Furthermore, overexpression of untranslated repeats with 200 CAGs showed clear nuclear RNA foci, progressive neural dysfunction, reduced breeding efficiency, and premature death in various transgenes (Li et al., 2008; Hsu et al., 2011; Wang et al., 2011). Although the exact mechanism of this expanded CAG repeat-induced toxicity remains elusive, there is some evidence that RNA toxicity may result from stable CAG hairpin structures which can sequester RNA binding proteins in nuclear foci, resulting in misregulation of alternative splicing (Li et al., 2008; Mykowska et al., 2011; Wang et al., 2011). Next to CAG repeat-induced deregulation of splicing, short CAG repeat-containing RNAs of around 21 nucleotides, originating from mutant CAG repeat-containing RNAs were found to induce cell death (Banez-Corone et al., 2012). The toxicity was CAG repeat dependent, since toxicity was blocked by AONs against the CAG repeat sequence, similar to the (CUG), AON described in chapter 3 (Banez-Corone et al., 2012).

The size of the CAG repeat is probably critical for the contribution of mRNA aggregation from the expanded CAG repeat because overexpression of untranslated repeats with 83 and 93 CAGs did not appear to result in a phenotype (McLeod et al., 2005; Wang et al., 2011). Likewise, in chapter 2 the levels of wild-type and mutant HTT mRNA and htt protein did not differ in adult-onset HD fibroblasts, suggesting that there is no mutant CAG repeat-induced mRNA aggregation in HD fibroblasts. To note, the repeat sizes of the adult-onset HD patients described in chapter 2 are shorter compared to the juvenile HD fibroblasts (with 68 and 151 CAGs repeats) in which RNA foci were observed (de Mezer et al., 2011), and therefore CAG repeat-induced RNA toxicity could still play a role in patients with extremely expanded CAG repeat lengths.

In chapter 5 a novel protein modification approach is proposed to reduce mutant ataxin-3 toxicity by removing the toxic polyQ repeat from the ataxin-3 protein. In case of CAG repeat-induced RNA toxicity, this AON-mediated exon skipping is still applicable, since the toxic CAG repeat is removed from the mRNA. In the same way the RNA toxicity component in polyQ disorders will be prevented by the (CUG), AON described in chapter 3, through direct binding of the (CUG), AON to the expanded CAG repeat. The potential RNA toxicity is not targeted by
the AON-mediated htt protein modification described in chapter 4. This potential therapeutic approach prevents the formation of toxic N-terminal htt fragments and leaves the hypothetical toxic RNA entities intact. However, removal of the 586 caspase-6 site from the full-length mutant htt protein was shown to alleviate the phenotype in transgenic HD mice (GRAHAM et al., 2006; POULADI et al., 2009), supporting the significance of this particular htt protein fragment. Therefore the role of RNA toxicity in the disease pathology remains to be assessed.

Bidirectional transcription in polyQ disorders

For many genes in the genome transcription occurs from both DNA strands (KATAYAMA et al., 2005; HE et al., 2008). Several studies have shown that bidirectional transcription occurs from triplet repeat disorder genes (CHO et al., 2005; MOSELEY et al., 2006; WILBURN et al., 2011). Although bidirectional transcriptional tags have been identified for all nine polyQ disease-causing loci (He et al., 2008), only for HD and SCA7 antisense transcripts have been studied in more detail (CHUNG et al., 2011; SOPHER et al., 2011). The SCA7 antisense noncoding transcript 1 (SCAANT1) and HTT antisense (HTTAS) transcripts are thought to be involved in downregulation of the corresponding sense ATNX7 and HTT gene expression (CHUNG et al., 2011; SOPHER et al., 2011). In total 3 HTTAS versions have been identified, of which one, HTTAS_v1 contained the CTG repeat whereas two other, HTTAS_v2.1 (CHUNG et al., 2011) and HTTAS_v2.2 (chapter 2), did not. It was hypothesized that HTTAS_v1 was downregulated in HD patients since HTTAS_v1 with an expanded CTG repeat was not detected in HD brains (CHUNG et al., 2011). However, in chapter 2 we did show HTTAS_v1 expression in human-derived fibroblasts homozygous for the CAG repeat expansion, suggesting that there is bidirectional transcription from the expanded CAG repeat, questioning the role of HTTAS in HTT regulation.

Altogether, these novel findings suggest that in some triplet repeat disorders bidirectional transcription could potentially play a role in the disease pathology. On the other hand, for only two out of nine polyQ disorders antisense transcripts have been characterized thus far, questioning the significance of bidirectional transcription in deregulation of sense transcripts and disease manifestation.

Other potential toxic entities in polyQ disorders

A major line of thinking with regard to polyQ disorder pathogenesis termed the ‘toxic fragment hypothesis’ concerns the proteolytic cleavage of polyQ expanded protein. This proteolytic cleavage is thought to lead to generation of short cytotoxic and aggregation-prone fragments containing the expanded polyQ repeat. Most research on the formation of toxic entities has been performed on HD, for which various rodent models expressing full-length or N-terminal mutant htt fragments have been generated (HENG et al., 2008).

Recently, it was shown in various knock-in and transgenic HD mouse models that alternative splicing of HTT pre-mRNA results in a short HTT transcript with a stop codon in the beginning of intron 1 and a polyA tail 700 nucleotides into intron 1. This HTT exon 1-intron 1 transcript was shown to be translated into a short polyQ-containing htt protein of 216 amino acids (with 150Qs) (SATHASIVAM et al., 2013). Interestingly, this aberrantly spliced transcript occurred in a
repeat-dependent manner, probably by altered binding of splicing factors to the expanded CAG repeat (SATHASIVAM et al., 2013). While this alternative splicing of HTT pre-mRNA is interesting, it is difficult to assess the importance of this finding. Although the authors showed the aberrantly spliced transcript in patient-derived fibroblasts, they could only detect this HTT exon 1-intron transcript in two out of four post-mortem HD brain tissues. Neither did they show protein data from human brain samples, suggesting low abundance of this short N-terminal polyQ fragment in HD brain tissue. Still, these results show that not only posttranslational modification, but also gene expression alteration can generate short toxic N-terminal htt fragments. If this would be the main or sole pathogenic mechanism, this would mean that the removal of the 586 caspase-6 site from the full-length mutant htt protein as proposed in chapter 4 would not be therapeutically beneficial. On the other hand, the (CUG), AON described in chapter 3 would still prevent the formation of these short polyQ-containing htt protein fragments.

Other toxic entities resulting from reading frame shifting have been suggested to be involved in the polyQ disease pathogenesis. Next to expanded polyQ repeats, also polyA stretches occur in cells derived from HD and SCA3 patients (GASPAR et al., 2000; DAVIES AND RUBINSZTEIN, 2006). These polyA stretches in the full-length ataxin-3 protein were toxic when overexpressed in D. melanogaster and neuronal cell models (STOCHMANSKI et al., 2012). Next to reading frame shifting, repeat associated non-ATG translation was recently also proposed as a novel class of protein toxicity, in which coding RNA transcripts with mutant CAG repeats are translated in the absence of an ATG start codon (ZU et al., 2011). This repeat associated non-ATG translation was found in all three possible CAG repeat reading frames, resulting in the translation of proteins with polyQ, polyA, and polyserine (polyS) repeats (ZU et al., 2011). However, these non-ATG translated htt and ataxin-3 proteins were only shown in artificial overexpression systems with low expression levels and their contribution to the polyQ disease pathology is as yet unclear.

To conclude, although most evidence points towards a toxic gain of polyQ protein fragments, novel toxic entities have been described that are potentially involved in the pathogenesis of polyQ disorders. These toxic proteins could be the result of aberrant splicing, proteolytic cleavage, reading frame shifting, or repeat associated non-ATG translation. On transcriptional level bidirectional transcription and CAG repeat-induced RNA toxicity could also be involved. Although extensive research is necessary to assess the relevance of these novel toxic entities, in many cases AON-mediated protein lowering approaches would still have an effect as they interfere with mRNA levels and compositions.
6.4. Future directions

There are several neurodegenerative disorders where AON-mediated therapies moved from preclinical to clinical testing during the course of this PhD research. All completed clinical trials on AON-mediated therapies into the CSF reported thus far have been successful and no major adverse events were reported (Rigo et al., 2012; Miller et al., 2013). Although recent preclinical results using non-allele-specific, SNP-specific and CAG repeat-targeting oligonucleotides look promising (Graham et al., 2006; Alves et al., 2008; Hu et al., 2009b; Kordasiewicz et al., 2012; Ostergaard et al., 2013), no trials of genetic therapies in polyQ patients have been done thus far.

Modulating splicing in polyQ disorders

In chapter 3 an allele-specific silencing is achieved based on the common denominator of all polyQ patients, being their expanded CAG repeat. A reduction of the mutant transcript is shown in fibroblasts derived from patients with DRPLA, HD, SCA1, and SCA3. Unfortunately for the other 5 polyQ disorders the allele-specific effect of the (CUG)7 AON could not be investigated, because no fibroblasts were available. Still, based on the mutant CAG repeat sizes of SBMA, SCA2, SCA7 and SCA17, it is expected that these can also be targeted by the (CUG)7 AON. For SCA6 this could be more complicated since the pathogenic repeat size starts at already 19 CAGs.

Next to targeting the mutant CAG repeat directly, chapter 5 describes removal of the CAG repeat-containing exon 10 from ATXN3 pre-mRNA in SCA3. Recently, it was also shown that a (CUG)7 single-stranded silencing RNA (ss-siRNA), comparable to the (CUG)7 AON described in chapter 3, resulted in exon skipping of ataxin-3 exon 10 (Liu et al., 2013). The (CUG)7 ss-siRNA was found to mask exon 10 from the splicing machinery, resulting in the activation of a downstream stop codon and subsequently the formation of a shorter, C-terminus-lacking ataxin-3 protein. CAG repeat-containing exon skipping could hypothetically also be used for other polyQ disorders, except for HD, SBMA, SCA2 and SCA6, where the CAG repeat is located in the first or last exon of the transcript. In SCA7 the CAG repeat is located in the third exon of ATXN7, which is the first coding exon. In this case therefore, the activation of an alternative start 3’of the CAG repeat codon would be necessary for the translation of a polyQ lacking ataxin-7 protein. In SCA1 the CAG repeat is also located in the first coding exon, however, the ATXN1 transcript only consists of 2 coding exons, making exon skipping unsuitable. As explained in chapter 4 and 5, it could be necessary to use more AONs to remove additional exons to preserve the reading frame. To remove the CAG repeat in DRPLA and SCA17 this would mean skipping of two exons to induce translation of a modified polyQ-lacking atrophin-1 and TBP.

Chapter 4 describes a proof of concept for AON-mediated exon skipping to remove proteolytic cleavage motifs from the htt protein. Proteolytically processed polyQ fragments are implicated in toxicity of HD and other polyQ disorders (Shao and Diamond, 2007). Removal of these coding regions that code for the proteolytic cleavage site would ideally reduce the formation of toxic fragments. For SCA3 this would mean removal of ATXN3 exon 8 and 9 to
subsequently remove calpain and caspase cleavage sites from the ataxin-3 protein (Wellington et al., 1998; Berke et al., 2004; Hubener et al., 2012). For DRPLA, it is preferred that the caspase-3 cleavage site near the N-terminus of the protein is removed from the protein. This is encoded by exon 5 of the ATN1 gene (Wellington et al., 1998; Ellerby et al., 1999A). Skipping of exon 5, and exon 6 to maintain the reading frame, would result in the removal of both the proteolytic cleavage encoding region as well as the CAG repeat. The known caspase-3 cleavage motif in the AR is encoded by the first exon (Ellerby et al., 1999B) and therefore AON-mediated skipping of this caspase-3 motif-encoding exon is not an option as treatment for SBMA. For the remaining polyQ disorders proteolytic processing has been implicated in disease pathogenesis, but the exact proteases and motifs are thus far unknown and therefore no AON-mediated therapy to remove proteolytic cleavage motifs can be designed for those disorders.

Towards clinical trials of genetic therapies for polyQ disorders

Some disease-modifying drugs were successful in small studies to prevent or even slow down the progression of polyQ disorders. But none of them were shown to be effective in larger, randomised, double-blind, placebo-controlled trials. For example, drugs aiming at correcting mitochondrial dysfunction, such as coenzyme Q10, ethyl-eicosapentaenoic acid, and antihistamine latrepirdine, were shown not to improve cognition or global function in HD patients in phase III placebo-controlled trials (Huntington Study Group, 2001; Huntington Study Group Trend-HD Investigators, 2008; Horizon et al., 2013). Likewise, the dopamine neurotransmission-stabilizing molecule pridopidine, which was promising in phase II, did not result in improved motor score in HD patients in a phase III clinical trial (de Yebenes et al., 2011). A phase II/III clinical trial with lithium carbonate was recently carried out in SCA3 patients. The mechanism of lithium is thought to rely on upregulation of autophagy, though anti-apoptotic effects have also been implicated (Jia et al., 2013). Due to the limited group size, this did not show a significant effect on disease progression as determined by the neurological examination score for spinocerebellar ataxia (Saute et al., 2013).

For potential genetic therapies it would be best to start treatment before onset of clinical symptoms, before irreversible brain atrophy has occurred. Indeed, in symptomatic transgenic HD mice, AON treatment did not lead to a significant phenotypical improvement, whereas treatment of younger mice did show disease reversal (Kordasiewicz et al., 2012). Yet after disease onset there seems to be a window of opportunity for AON treatments. In a conditional knockout model of SCA1 it was shown that removal of mutant ataxin-1 in 6 week old mice with mild motor deficits and some aggregation in Purkinje cells resulted in complete disease reversal (Zu et al., 2004). Likewise, knockdown of mutant ataxin-1 in more severe 12 week old transgenic SCA1 mice with clear signs of ataxia and Purkinje cell atrophy a partial recovery was seen (Zu et al., 2004), suggesting (partial) disease reversal in later stages.

The full penetrance of the polyQ mutation in combination with the availability of predictive genetic testing at the age of 18 provides the opportunity to start treatment in presymptomatic polyQ patients. The disease stage prior to onset of (typically motor) symptoms is variably called the presymptomatic, premanifest, preclinical or prodromal stage. The stage in which
subtle symptoms can be identified upon refined comparisons is called the prodromal stage. To assess the therapeutic benefit of disease-modifying compounds in polyQ patients who do not yet manifest signs of illness, there is a need for sensitive and stable clinical endpoints, such as subtle cognitive or motor improvement, brain imaging, or disease-specific biomarkers. As example, for HD the unified HD rating scale (UHDRS) is thus far used in clinical trials to show improvements on disease phenotype after disease-modifying drugs (HUNTINGTON STUDY GROUP, 1996), whereas for ataxias, the scale for the assessment and rating of ataxia (SARA) clinical scale has been developed as clinical measurement for trials (SCHMITZ-HUBSCH et al., 2006). However, available rating scales can only be reliably employed after onset of clinical symptoms and are therefore inadequate to assess therapeutic potency in presymptomatic polyQ patients. Likewise, both scales require a large number of patients to show a possible significant effect of treatment, which is not always feasible for the rare polyQ disorders.

Recently, much effort has been put into characterizing the polyQ disease stage before onset of symptoms. For HD, two extensive longitudinal observational studies are ongoing (TABRIZI et al., 2013; BIGLAN et al., 2013). Half-term reports showed that various motor and cognitive task scores were significantly decreased over 3 year period in presymptomatic HD individuals (TABRIZI et al., 2013). Combining these individual measurements into a multidimensional diagnosis may result in a more sensitive diagnosis of presymptomatic HD (BIGLAN et al., 2013). For the SCAs 1, 2, 3, and 6 a prospective observational study has also been enrolled to define presymptomatic disease stage. The first baseline data from the RISCA showed mild coordination deficits in SCA1 and SCA2 patients respectively 10 to 20 years before age of onset (JACOBI et al., 2013). Follow-up studies of this cohort will hopefully gain more biological and clinical characteristics for SCA patients.

In summary, polyQ pathology can be measured long before the onset of clinical symptoms and preferably disease-modifying drugs such as AON-mediated therapeutics need to be administered in the presymptomatic stage to prevent polyQ-induced toxicity and with best prospect of reversal of disease.
6.5. In conclusion

This thesis proposes various novel genetic therapies for polyQ disorders, aiming at reducing and/or modifying polyQ disease-causing proteins. Since AONs are never 100% effective, it is likely that a combination of lowering mutant polyQ protein levels and modifying the remaining mutant polyQ protein will be the most optimal therapy for polyQ disorders. Future experiments in small rodents are required to evaluate whether AON-mediated treatment improves the polyQ induced phenotype. Furthermore, it will also be necessary to assess (1) whether the novel modified normal proteins retain their function and localization, and (2) whether the novel modified mutant proteins are less toxic and less aggregation-prone. Also the best route of administration to the brain, optimal dosage, and treatment regime needs to be determined.

The ultimate aim should of course be to cure patients, but a more realistic short-term objective would be to delay the age of onset or reduce the progression and thereby increase the quality of life for both polyQ patients and their families. Although extensive in vitro and in vivo research is required to rule out toxic off-target effects of the various AONs and the resulting modified proteins, these preclinical AON-mediated treatments look promising. Hopefully this thesis will help in the quest to develop treatments for individuals with one of the polyQ disorders.
References

REFERENCES

CLINICALTRIALS.GOV. (2009) Safety, Tolerability, and Activity Study of ISIS SOD1Rx to Treat Familial Amyotrophic Lateral Sclerosis (ALS) Caused by SOD1 Gene Mutations (SOD-1). NCT01041222.

REFERENCES

REFERENCES

REFERENCES

Appendix

Summary
Samenvatting
List of abbreviations
List of publications
Curriculum Vitae
Dankwoord
Summary

Polyglutamine (polyQ) diseases are a group of nine neurodegenerative disorders, which are all caused by a CAG triplet repeat expansion, resulting in a gain of toxic polyQ protein function. The longer the CAG repeat, the earlier the disease manifestation and in most cases the disease onset is around midlife. Although the disorders have a monogenic cause and much research has been done the last decades, no therapies are available to cure or slow down the disease.

In chapter 1 a short overview of the polyQ disorders and insight in the disease-causing polyQ proteins is given and their role in known disease mechanisms is described. The most prevalent and best studied polyQ disorders, being Huntington disease (HD) and spinocerebellar ataxia type 3 (SCA3), and the molecular biology of the disease causing proteins, huntingtin and ataxin-3, are extensively reviewed.

Furthermore, the opportunities for genetic therapies for polyQ disorders are discussed, focussing on what can be learned from other neurodegenerative disorders of which genetic therapies are in development or already used as therapy. Small molecules, called antisense oligonucleotides, are broadly used as potential treatment for neurodegenerative diseases. According to the specific chemical modifications and target binding site of the antisense oligonucleotide, they can either reduce expression or modify polyQ disease-causing proteins. Furthermore, the limitations and possibilities of the delivery of antisense oligonucleotides to the brain and into the affected neuronal cells are discussed.

While much research has been done on the underlying polyQ disease mechanisms, knowledge on regulation and expression of mRNA and protein expression are limited. Chapter 2 describes subtle differences in huntingtin mRNA and protein expression in HD. In adult-onset HD less mutant huntingtin mRNA, but equal wild-type and mutant huntingtin protein levels are found. In juvenile HD subjects less mutant huntingtin protein compared to wild-type huntingtin protein is present. This indicates differences in huntingtin protein expression between adult-onset and juvenile HD.

In chapter 3 CUG triplet-repeat antisense oligonucleotides are used to effectively reduce mutant polyQ transcript and protein levels in polyQ patient-derived fibroblasts. Although a reduction in wild-type CAG transcript levels was observed as well. This reduction was less pronounced than for the mutant transcript. Expression levels of other non-expanded CAG triplet repeat-containing transcripts investigated were not affected, verifying the specificity of the CUG triplet repeat antisense oligonucleotide for the mutant transcript. Chapter 2 describes that the basal levels of mutant huntingtin mRNA and mutant huntingtin protein are equal or lower when compared to wild-type. This provides feasibility for genetic therapies like the CUG triplet-repeat antisense oligonucleotide that are not completely specific for the mutant huntingtin allele.
Next to specifically targeting the expanded CAG repeat transcripts to reduce the translation of mutant polyQ protein, chapter 4 reports on removing the motifs that are implicated in the formation of toxic polyQ fragments. Soluble polyQ fragments, generated by proteolytic cleavage during the aggregation process, are considered to be the main toxic entities, resulting in neurodegeneration. In HD, removing a proteolytic cleavage site, implicated in the formation of huntingtin fragments containing the polyQ repeat, has been shown to result in reduced toxicity. Chapter 4 describes a potential therapeutic approach of preventing the formation of toxic huntingtin polyQ fragments by antisense oligonucleotides that induce skipping of exon 12 in huntingtin pre-mRNA. This antisense oligonucleotide-mediated protein modification resulted in a huntingtin protein lacking disease-implied cleavage motifs and subsequently reduced formation of toxic huntingtin polyQ fragments. This proof of concept shows a completely novel approach to reduce mutant huntingtin toxicity not by reducing expressing levels, but by modifying polyQ protein.

A more direct genetic approach to reduce polyQ-induced toxicity is shown in chapter 5. Here antisense oligonucleotide-mediated exon skipping is used to remove the toxic polyQ repeat from the ataxin-3 protein. Two different approaches are proposed with the same aim: removal of the CAG repeat-containing exon. Both approaches result in the formation of modified ataxin-3 protein that lacks the toxic polyQ repeat. The modified ataxin-3 protein lacks only a small part and maintains important wild-type functions of the protein.

The feasibility of the in chapter 4 and 5 described antisense oligonucleotides was tested in vivo by injections of antisense oligonucleotides directly into the brain of mice. The in vivo and in vitro data described in this thesis suggest that both targeting the CAG repeat directly and antisense oligonucleotide-mediated exon skipping are promising potential therapeutic approaches to reduce polyQ-induced toxicity in HD, SCA3 and other polyQ disorders.

In chapter 6 the main findings from this thesis are summarized. Recent developments are described and reflected how they relate to the results reported in this thesis. In addition, a reflection is given on how to get to clinical trials of genetic therapies like antisense oligonucleotide-mediated treatments for polyQ disease patients.

This thesis proposes various novel genetic therapies for polyQ disorders, aiming at reducing and/or modifying polyQ disease-causing proteins. Although extensive in vitro and in vivo research is important to rule out toxic off-target effects of the various antisense oligonucleotides and resulting modified proteins, these preclinical antisense oligonucleotide-mediated treatments look promising as therapeutic candidates for polyQ disorders.
APPENDIX

Samenvatting

Polyglutamine (polyQ) ziekten is een groep van negen neurodegeneratieve aandoeningen die allen worden veroorzaakt door een verlengde CAG herhaling resulterend in een extra schadelijke polyQ eiwitfunctie. Hoe langer deze CAG herhaling, des te eerder de ziekte zich manifesteert. In de meeste gevallen begint de ziekte rond middelbare leeftijd. Hoewel alle polyQ ziekten veroorzaakt worden door een mutatie in één gen, en er de laatste decennia veel onderzoek gedaan is, zijn er tot dusverre geen therapieën beschikbaar die de ziekte genezen of vertragen.

In hoofdstuk 1 wordt een kort overzicht gegeven van de polyQ aandoeningen en worden de ziekte-veroorzakende polyQ eiwitten en hun rol in de ziektemechanismen beschreven. De meest voorkomende en best bestudeerde polyQ aandoeningen, de ziekte van Huntington (ZvH) en spinocerebellaire ataxie type 3 (SCA3) en de moleculaire biologie van hun ziekteverwekkende huntingtine en ataxine-3 worden beschreven.

Vervolgens zijn in hoofdstuk 1 de mogelijkheden voor genetische therapieën voor polyQ aandoeningen besproken, met de nadruk op wat kan worden geleerd van andere neurodegeneratieve aandoeningen waarvoor genetische therapieën in ontwikkeling zijn of al worden gebruikt als therapie. Kleine moleculen, zogenaamde antisense oligonucleotiden, worden algemeen gebruikt als potentiële behandeling voor neurodegeneratieve ziekten. Afhankelijk van de specifieke chemische modificaties en plaats waarop het bindt kunnen antisense oligonucleotiden de expressie verlagen of polyQ eiwitten modificeren. De beperkingen en mogelijkheden van de toediening van antisense oligonucleotiden in de hersenen en het bereiken van de getroffen zenuwcellen wordt besproken.

Ondanks het vele onderzoek naar de onderliggende polyQ ziektemechanismen, blijft de kennis over regulering en expressie van mRNA en eiwit beperkt. Hoofdstuk 2 beschrijft subtiele verschillen in huntingtine mRNA en eiwit expressie in ZvH. In volwassen ZvH is iets minder mutant huntingtine mRNA, maar gelijke hoeveelheden wild-type en mutant huntingtin eiwit hoeveelheden gevonden. Juveniele ZvH proefpersonen vertoonden minder mutant huntingtin eiwit vergeleken met wild-type huntingtine eiwit. Dit duidt op verschillen in huntingtine eiwitexpression tussen volwassen ZvH en juveniel ZvH.

In hoofdstuk 3 worden CUG triplet antisense oligonucleotide gebruikt om, in van polyQ patiënten verkregen fibroblasten, specifiek mutant polyQ transcripten en eiwit te verminderen. Een vermindering van wild-type CAG transcript niveaus werd ook waargenomen, maar deze afname was minder oppvallend dan voor het mutant mRNA. Andere niet verlengde CAG triplet bevattende transcripten waren niet verminderd, wat de specificiteit van de CUG triplet antisense oligonucleotide voor het mutant mRNA bevestigt. Hoofdstuk 2 beschrijft dat de basale niveaus van mutant huntingtin mRNA en mutant huntingtine eiwit gelijk of lager zijn in vergelijking met wild-type. Dit bevestigt de potentie van gentherapieën die niet geheel specifiek voor het mutante huntingtine allele, zoals de CUG triplet antisense oligonucleotide.
Naast het doelgericht aanpakken van verlengde CAG triplet transcripten om de translatie van mutant polyQ eiwit te verminderen, beschrijft hoofdstuk 4 het verwijderen van motieven die betrokken zijn bij de vorming van toxische polyQ fragmenten. Tijdens het aggregatieproces worden oplosbare polyQ fragmenten gegenereerd door het proteolytisch knippen van volledige polyQ eiwitten. Deze polyQ fragmenten worden beschouwd als de belangrijkste schadelijke entiteiten voor het ontstaan van neurodegeneratie. In de ZvH is reeds aangetoond dat het verwijderen van een proteolytische knipplaats, wat betrokken is bij de vorming van huntingtine polyQ fragmenten, leidt tot verminderde toxiciteit. Hoofdstuk 4 beschrijft een mogelijke therapeutische benadering door middel van antisense oligonucleotiden die ervoor zorgen dat exon 12 uit het huntingtine mRNA verwijderd wordt. Deze antisense oligonucleotide geïnduceerde eiwitmodificatie resulteert in een huntingtine eiwit wat de knipplaats mist en wat vervolgens leidt tot verminderde vorming van toxische huntingtine polyQ fragmenten. Deze eerste studie beschrijft een compleet nieuwe aanpak voor het verminderen van de toxiciteit van mutant huntingtine door niet de expressieniveaus te verminderen, maar door het polyQ eiwit te modificeren.

Een meer directe genetische benadering om de polyQ geïnduceerde toxiciteit te verminderen is in hoofdstuk 5 beschreven. Hier wordt het verwijderen van de toxische polyQ herhaling uit het ataxine-3 eiwit door middel van het verwijderen van exonen met behulp van antisense oligonucleotiden beschreven. Twee verschillende benaderingen werden aangedragen met hetzelfde doel, het verwijderen van het verlengde CAG triplet bevattende exons. Beide benaderingen resulteren in gemodificeerd ataxine-3 eiwit wat de toxische polyQ verlenging mist. Het gemodificeerde ataxine-3 eiwit mist slechts een klein deel en behoudt belangrijke wild-type functies van het eiwit.

De haalbaarheid van de in hoofdstuk 4 en 5 beschreven antisense oligonucleotiden is in vivo aangetoond door antisense oligonucleotiden direct in de hersenen van muizen te injecteren. De in dit proefschrift beschreven in vivo en in vitro resultaten suggereren dat antisense oligonucleotiden gericht tegen de verlengde CAG triplet rechtstreeks en het verwijderen van exonen veelbelovende therapeutische benaderingen zijn om de polyQ geïnduceerde toxiciteit te verminderen in de ZvH, SCA3 en andere polyQ aandoeningen.

In hoofdstuk 6 zijn de belangrijkste bevindingen van dit proefschrift samengevat. Recente ontwikkelingen worden beschreven en gerelateerd aan de verkregen resultaten beschreven in dit proefschrift. Daarnaast wordt er een blik in de toekomst geworpen hoe voor polyQ patiënten klinische studies met genetische therapieën zoals antisense oligonucleotiden behandelingen op te zetten.

Dit proefschrift beschrijft enkele nieuwe genetische therapieën voor polyQ aandoeningen welke gericht zijn op het verminderen en/of modificeren van polyQ ziekte-veroorzakende eiwitten. Hoewel uitgebreid in vitro en in vivo onderzoek nodig is om toxische bijwerkingen van de verschillende antisense oligonucleotiden en de resulterende gemodificeerde eiwitten uit te sluiten, zijn deze preklinische antisense oligonucleotide behandelingen veelbelovend als mogelijke therapeutische behandelingen voor polyQ aandoeningen.
AppenDix

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV</td>
<td>adeno-associated virus</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer disease</td>
</tr>
<tr>
<td>ALS</td>
<td>amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>AON</td>
<td>antisense oligonucleotide</td>
</tr>
<tr>
<td>APP</td>
<td>amyloid β precursor protein</td>
</tr>
<tr>
<td>AR</td>
<td>androgen receptor</td>
</tr>
<tr>
<td>ATN1</td>
<td>atrophin-1</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ATXN</td>
<td>ataxin</td>
</tr>
<tr>
<td>Aβ</td>
<td>β-amyloid peptide</td>
</tr>
<tr>
<td>BBB</td>
<td>blood brain barrier</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>CA1</td>
<td>Cornu ammonis area 1</td>
</tr>
<tr>
<td>CACNA1A</td>
<td>alpha 1A subunit of the voltage-dependent P/Q type calcium channel (Ca_{2.1})</td>
</tr>
<tr>
<td>CBP</td>
<td>cAMP response element-binding protein binding protein</td>
</tr>
<tr>
<td>CELF2</td>
<td>CUGBP, Elav-like family member 2</td>
</tr>
<tr>
<td>cET</td>
<td>ethyl nucleic acid</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>DM1</td>
<td>myotonic dystrophy-1</td>
</tr>
<tr>
<td>DMD</td>
<td>Duchenne muscular dystrophy</td>
</tr>
<tr>
<td>DMPK</td>
<td>dystrophia myotonica protein kinase</td>
</tr>
<tr>
<td>DRPLA</td>
<td>dentatorubro-pallidoluysian atrophy</td>
</tr>
<tr>
<td>EA-2</td>
<td>episodic ataxia type-2</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic-retticulum</td>
</tr>
<tr>
<td>ERAD</td>
<td>endoplasmic-retticulum-associated protein degradation</td>
</tr>
<tr>
<td>ESE</td>
<td>exonic splicing silencer</td>
</tr>
<tr>
<td>FHM</td>
<td>familial hemiplegic migraine</td>
</tr>
<tr>
<td>FMRP</td>
<td>fragile X mental retardation protein</td>
</tr>
<tr>
<td>FOXO</td>
<td>forkhead box O (FOXO) transcription factor</td>
</tr>
<tr>
<td>FXTAS</td>
<td>fragile X-associated tremor/ataxia syndrome</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GLS</td>
<td>glutaminase</td>
</tr>
<tr>
<td>GLUT</td>
<td>glucose transporter</td>
</tr>
<tr>
<td>HD</td>
<td>Huntington disease</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>HDL2</td>
<td>Huntington disease-like-2</td>
</tr>
<tr>
<td>HEAT</td>
<td>htt, elongation factor 3, protein phosphatase 2A, and the yeast PI3-kinase TOR1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>hHR23</td>
<td>human homologues of yeast protein RAD23</td>
</tr>
<tr>
<td>Hip</td>
<td>htt interacting protein</td>
</tr>
<tr>
<td>HTT</td>
<td>huntingtin</td>
</tr>
<tr>
<td>HTTAS</td>
<td>huntingtin antisense</td>
</tr>
<tr>
<td>ICV</td>
<td>intracerebroventricular</td>
</tr>
<tr>
<td>ISS</td>
<td>intronic splicing silencer</td>
</tr>
<tr>
<td>LNA</td>
<td>locked nucleic acid</td>
</tr>
<tr>
<td>MBNL1</td>
<td>muscleblind-like protein 1</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>miRNA</td>
<td>microRNA</td>
</tr>
<tr>
<td>MJD</td>
<td>Machado-Joseph disease</td>
</tr>
<tr>
<td>MMP-2</td>
<td>matrix metalloproteinase-2</td>
</tr>
<tr>
<td>MOE</td>
<td>methoxyethyl</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>NCoR1</td>
<td>nuclear receptor co-repressor</td>
</tr>
<tr>
<td>NES</td>
<td>nuclear export signal</td>
</tr>
<tr>
<td>NLS</td>
<td>nuclear localisation signal</td>
</tr>
<tr>
<td>PCAF</td>
<td>p300/CBP-associated factor</td>
</tr>
<tr>
<td>PNA</td>
<td>peptide nucleic acid</td>
</tr>
<tr>
<td>polyA</td>
<td>polyalanine</td>
</tr>
<tr>
<td>polyQ</td>
<td>polyglutamine</td>
</tr>
<tr>
<td>polyS</td>
<td>polyserine</td>
</tr>
<tr>
<td>PPMO</td>
<td>peptide-linked phosphorodiamidate morpholino oligomer</td>
</tr>
<tr>
<td>PS</td>
<td>phosphorothioate</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative real-time polymerase chain reaction</td>
</tr>
<tr>
<td>REST</td>
<td>RE1 silencing transcription factor</td>
</tr>
<tr>
<td>RNase H</td>
<td>ribonuclease H</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SARA</td>
<td>scale for the assessment and rating of ataxia</td>
</tr>
<tr>
<td>SBMA</td>
<td>bulbar muscular atrophy</td>
</tr>
<tr>
<td>SCA</td>
<td>spinocerebellar ataxia</td>
</tr>
<tr>
<td>SCAANT1</td>
<td>SCA7 antisense noncoding transcript 1</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SLiC</td>
<td>SNP linkage by circularization</td>
</tr>
<tr>
<td>SMA</td>
<td>spinal muscular atrophy</td>
</tr>
<tr>
<td>SMN</td>
<td>survival motor neuron</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>SOD1</td>
<td>superoxide dismutase 1</td>
</tr>
<tr>
<td>ss-siRNA</td>
<td>single-stranded silencing RNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TAF4</td>
<td>TBP-associated factor 4</td>
</tr>
<tr>
<td>TARDBP</td>
<td>TAR DNA-binding protein</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA box-binding protein</td>
</tr>
<tr>
<td>UHDRS</td>
<td>unified Huntington disease rating scale</td>
</tr>
<tr>
<td>UIM</td>
<td>ubiquitin interacting motif</td>
</tr>
<tr>
<td>UPS</td>
<td>ubiquitin-proteasome system</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>VCP/p97</td>
<td>valosin-containing protein</td>
</tr>
<tr>
<td>YAC</td>
<td>yeast artificial chromosome</td>
</tr>
<tr>
<td>ZNF384</td>
<td>zinc finger protein 384</td>
</tr>
</tbody>
</table>
List of publications

APPENDIX

Curriculum Vitae

Melvin Evers is geboren op 12 december 1982 te Rhenen. In 2001 heeft hij zijn VWO diploma behaald op het Christelijk Lyceum te Veenendaal. Na een jaar Informatiekunde aan de Universiteit van Utrecht, begon hij in 2003 aan de studie Biomedische Wetenschappen aan de Universiteit van Utrecht. Na het verkrijgen van zijn Bachelors diploma in 2006 heeft hij de Biomedical Sciences Master Biology of Disease gevolgd aan de Universiteit van Utrecht. Voor deze Master heeft hij twee maal een onderzoeksstage gelopen. De eerste stage vond plaats in het Universitair Medisch Centrum Utrecht bij de afdeling celbiologie onder leiding van Dr. Thijs van Vlijmen en Dr. Peter van der Sluijs. Hier deed hij onderzoek naar de interactie van Zwint-1 met Rab3c en hun betrokkenheid bij de secretie van synaptische vesikels. Zijn tweede stage vond plaats in het Leids Universitair Medisch Centrum bij de afdeling Humane Genetica in de Huntington disease onderzoeksgroep onder leiding van Dr. Willeke van Roon-Mom. Tijdens deze stageperiode werkte hij nauw samen met het biotechnologiebedrijf Prosensa Therapeutics B.V. waar hij zich bezig hield met het uitvoeren van pilot studies met antisense oligonucleotiden gericht tegen de CAG verlenging in de ziekte van Huntington. Zijn Masterscriptie over de biologie van een specifiek natriumkanaal in het hart heeft hij vervolgens geschreven bij de afdeling Medische Fysiologie van het Universitair Medisch Centrum Utrecht onder supervisie van Dr. Martin Rook en Dr. Marti Bierhuizen.

Na het verkrijgen van zijn Master diploma was hij van september 2008 tot augustus 2013 werkzaam als promovendus aan de afdeling Humane Genetica van het Leids Universitair Medisch Centrum onder leiding van Dr. Willeke van Roon-Mom en Prof. Dr. Gert-Jan van Ommen. De resultaten van dit onderzoek staan beschreven in dit proefschrift. Vanaf september 2013 is hij werkzaam als postdoctoraal onderzoeker in de Polyglutamine Disease Research Group binnen de afdeling Humane Genetica van het Leids Universitair Medisch Centrum.
Tijdens het promotietraject heb ik veel goede samenwerkingen gehad en vriendschappen opgebouwd. Het is dan ook onmogelijk iedereen persoonlijk te bedanken en mijn oprechte excuses als je je naam niet in het dankwoord ziet staan.

Beste Willeke, jou ben ik heel veel dank verschuldigd. Bedankt dat je me de kans hebt gegeven om na mijn stage als promovendus aan de slag te gaan. Je stond altijd klaar voor me om over wetenschappelijke én niet-wetenschappelijke zaken te praten. Wetenschappelijk en sociaal een topper, het is echt geweldig om in jouw groep te mogen werken.

De motor van de groep, Barry, bedankt voor al je hulp en suggesties gedurende de afgelopen 6 jaar. We hebben er een paar mooie papers en vriendschap aan overgehouden! Fijn dat je mijn paranimf wilt zijn.

Er zijn nog enkele groepsgenoten die ik zou willen bedanken. Lodewijk, we hebben de afgelopen 2 jaar fijn samengewerkt en mooie reviews samen geschreven, ik wens je heel veel succes met je promotietraject. Blijf positief, dan komt er iets moois uit, daar ben ik van overtuigd! Menno, buurman, bedankt voor al je feitjes en weetjes. We hebben samen een artikel gepipettede wat hopelijk snel geaccepteerd zal worden. Αγαπητέ Tassos, καλή τύχη με την της διατριβής. εύχομαι ό, τι καλύτερο και ευτυχία στη μελλοντική σας σταδιοδρομία. Omdat ik toch in het steenkolen Grieks bezig ben, αγαπητή Eleni, είστε ένα δροσερό κορίτσι και είχαμε ωραία συνομιλίες κατά τη διάρκεια ποτά. Καλή τύχη με την οριστικοποίηση PhD σας! Ook Maurice en Iris, bedankt voor jullie hulp in het lab.

In de loop der jaren heb ik veel studenten mogen begeleiden waarvan enkele zelf nu ook als promovendus aan de slag zijn (#trots): Alex, thank you for your great help with two manuscripts and good luck with your PhD. Ook José en Juliette bedankt voor jullie inzet en heel veel succes met jullie promotietraject. Astrid, Eline, Gido, Maria en Marlous, bedankt voor jullie harde werken en succes met jullie opleidingen. Also Neil and Tim thanks for your work and good luck with your careers.

I would like to thank the following (ex)colleagues for your help, input, getting to know you better and providing a nice working environment: Annemieke, Christa, Cindy, Cor, Cynthia, Dwi, Eleonora, Emile, Emmelien, Hans, Henk, Ingrid, Isabella, Ivo, Jeroen, Johan, Joke, Jos, Julie, Laura, Laure, Linda, Louise, Maaike, Maarten, Majella, Marcel, Margriet, Monika, Nisha, Peter², Peter-Bram, Petra, Piet, Pietro, Polina, Richard, Rolf, Sandra, Saskia, Silvana, Silvère, Steven, Svetlana, Willem, Wouter, Yahya en Yavuz. Ook Babs heel erg bedankt met je hulp om door alle promotieregelgeving heen te komen.
Verder zou ik graag de andere collega’s van LabJ, de afdeling Humane Genetica en de exonskip werkgroep willen bedanken voor alle hulp en gezelligheid. Het werkt erg stimulerend om in zo’n wetenschappelijk hoogstaande afdeling te mogen werken.

This thesis could not be completed without good collaborations. I would therefore like to thank Onno and Ioannis for their valuable help with the in vivo experiments, which resulted in three papers. From Prosensa Therapeutics I would like to thank Anchel, Jeroen, Judith, Nicole and Susan for the close collaborations on the (CUG)7 work. From the Maastricht University Medical Center, I would like to thank Ali, Joâo, Rinske and Yasin for their collaborations that are still ongoing. Ich möchte auch Bernd, Peter, Philipp, Thomas und Ulrich vom Universitätsklinikum Bonn danken und ich hoffe, dass unsere Zusammenarbeit uns einen Schritt näher bringt, eine mögliche Therapie für SCA3 Patienten zu finden.

Mijn studievrienden Mark, Pascal, Stefan en Timo bedankt voor de fijne studiejaren. Je weet wel waarvoor. Ik ben mij ervan bewust dat ik te vaak afhaak als er een biertje gedronken wordt, maar áls ik erbij ben is het erg gezellig mannen. De volgende dag minder.

Mijn schoolvrienden en collegapapas Bart, Gerben Jan en Michiel, tof dat we na al die jaren, verschillende woonadressen, gezinsuitbreidingen en totaal verschillende carrières nog steeds veel contact hebben. Michiel bedankt voor de mooie cover.

Verder zou ik graag de volgende vrienden Boy, Elisah, Eva, Jaap, Jennifer, Joanneke, Josje, Judith, Karlijn, Kim, Marije, Michael, René, Sandra willen bedanken voor de gezellige avonden de afgelopen jaren.

Johannes erg bedankt dat ik je maat mag zijn. Je bent een geweldig persoon waar ik altijd mijn ei bij kwijt kan.

Mies, Ingrid, Mieske, bedankt voor jullie Brabantse gezelligheid en jullie support de afgelopen jaren.

Lieve Priscalla, we verschillen 10 jaar in leeftijd, waardoor we vroeger nog al eens onze broer-zus conflicten hadden. Maar nu we allebei wat ouder en ouders zijn, zijn we steeds meer naar elkaar toegegroeid. Ik had me geen betere grote zus kunnen wensen! Mijn (bijna) zwager en paranimf Martijn, jij bent al bijna 25 jaar in mijn leven en je bent als een broer voor me. Ik wens jullie samen met mijn lieve neefje Justin en nichtje Esmée een hele fijne bruiloft, hè hè eindelijk, en al het geluk van de wereld toe.

Lieve ma, lieve pa. Het is aan jullie te danken dat ik ben waar ik nu ben. Jullie hebben me de opvoeding en kans gegeven om mij te ontwikkelen tot wie ik nu ben. Jullie “doe gewoon je best, niet zeuren en ga ervoor” mentaliteit heeft me de afgelopen jaren erg geholpen. Ik ben jullie dankbaar voor de concessies die jullie hebben moeten doen zodat ik onbezorgd kon studeren. Ik hou van jullie en ik hoop dat jullie trots zijn op de bijzondere mijlpaal die ik nu bereikt heb.
Lieve Linde, wat heb jij ons leven in positieve zin veranderd! Door jou heb ik beter leren relativeren en ik weet nu wat écht belangrijk is in het leven. Je bent een mooi, lief, stralend, slim meisje en papa houdt zielsveel van je!

Lieve Inkie, ik ben zo blij dat ik jou aan de haak geslagen heb. Je bent een mooie vrouw, mijn beste maatje en de liefste mama ter wereld in één. Je gelooft in me, begrijpt me en staat altijd onvoorwaardelijk voor me klaar. Wat kan ik me nog meer wensen?

Ik vind jou lief!