Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy

Summary. Bone marrow transplantation (BMT) is the present treatment for hematological malignancies. Two major drawbacks of allogeneic BMT are graft-versus-host disease (GVHD) and leukemia relapse. The use of HLA-matched siblings as marrow donors results in the best transplant outcome. Nonetheless, the results of clinical BMT reveal that the selection of MHC-identical donors' bone marrow (BM) is no guarantee for avoiding GVHD or ensuring disease-free survival even when donor and recipient are closely related. It is believed that non-MHC-encoded so-called minor histocompatibility antigens (mHag) are involved in both graft-versus-host and graft-versus-leukemia activities. The recent new insights into the chemical nature of mHag not only reveal their physiological function but, more importantly, provide insights into their role in BMT. Together with the information on the human mHag genetics and tissue distribution gathered in the past, we may now apply this knowledge to the benefit of human BMT. Directly relevant is the utility of mHag molecular typing for diagnostics in BM donor selection. Most promising is the use of mHag-specific cytotoxic T cells for adoptive immunotherapy of leukemia.

Introduction

Minor histocompatibility antigens (mHag) are products of genetic loci responsible for graft rejection. As the MHC encoded major H systems, the minor H antigens have important biological functions besides their role in organ and bone marrow transplantation (BMT). Their latter characteristic, however, was first disclosed. Both types of transplantation antigens were described by Snell (1) and disamshed from one another on the basis of their respective power in murine tumor graft rejection models (2). Skin-grafting experiments in the mouse demonstrated the presence of a large number of histocompatibility antigens coded for by multiple loci scattered all over the genome. They showed distinguishable patterns in eliciting allogeneic reaction, skin grafting over a multiple minor H barrier demonstrated a graft rejection time comparable to those that differed only at H-2 (2-4).

In human transplantation, donors and recipients are routinely screened for identification of the major H system, therefore, graft-versus-host disease (GVHD) and rejection may be
Knowledge was essential for the prediction that mHag are natural male histocompatibility antigens (mHag) derived from intracellularly processed proteins (11, 12). This recognition of mHag in a classical MHC-restricted fashion was postulated by Eichwald & Shmser (13, 14) in 1955. The description by Zinkernagel & Doherty (5) of the classical immunological phenomenon of the MHC-restricted recognition of viral antigens by T cells appeared also to apply to the recognition of non-MHC alloantigens. In the seventies, murine (6, 7) and human (8, 9) mHag were defined in vitro by MHC-restricted T cells.

In man, mHag studies have predominantly been performed in the HLA-identical BMT setting. The efforts of several investigators have led to the identification of a relatively small number of mHag. Both cytotoxic T cells (CTLs) and T-helper (Th) cells recognizing mHag in a classical MHC-restricted fashion were described. MHC molecules serve as templates (10) for peptides derived from intracellularly processed proteins (11, 12). This knowledge was essential for the prediction that mHag are naturally processed fragments of intracellular proteins that associate with MHC molecules (13, 14). Indeed, this supposition was recently verified both for murine (15) and human mHag (16).

This review summarizes our current knowledge of the impact of mHag on the outcome of BMT and discusses the putative clinical applicabilities now that biochemical identification of mHag is possible.

The male-specific mHag H-Y – cellular recognition

The involvement of H-Y (at that time called Y-factor) in homograft rejection had been postulated by Eichwald & Slimser (17) in 1955. The term H-Y antigen was introduced by Billingham & Silvers (18) since the Y-factor is a transplantation antigen, determined by a histocompatibility gene, comparable in all respects to the antigens responsible for homograft rejection.

In vitro immune response against the human-male specific histocompatibility antigen H-Y was detected in a multi-transfused female aplastic anemia patient. She received, after antithymocyte globulin (ATG) pretreatment, a bone marrow (BM) graft, donated by her HLA-genotypically identical male sibling. In vitro analysis of the post-transplant peripheral blood lymphocytes (PBLs) of the female patient (HLA phenotype: HLA-A2, A2, B44, B60, Cw3, Cw5, DR4, DRw6) showed unambiguously strong CTL responses specific for male HLA-A2-positive target cells (8, 9). Whether the H-Y-specific CTLs actually mediated the allograft rejection, we do not know. It must be remarked, however, that most probably the female patient, who was suffering from severe aplastic anemia, had been sensitized to the H-Y antigen prior to transplantation through multiple blood transfusions and pregnancies. Interestingly, the anti-H-Y response in the latter patient appeared broader than the HLA-A2-restricted CD8 CTL clones. We isolated two CD4 cytotoxic and proliferative H-Y-specific clones one restricted via HLA-A2 and the other one recognized an H-Y T-cell epitope in association with HLA-B60 (Table 1) (19).

Although in our first case we could not formally prove that the H-Y-specific CTLs actually mediated the rejection of the male BM allograft, some years ago we were confronted with a case with a fatal outcome in which anti-H-Y CTLs were most probably mainly responsible for BM graft failure. It concerned a multi-transfused female patient suffering from myelodysplasia after treatment for Hodgkin’s disease. In vitro analysis prior to BMT demonstrated the presence of HLA-A1-restricted anti-H-Y CTLs (Table 1 UPN 4). Since the father appeared to be the only HLA-compatible related donor, he was the obvious choice (despite the presence of the patient’s pretransplant anti-H-Y CTLs). Notwithstanding intensive pretransplant immunosuppressive treatment, there was no recovery of the BM hematopoietic function (20). In view of the latter case, expression of mHag on hematopoietic stem cells (HPCs) might be relevant in presensitized patients receiving an mHag-positive T-cell-depleted marrow graft. For that purpose, the expression of the male-specific antigen H-Y was studied for its expression on HPCs. It became clear that, indeed, H-Y is expressed on CFU-GEMM, CFU-GM and BFU-E (21). The assumption that H-Y sensitization can readily occur following blood transfusion and organ transplantation is based on our subsequent observations. As shown in Table 1, PBLs derived from three additional cases showed, after in vitro restimulation with HLA-identical male cells, exactly the same phenomenon, namely HLA-restricted (A1, -A2 and/or -B7) anti-H-Y CTL activity. In one patient (Table 1 UPN 5), the H-Y-specific HLA-B7-restricted cytotoxicity was detected shortly after a kidney donated by an HLA-identical male sibling acutely rejected (unpublished observation). In circumstances similar to ours, other investigators have also

<table>
<thead>
<tr>
<th>UPN</th>
<th>PBLs derived</th>
<th>CD8 CTL</th>
<th>CD4 CTL & Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post BMT</td>
<td>HLA A2 H Y</td>
<td>HLA A2 H Y</td>
</tr>
<tr>
<td>2</td>
<td>After multiple transfusions</td>
<td>HLA A2 H Y</td>
<td>HLA A2 H Y</td>
</tr>
<tr>
<td>3</td>
<td>After multiple transfusions</td>
<td>HLA B7 H Y</td>
<td>HLA B7 H Y</td>
</tr>
<tr>
<td>4</td>
<td>After multiple transfusions</td>
<td>HLA A1 H Y</td>
<td>HLA A1 H Y</td>
</tr>
<tr>
<td>5</td>
<td>Post renal transplant</td>
<td>HLA B7 H Y</td>
<td>HLA B7 H Y</td>
</tr>
</tbody>
</table>

*unique patient number all patients are female

* peripheral blood lymphocytes

caused by the disparity of the products of the minor H systems, i.e. histocompatibility antigens other than those coded for by the MHC.

The description by Zinkernagel & Doherty (5) of the classical immunological phenomenon of the MHC-restricted recognition of viral antigens by T cells appeared also to apply to the recognition of non-MHC alloantigens. In the seventies, murine (6, 7) and human (8, 9) mHag were defined in vitro by MHC-restricted T cells.

In man, mHag studies have predominantly been performed in the HLA-identical BMT setting. The efforts of several investigators have led to the identification of a relatively small number of mHag. Both cytotoxic T cells (CTLs) and T-helper (Th) cells recognizing mHag in a classical MHC-restricted fashion were described. MHC molecules serve as templates (10) for peptides derived from intracellularly processed proteins (11, 12). This knowledge was essential for the prediction that mHag are naturally processed fragments of intracellular proteins that associate with MHC molecules (13, 14). Indeed, this supposition was recently verified both for murine (15) and human mHag (16).

This review summarizes our current knowledge of the impact of mHag on the outcome of BMT and discusses the putative clinical applicabilities now that biochemical identification of mHag is possible.

The male-specific mHag H-Y – cellular recognition

The involvement of H-Y (at that time called Y-factor) in homograft rejection had been postulated by Eichwald & Slimser (17) in 1955. The term H-Y antigen was introduced by Billingham & Silvers (18) since the Y-factor is a transplantation antigen, determined by a histocompatibility gene, comparable in all respects to the antigens responsible for homograft rejection.

In vitro immune response against the human-male specific histocompatibility antigen H-Y was detected in a multi-transfused female aplastic anemia patient. She received, after antithymocyte globulin (ATG) pretreatment, a bone marrow (BM) graft, donated by her HLA-genotypically identical male sibling. In vitro analysis of the post-transplant peripheral blood lymphocytes (PBLs) of the female patient (HLA phenotype: HLA-A2, A2, B44, B60, Cw3, Cw5, DR4, DRw6) showed unambiguously strong CTL responses specific for male HLA-A2-positive target cells (8, 9). Whether the H-Y-specific CTLs actually mediated the allograft rejection, we do not know. It must be remarked, however, that most probably the female patient, who was suffering from severe aplastic anemia, had been sensitized to the H-Y antigen prior to transplantation through multiple blood transfusions and pregnancies. Interestingly, the anti-H-Y response in the latter patient appeared broader than the HLA-A2-restricted CD8 CTL clones. We isolated two CD4 cytotoxic and proliferative H-Y-specific clones one restricted via HLA-A2 and the other one recognized an H-Y T-cell epitope in association with HLA-B60 (Table 1) (19).

Although in our first case we could not formally prove that the H-Y-specific CTLs actually mediated the rejection of the male BM allograft, some years ago we were confronted with a case with a fatal outcome in which anti-H-Y CTLs were most probably mainly responsible for BM graft failure. It concerned a multi-transfused female patient suffering from myelodysplasia after treatment for Hodgkin’s disease. In vitro analysis prior to BMT demonstrated the presence of HLA-A1-restricted anti-H-Y CTLs (Table 1 UPN 4). Since the father appeared to be the only HLA-compatible related donor, he was the obvious choice (despite the presence of the patient’s pretransplant anti-H-Y CTLs). Notwithstanding intensive pretransplant immunosuppressive treatment, there was no recovery of the BM hematopoietic function (20). In view of the latter case, expression of mHag on hematopoietic stem cells (HPCs) might be relevant in presensitized patients receiving an mHag-positive T-cell-depleted marrow graft. For that purpose, the expression of the male-specific antigen H-Y was studied for its expression on HPCs. It became clear that, indeed, H-Y is expressed on CFU-GEMM, CFU-GM and BFU-E (21). The assumption that H-Y sensitization can readily occur following blood transfusion and organ transplantation is based on our subsequent observations. As shown in Table 1, PBLs derived from three additional cases showed, after in vitro restimulation with HLA-identical male cells, exactly the same phenomenon, namely HLA-restricted (A1, -A2 and/or -B7) anti-H-Y CTL activity. In one patient (Table 1 UPN 5), the H-Y-specific HLA-B7-restricted cytotoxicity was detected shortly after a kidney donated by an HLA-identical male sibling acutely rejected (unpublished observation). In circumstances similar to ours, other investigators have also
Table 2. Identification of human mHag

<table>
<thead>
<tr>
<th>Restriction molecule</th>
<th>mHag</th>
<th>Peptide (amino acids)</th>
<th>Chromosomal location</th>
<th>Origin function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA B7</td>
<td>H Y</td>
<td>SPSVDKARAE (11 AA)</td>
<td>Y</td>
<td>SMCY, presently unknown</td>
</tr>
<tr>
<td>HLA A2.1</td>
<td>H Y</td>
<td>FIDSYICQV (9 AA)</td>
<td>Y</td>
<td>SMCY, non filamentous class I myosin involved in cell locomotion and organelle transport</td>
</tr>
<tr>
<td>HLA A2.1</td>
<td>HA 2</td>
<td>YIGEVLVSV (9 AA)</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

*postulated origin based on homology of 7 out of 9 AA

described the presence of HLA-restricted H-Y-directed cytotoxicity (22–24)

To elaborate on the function of the antigen-presenting molecule as well as on the antigen recognized, in vitro studies were carried out with HLA-A2 “variant” molecules and abnormal chromosomal sex patterns, respectively. The analysis of the epitopes on the HLA-A2 molecule required for cellular recognition of the H-Y antigen led to the observations that alloimmune HLA-A2-specific CTLs (25, 26) as well as HLA-A2-restricted H-Y-specific CTLs (27) can distinguish between different HLA-A2 molecules. Combined investigations (resulting from a collaborative effort) of the HLA-A2-subtype molecules at the functional level demonstrated that amino acid changes at position 43 and in the residues 145–157 (i.e., cellularly defined subtypes HLA-A2.2 and HLA-A2.3) lead to the loss of epitope(s) necessary for associative recognition of the H-Y antigen by HLA-A2-restricted CTLs (27). Interestingly, a single amino acid change from phenylalanine to tyrosine at position 9 in the heavy chain of the HLA-A2 molecule (i.e., cellularly defined subtype HLA-A2.4) did not affect the recognition of H-Y by HLA-A2-restricted CTLs (27). These analyses, carried out well before the crystal structure of HLA-A2 became available, led us to postulate crucial MHC/peptide-binding sites as well as to distinguish harmful from irrelevant amino acid changes in the HLA-A2 molecule. The identification of the HLA-A2-binding H-Y peptide (see below) together with the availability of the HLA-A2 crystal structure ensure that the postulated MHC/peptide-binding sites can now be verified.

The function and the chromosomal location of the histocompatibility antigen H-Y were also sought. We studied lymphocytes from individuals with a discrepancy between the karyotype and phenotypic sex. Besides a clear positive reaction with the cells of an XY female, the H-Y-specific CTLs showed no reactivity when analyzed against XX males (29). Examination of sex-reversed humans by combined analyses of different sets of Y-DNA probes and H-Y-specific CTLs revealed that the gene for H-Y maps to the long arm or centromeric region of the human Y chromosome (30), thereby separating the H-Y gene from the testis-determining factor (TDF) locus. In additional studies, it could be shown that a loss of spermatogenesis did not correlate with absence of the mHag H-Y CTL recognition, thereby separating the azoospermia factor (AZF) locus from the locus coding for the mHag H-Y (31). Extensive deletion-mapping studies using specific DNA markers revealed that the H-Y antigen, as determined by our HLA restricted H-Y-specific CTL clones, maps to a portion of deletion interval 6 on the long arm of the human Y chromosome (32, 33).

The male-specific mHag H-Y—biochemical identification

Being among the H-Y “searchers” since 1976, we were challenged to identify the human mHag H-Y. The mHag-specific T-cell clones have been used for the biochemical identification of the H-Y peptides. The biochemical isolation procedure, i.e., affinity chromatography combined with micropipillary reversed-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (34), was successfully used for the identification of the mHag peptides. The H-Y antigen presented by the HLA-B7 molecule was the first one described (35) (Table 2). The HLA-B7-restricted H-Y T-cell epitope was identified as an 11-residue peptide derived from the human homologue of the selected mouse cDNA on the Y (Smcy) gene (see below) encoded on the Y chromosome (35).

The genetic mapping of the mouse Y chromosome has suggested between two and five distinct loci encoding H-Y antigens (36). However, a murine H-Y epitope restricted by H-2K has also been shown to be derived from the murine Smcy protein (37). The demonstration that two H-Y epitopes from either mouse or human are derived from the same protein makes SMCY the prime target in searching for other H-Y epitopes. Therefore, we set out to identify the H-Y T-cell epitope presented by the HLA-A2 molecule. Indeed, the H-Y peptide recognized by our HLA-A2-restricted T-cell clones also originates from the SMCY protein (Table 2) (38). Two HLA-A2-restricted H-Y-specific T-cell clones were used in this study
Fig. 1. Cytotoxic and proliferative HLA-A2 H-Y peptide-specific responses. For both responses, 10,000 responder cells and 50,000 female stimulator/target cells pulsed with various amounts of H-Y peptide are used. Effector/target ratios are 11:1 and 18:1 for IR35 and R416, respectively.

SI: Stimulation Index (measurement of proliferation)

(Table 1) a CD8 CTL clone (designated as IR35) and a CD4 cytotoxic and proliferative T-cell clone (designated as R416) (19). IR35 and R416 were derived from the same individual (Table 1, UPN1). Both clones recognize the 9-residue peptide FIDSYICQV (Fig 1) with significant cytolytic and proliferative responses. Interestingly, post-translation modification of this H-Y epitope significantly altered the recognition, especially of the CD4 H-Y T-cell clone. The latter clone clearly preferred the cystemylated form of the H-Y peptide, whereas the CD8 H-Y T-cell clone recognized both peptide forms equally well (38).

The importance of the SMCY protein as a major source of H-Y determinants was recently further underlined. Preliminary results from a collaborative study (Roosnek et al., manuscript in preparation) showed HLA-A2-restricted H-Y reactivity against one dominant H-Y epitope. 15 male-specific CTL clones isolated from 3 individuals recognized the same HPLC-purified peptide fraction. The latter clones all reacted with the FIDSYICQV synthetic peptide, earlier identified as the HLA-A2-restricted H-Y T-cell epitopes derived from SMCY (Table 2) (38).

Simmons et al. (39) observed that HLA-B27-presented peptides that are produced and recognized in B27-transgenic rats are not encoded by Smcy, even though the gene seems to be necessary for their generation. Hence, there is evidence for a trans-mediated effect of Smcy in giving rise to these peptides. Interestingly, additional murine studies demonstrated that H-Y peptides could be products of genes (other than Smcy) on the Y chromosome (40).

The SMCY was earlier reported by Agulnik et al. as a new mouse Y chromosome gene having its human homologue SMCY mapping to the same Qq deletion interval as the mHag H-Y-controlling locus (41). The latter authors demonstrated the evolutionary conservation of the Smcy gene by the isolation of Smcy homologous from human and horse genomic fragments (41). In view of the latter notion, we investigated whether the mHag are evolutionarily conserved between human and non-human primates. Indeed, human HA-1, HA-2, and H-Y peptides can be recognized on the cell surface of non-human primate cells transfected with human class I genes by our human HA-1-, HA-2-, and H-Y-specific class I-restricted CTL clones. Furthermore, the mH peptides could be eluted from HLA-A2 I molecules expressed on the transfected non-human primate cells. This implies that the human mH peptides have been conserved for at least 35 million years (42). Indeed, concurrent with our latter study, Kent-First et al. (43) demonstrated the expression of the SMCY gene in early primate development. Moreover, the SMCY gene was shown to be widely expressed (41, 43). This is in concordance with our previous mHag H-Y tissue distribution studies, wherein we demonstrated ubiquitous expression of the human mHag H-Y (44). The precise function of the SMCY gene is still not known. It is expressed very early in embryogenesis (41). SMCY is homologous to SMCX (located on the X chromosome) at the amino acid level at 84.4% (43). SMCY (and SMCX) proteins share significant sequence homology to retinoblastoma-binding protein suggesting that the SMCY gene may code for a transcription factor (43).

Table 3. No influence of an H-Y mismatch on GVHD. Results of H-Y typing according to the GVHD status in HLA-A1 and HLA-A2 donor/recipient pairs.

<table>
<thead>
<tr>
<th>Donor/recipient pairs</th>
<th>HLA A1</th>
<th>HLA A2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>male/male</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>female/female</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>male/female</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>female/male</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>not tested</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total pairs</td>
<td>28</td>
<td>22</td>
</tr>
</tbody>
</table>

The male-specific mHag H-Y – clinical relevance

It has been suggested that GVHD is more frequent in male recipients of marrow from female donors (45). This effect was seen primarily with female donors who had been pregnant or had received a transfusion (45). Indeed, the above-described H-Y responses (Table 1) were preceded by thorough in vivo sensitization events. However, a mismatch for H-Y between donor
Table 4. Characteristics of HLA class I-restricted mHag

<table>
<thead>
<tr>
<th>Restriction molecules</th>
<th>H-Y</th>
<th>HA 1</th>
<th>HA 2</th>
<th>HA 3</th>
<th>HA 4</th>
<th>HA 5</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mendelian segregation</td>
<td>A1 A2</td>
<td>87 B60</td>
<td>A2 A2</td>
<td>A1 A2</td>
<td>A2 A2</td>
<td>9 19 20 85 87</td>
<td></td>
</tr>
<tr>
<td>Phenotype frequency</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Tissue distribution</td>
<td>broad</td>
<td>limited</td>
<td>limited</td>
<td>limited</td>
<td>limited</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>TCR usage</td>
<td>variable</td>
<td>skewed</td>
<td>variable</td>
<td>not tested</td>
<td>not tested</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

#expression on hematopoetic and non hematopoietic cell lineages
#expression on hematopoetic cell lineages

and recipient, with the H-Y present in the male recipient and not in the female donor, did not lead to an increase in GVHD in our recent study (46). Table 3 summarizes the results of typing for H-Y according to the GVHD status in 50 HLA-A1- and 117 HLA-A2-matched donor-recipient pairs. Neither in the HLA-A1 nor in the HLA-A2 pairs is there a significantly increased frequency of GVHD in the sex mismatch (i.e., female donor/male recipient) combination.

The absence of an H-Y effect was observed earlier by Ramsay et al. (47). Also, in zero-mismatched living donor renal transplants, no H-Y effect could be demonstrated (48). Immunodominance amongst the mHag as well as absence of synergistic effects between CTLs and Th cells in mounting an efficient mHag immune response (as discussed below) may explain these apparently controversial reports.

The non-Y-linked mHag — mHag-specific T-cell subsets and GVHD

Besides the Y-linked mHag, one can assume that, as in the mouse, the human genome has an abundance of mH loci encoding proteins that generate mH peptides that are either processed via the MHC class I pathway or presented in the context of MHC class II. Both mHag-specific class I-restricted CTLs and class II-restricted Th cells are probably mediating GVHD in HLA-matched BM transplants. In the mouse, a variety of studies has been carried out to explore the identity and function of cells responsible for GVH reactions. After the initial experiments of Boak & Wilson (49), who showed that allogeneic lymphoid cell populations devoid of donor T cells do not induce GVHD, and those of Korngold & Sprent (50), who showed that, by removing mature T cells from the marrow, lethal GVHD across minor H barriers could be prevented, the question of which donor T-cell populations are involved in the induction of GVHD was largely surveyed in the murine model. The T-cell subsets initiating GVHD can differ for each strain combination (51, 52). It has also been reported that the T cells involved in acute GVHD were found to be different from the clones established during the chronic phase of the disease (53). Although CD8 T cells are often reported to be involved in murine GVHD models (50, 54), in some strain combinations CD4 T cells can also mediate GVHD (55, 56). Both T-cell subsets have the potential to cause GVHD (57, 58). In man, the presence of a reduced number of CD4 cells in the donor marrow inoculum appeared to be compatible with slow but sustained engraftment and a low incidence of serious acute GVHD (59). CD8 T-cell depletion in HLA-identical sibling transplants reduces the incidence of GVHD (60, 61). On the other hand, in vitro observed mHag-specific CTL responses did not necessarily correlate with the development of human GVHD either on the bulk or on the CTL precursor frequency level (62, 63). The same phenomenon was previously noticed in a murine GVHD model (64) and confirmed on the CTL precursor level as well (65).

Several reports have demonstrated the presence of anti-host mHag-specific CTLs in patients suffering from GVHD after HLA-genotypically identical BMT (62, 66–72). Also, class II-restricted anti-host CTLs with a CD4 phenotype were observed in a patient suffering from severe GVHD after allogeneic BMT (24). In addition to CTLs, in vitro studies reporting on host-directed Th cells have been described in patients having GVHD (67, 73–75). Van Els et al. (76) reported on the long-term kinetics of Th cells in response to host mHag in 16 patients and demonstrated that significant Th-cell activity in vitro correlates with clinical acute GVHD. These anti-host Th cells carry the CD4 phenotype and recognize mHag in the context of HLA-DR and -DP (77). Post-transplant host-directed Th-cell responses measured at the Th-cell precursor level correlate with GVHD (78). Prior to HLA-identical BMT, putative mHag-specific Th-cell precursor frequencies can be measured (79, 80). In addition to anti-host-reactive CD4 T cells, IL-2-secreting CD8 T cells are also detected prior to HLA-identical sibling BMT (81).
the patient's own pretransplant lymphocytes (83). Host-directed CTLs could be demonstrated in 6 out of 9 patients suffering from acute GVHD grade 2 or more. Furthermore, in 15 out of 16 patients with chronic GVHD, anti-host CTL activity was also observed. It is worth noting that such CTLs can be derived from either male or female patients suffering from different hematologic malignancies prior to BMT. Similar to the initial anti-host-specific CTLs HA-1 (as discussed above), we next endeavored to uncover the specificity of the target structures recognized by some of the anti-host CTLs (Table 4). Five (including HA-1) out of 21 anti-host CTL populations underwent comprehensive analyses at the population level as well as in families. Comparable to HA-1, anti-host CTLs derived from the second, third, fourth and fifth patient were found to be directed against mHag-designated HA-2, -3, -4 and -5, respectively, requiring self-HLA class I antigens for their recognition. These conclusions are based on the reaction patterns exhibited by CTLs HA-1 to HA-5 against a panel of N=100 unrelated healthy individuals.

The common denominator of HA-1-, 2-, 4- and -5-specific CTLs is the preferential use of the MHC class I restriction molecule HLA-A2 (Table 4). Whether this reflects the relatively high phenotype frequency of HLA-A2 (i.e., 49% in the Caucasian population) or suggests that HLA-A2 is optimally equipped to serve as the template for peptide presentation is unclear. According to the latter proposition, it is of interest to note that allelic differences exist in the interaction of MHC class I molecules with transporters associated with antigen processing (84). Among other HLA alleles, HLA-A2 shows a high affinity for TAP is required for translocation of cytosolic peptides, such as minor H peptides (84a, 84b). In addition, however, it is possible that TAP supports correct folding and loading of a subset of MHC class I molecules (84).

Table 4 also shows the results of the phenotype frequency analyses carried out for mHag HA-1 to HA-5. These studies revealed that some mHag, i.e., HA-1, HA-2 and HA-3, appeared frequently (69–95%), while others, i.e., HA-4 and -5, occurred with lesser (7–16%) frequencies in the healthy population (85). An analysis of their genetic traits demonstrated a Mendelian mode of inheritance (Table 4) (86). These four antigens can each be considered as the product of a gene with one allele expressing the detected specificity, and one or more alleles not expressing it. Although our family data did not provide sufficient information concerning linkage between the different mHag loci themselves and HLA, all our tests were compatible with the hypothesis that these loci are independent of each other and independent of HLA (86). The CTL clones listed in Table 4 were also used to analyze functional expression (i.e.
This mitochondrial Η antigen is a peptide derived from the amino terminus of the ND1 protein (15).

Proteins of (retrc) viral, foreign or self-origin located in ER, cytosol or any other organelle can give rise to peptides immunogenic to class I-restricted CTLs and can represent transplantation barriers (101-105). With respect to the non-Y-linked classical mHag, the mouse maternally transmitted antigen (Mta) was the first one identified at the molecular level (106). This mitochondrial H antigen is a peptide derived from the amino terminus of the ND1 protein (15).

The putative influence of known mHag disparities between HLA-identical BM donors and recipients on the development of GVHD has been retrospectively analyzed. Elkins et al (107) analyzed 67 pairs for incompatibility for mHag W1 in relation to GVHD. No influence of W1 on GVHD could be demonstrated because the number of W1 mismatches was too low (i.e., there was a high phenotypic frequency). The study by Behar et al (108) dealt with allelic differences between donor and recipient for the polymorphic adhesion molecule CD31. CD31 mismatches between BM donor and recipient are associated with an increased risk of severe GVHD grade 3 or 4 (P=0.004). The platelet-endothelial-cell adhesion molecule 1 (CD31) has a broad expression, and it is constitutively expressed on vascular endothelial cells, BM stem cells, platelets, and leukocytes (108). Interestingly, anti-CD31 monoclonal antibodies seemed to differentially recognize the allelic forms. No CD31-specific T-cell responses were reported, which separates this transplantation antigen from the classical ones described in man and rodents earlier. In a subsequent study comprising a large series of BM donor/recipient pairs, the postulated correlation between CD31 matches and occurrence of severe GVHD could not be confirmed (109).

We analyzed the influence of mHag HA-1, -2, 4 and -5 mismatches between HLA-identical BM donor/recipient pairs (i.e., BM donor mHag-negative and BM recipient mHag-positive) on the occurrence of acute GVHD grade 2 or more. The results in adult patients can be summarized as follows: a mismatch for HA-1 and/or HA-2, -4, -5 was significantly associated with an increased risk of severe GVHD grade 3 or 4 (109).

Table 6. Specificity analysis of mHag-specific CTL clones

<table>
<thead>
<tr>
<th>UPN</th>
<th>sex do/rec</th>
<th>CTL lines</th>
<th>no of clones analyzed</th>
<th>mHag specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>female/male</td>
<td>HA 1</td>
<td>7</td>
<td>HA 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>unknown</td>
</tr>
<tr>
<td>4</td>
<td>female/female</td>
<td>HA 4</td>
<td>8</td>
<td>HA 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>HA 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>unknown</td>
</tr>
<tr>
<td>5</td>
<td>male/female</td>
<td>HA 5</td>
<td>4</td>
<td>HA 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>HA 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Table 6. Specificity analysis of mHag-specific CTL clones

Patients who suffered from severe GVHD read-out is cell-mediated-lympholysis) of the mHag on various tissues and cells. Differential expression was observed some, e.g., H-Y, HA-3 and HA-4, are ubiquitously expressed, whereas the expression of other mHag, e.g., HA 1 and HA 2, is limited to cells of the hematopoietic lineage only (44). The additional information on the TCR usage for recognizing the MHC/HA-1 mHag ligand (88) will be touched upon in more detail later in this paper.

In circumstances similar to ours, several other investigators also described the cellular identification of more (yet a relatively small number) non-Y-linked mHag specificities (for an overview see (89)). The characteristics, as presented for H-Y and HA-1 to HA-5 (Table 4), are representative for other human mHag identified so far (24, 44, 71, 74, 77, 85, 86, 90-100).

Table 5 summarizes the general features presently known for human mHag: a) recognition by T cells in association with various MHC class I and MHCl class II molecules, b) occurrence with variable phenotype frequencies in the random (though HLA-restricted) population, c) segregation in a Mendelian fashion, and d) either limited or ubiquitous cell and tissue expression. It is important to note that these conclusions are drawn from the outcome of functional in vitro cellular assays. It is almost superfluous to state that confirmative studies on the molecular level need to be carried out.

The non-Y-linked mHag — clinical relevance

Four alleles have been detected at one locus, each different by a single amino acid (106). The first human non-Y-linked mHag biochemically identified was HA-2 (16). The HLA-A2-bound HA-2 peptide most probably originates from an as yet unidentified member of the non-filament-forming class I myosin family, a large family of proteins that are involved in cell locomotion and organelle transport (Table 2). At present, we are investigating whether, indeed, a class I myosin gene is the source of the HA-2 peptide. Identification of the HA-2 gene will provide the basis for its differential expression in the population (Table 4). Its allelic polymorphism can be a result of presentation of homologous but non-identical peptides, a failure to present a peptide because it has lost its MHC-anchor residue or polymorphism in the class I antigen-processing system. The amino acid sequence of the HA-1 mHag has just been elucidated as well (J. M. M. Den Haan et al, manuscript in preparation).

The non-Y-linked mHag — biochemical identification

Proteins of (retro) viral, foreign or self-origin located in ER, cytosol or any other organelle can give rise to peptides immunogenic to class I-restricted CTLs and can represent transplantation barriers (101-105). With respect to the non-Y-linked classical mHag, the mouse maternally transmitted antigen (Mta) was the first one identified at the molecular level (106). This mitochondrial H antigen is a peptide derived from the amino terminus of the ND1 protein (15).
Table 7.
A. HA-1 effect analyzed on GVHD

<table>
<thead>
<tr>
<th></th>
<th>Adults and Children</th>
<th>Adults</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GVHD no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>HA 1 #</td>
<td>2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>HA 1 +</td>
<td>50</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

Odds ratio 5.4
95% confidence interval 1.0 to 56.3
P value (2 sided) 0.005

B. No subdominant H-Y effect on GVHD analyzed in 102 HA-1-matched patients

<table>
<thead>
<tr>
<th></th>
<th>GVHD no</th>
<th>yes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H Y #</td>
<td>37</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>H Y +</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Odds ratio 0.95
95% confidence interval 0.35 to 2.55
P value (2 sided) 1.000

The fact that a significant number of BM transplants between HLA-identical siblings (with optimal immunosuppression) do not lead to GVHD suggests a hierarchy in mHag immunogenicity. Two sets of our data are indicative for mHag immunodominance. Firstly, CTL clones reactive to the same mHag HA-1 were obtained from peripheral blood lymphocytes of 3 individuals each transplanted across a multiple and probably distinct mH barrier (Table 6) (85). Secondly, in the study mentioned earlier of 148 BM HLA-identical donor/recipient pairs, investigating the influence of mHag HA-1 to HA-5 mismatching on the development of GVHD, a mismatch of only HA-1 was significantly associated with GVHD in adult patients (46).

The hierarchy in mHag immunodominance also implies the existence of subdominant mHag, as exemplified for murine mHag previously (113). We observed the absence of an H-Y mismatch effect (discussed above under the heading The male-specific mHag H-Y - clinical relevance) (Table 3). In view of the existence of subdominant mHag, we analyzed our mHag disparities and human GVHD data by omission of the dominant HA-1 antigen (Table 7). No H-Y effect could be demonstrated in 102 HA-1-matched BM donor/recipient pairs (Table 7B). It is of interest to note that Wettstein (124) reported on the immunodominant behavior of an autosomal murine mHag H-3 over the H-Y antigen in the generation of CTLs.

How to become a "wicked" minor

We now know that mHag are naturally processed proteins of peptidic nature. Any protein, whether it is cellular- or membrane-associated, can give rise to mH peptides. To become a "wicked" minor, a condition sine qua non is that the minor protein source must possess some degree of polymorphism. The immunogenicity of a potentially large number of mHag is restricted by various factors. Some of the possible factors underlying the mHag immunodominance, illustrated by as yet very little information on human major minors, will be discussed below.

The synergistic effects of MHC class I mHag-specific CTLs and MHC class II mHag-specific Th cells promoting an effective mH immune response

In the murine model, an early report of an effective H-Y response brought about by H-Y-specific CTLs and Th cells was published by Von Boehmer & Haas (125). Genetic analysis of loci encoded with the murine H-3 and H-4 regions has revealed that the existence of separate loci encoding Th-cell and CTL mH epitopes was required to induce a CTL response in vivo.
indicating the relevance of Th-CTL cell collaboration in the anti-H3 and anti-H4 immune response (126, 127) With regard to the murine mH-H3 complex, recent genetic linkage studies demonstrated that the CTL and Th epitope are encoded by distinct genes, the H3a (encoding the CTL epitope) and the H3b (encoding the Th epitope) map approximately 12 cM apart on the mouse chromosome 2 (128) Nonetheless, CTL and Th epitopes can also be encoded by the same gene From a melanoma patient, CD4 T cells isolated from tumor-infiltrating lymphocytes recognized an immunodominant epitope coded for by a gene which also encodes class I CD8 T-cell epitopes (129) As discussed above (under the heading mHag-specific T-cell subsets and GVHD), it is likely that both CTL and Th-cell subsets play a role in the development of human GVHD We analyzed 20 patients to determine whether anti-host CTL and Th-cell responses occurred simultaneously at different times post-HLA-identical sibling BMT Table 8 shows anti-host CTL and Th-cell responses in 10 out of 13 patients with severe GVHD On the contrary, in the "no GVHD" group of patients, both CTL and Th-cell responses were detectable in only 2 out of 7 patients analyzed These preliminary results support the notion that CTL and Th mHag epitopes collaborate in the anti-host GVHD immune responses in man as well Naturally, identification of the CTL and Th mHag involved in these responses needs to be determined

T-cell repertoire dependency
Immunodominance may also depend on the available TCR repertoire A single murine class I allo peptide appeared dominant in Vß8-positive but not Vß8-negative mouse strains, indicating that the dominant peptide recognition was dependent upon Vß8-positive T cells (130) We observed by analyzing TCR usage of 12 clones derived from 3 individuals (Table 6 UPN 1, 4, 5) that the TCRß chains all used the TCRßV6S9 gene segment and showed remarkable similarities within the N-D-N regions (Table 4) (88)

Peptide affinity
One of the mechanisms of immunodominance also resides at the level of peptide/MHC-binding properties The affinity of MHC class I-peptide binding is crucial for the outcome of an immune response, even in the situation of subdominant epitopes (131) Murine mHag T-cell responses appeared to be influenced by differential binding of the minor peptide to class I molecules (132) Using an equilibrium-binding assay to measure relative affinities, the mHag HA-2 and the H-Y peptide are classified among the highest affinity naturally processed peptides that have been identified to date The concentration of the HA-2 peptide as competitor peptide that resulted in 50% inhibition of the iodinated peptide binding (IC50) was 6.7 nM, and the IC50 value for H-Y was 16 nM (Table 9), the IC50 values for other published peptides vary from 11–214 nM for HLA-A2 (133, 134)

Table 9 also illustrates the half-maximal lysis values of the human mHag peptides HA-2 and H-Y The synthetic peptide concentrations required to reconstitute 50% specific CTL recognition are low compared to the values of the T-cell epitopes reported earlier (135) This reflects high affinity of the peptide for MHC or high affinity of the T-cell receptor

Production of cytokines
Antigen presentation by professional antigen-presenting cells (APCs) accounts for the primary initiation process of GVH pathogenesis Cytokines do play a significant role in both acute and chronic GVHD (see (136) for a comprehensive review) In a murine model, IL-1α has been postulated as a critical effector molecule in mHag-directed GVHD (137) Antibodies to TNFα could completely prevent lethal GVHD induced in mH-disparate mice (138) Also, the GVHD-inducing potential of some mH antigen-specific T-cell clones has been shown to correlate with the levels of TNFα clones produced in vitro (139) T-cell-derived lymphokines (IL-3, IL-4, and CSF) are produced in vivo and in vitro in response to mHag The properties of these produced activities are similar to those that responded to irradiated syngeneic cells, but there was a difference in the time course of the lymphokine production between GVH mHag-disparate mice and the syngeneic transplant mice (140)

In man, by means of a GVHD-predictive assay, the in vitro GVH reactivity to host skin tissue was found to correlate with the levels of TNFα and INFγ secreted into the supernatant of HLA-matched patient/donor mixed lymphocyte cultures (141)

Tissue distribution
Presentation of immunogenic MHC/mH peptide complexes by professional APCs is essential for induction of anti-host cellular immune responses In this regard, it is worthwhile mentioning that the human mHag HA-1, which is shown to be significantly associated with GVHD (as discussed earlier), is clearly

Table 8. Synergistic effects of mHag-specific CTLs/Th cells on GVHD

<table>
<thead>
<tr>
<th>Ant host T-cell activities</th>
<th>GVHD status</th>
<th>no</th>
<th>acute</th>
<th>> 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL and Th</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTL alone</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th alone</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no CTL no Th</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
expressed on the APCs, i.e., dendritic cells (DCs) and Langerhans cells (LCs) (142). The latter BM-derived APCs are most potent in inducing alloreactive T-cell responses (143, 144). The conditioning regime prior to BMT will eliminate most of the recipient's hematopoietic cells, yet residual recipient cells including DCs can be present. Host LCs can persist for a long time after BMT (145).

Human mHag: new concepts for marrow transplantation and adoptive immunotherapy

The putative clinical potentiality of mHag is presently based upon in vitro results of functional and clinically related studies performed in the past. Bearing this restricted information in mind, three areas of clinical application are worthwhile mentioning (Table 10).

The utility of diagnostics in BM donor selection is self-evident. Several mHag are now biochemically identified. We are currently identifying the mH genes which will provide us with the mHag allelic counterparts. In the near future, molecular typing for mHag loci can be performed. Depending on how major the immunodominant minor turn out to be in the HLA-matched unrelated donor/recipient combinations, one may consider overruling a minor-major mismatch. The speculative proposal of the use of immunodominant mHag as GVHD prophylaxis is based upon putative immunomodulation of the GVHD response with mHag peptide analogues. Designing mHag peptide analogues which function as MHC or T-cell receptor antagonists might interfere with the harmful anti-host mHag-directed T-cell reactivities post-HLA-identical BMT. The presence of human mHag peptides in non-human primates (42) could serve as a translational model. MHC peptide antagonists will compete for MHC binding. Inhibition of secondary mixed lymphocyte reaction and prevention of murine GVHD across mH barriers by high-affinity class II binding peptides were recently demonstrated (146, 147). TCR peptide antagonists competing by their structural similarities for TCR engagements are probably more efficient (148). Whether or not a single TCR antagonist can cause significant inhibition of mH-directed T-cell responses is questionable. A major obstacle is the involvement of the various MHC molecules together with their respective mH allopeptides, not taking into account the possible subdominant mHag responses popping up. Nonetheless, it is worthwhile analyzing, once the major mH protein sources are available, whether at least the harmful mH anti-host responses can be eliminated. Two studies reporting on adequate inhibition of a CTL and a Th-cell response against HIV and influenza hemagglutinin, respectively, with TCR antagonist peptides (149, 150) are encouraging.

Induction of tolerance using mHag with broad tissue distribution

Achieving tolerance prior to transplant in mHag-negative BM donors to prevent GVHD and in mHag-negative BM recipients to prevent rejection would decrease the necessity for the use of pharmacological immunosuppression. Acquired tolerance for mHag after MHC-identical BMT does occur and has been reported in mouse and man (151–154). A common denominator in two of the latter reports (one murine study (152) and one human study (154)) was the involvement of ubiquitously expressed mHag. Induction of tolerance for mHag in immune mature adults prior to BMT requires comprehensive analysis. A nice example of induction of transplantation tolerance for mHag was recently demonstrated by Davies et al. (155). Life-long tolerance for multiple murine mHag was achieved as a result of suppression via linked recognition.

Adoptive immunotherapy of leukemia

Last but not least, immunotherapy for leukemia using CTLs specific for mHag peptide for the treatment of refractory, residual or relapsed leukemia is most promising. The mHag with restricted tissue distribution (e.g., HA-1 and HA-2) are the candidates for adoptive immunotherapy of leukemia. This proposal is supported by three sets of important clinical results. First, adoptive immunotherapy of buffycoat mononuclear cells and IFNα induced cytogenetic remissions in relapsed CML patients after allogeneic BMT (156–159). However, this donor
leucocyte therapy is associated with a significant occurrence of marrow aplasia and GVHD (160). In addition, donor leucocyte infusions for relapsed ALL and AML patients are far less effective (160, 161). Second, adoptive immunotherapy with donor Epstein-Barr virus (EBV)-specific CTLs eradicated EBV-associated post-transplant lymphoproliferative disease without causing GVHD (162). Third, adoptive transfer of cytomegalovirus-specific T-cell clones were effective in restoring immunity (163).

The advantage of using mHag-specific CTLs as adoptive immunotherapy of leukemia lies in their restricted and specific target cell damage. Thus, we will take advantage of three of the known characteristics of human mHag (Table 5), i.e. 1) MHC-restricted recognition by T cells, 2) variable phenotype frequencies, i.e. mHag polymorphism, and 3) restricted tissue distribution. Moreover, since mHag are clearly expressed on circulating leukemic cells and clonogenic leukemic precursor cells of both myeloid and lymphoid origin (164, 165), both types of leukemias can be targeted. We will generate mHag peptide CTLs ex vivo from mHag-negative BM donors for mHag-positive patients. Our preliminary results are promising. We prepared peptide-specific CTL clones from an HLA-A2-positive mHag HA-2-negative healthy blood donor by pulsing autologous APCs with HA-2 synthetic peptide. Proliferating clones were expanded and tested for specific cytotoxic activity against mHag HA-2-positive and mHag HA-2-negative EBV-LCLs and HA-2-negative EBV-LCLs loaded with the HA-2 peptide and against mHag HA-2-positive leukemic cells. The results of one mHag peptide-induced CTL clone are shown in Fig. 2. The results are compared with those obtained with our pre-existing (in vivo induced) mHag HA-2-specific CTL clone assayed against the same target cells.

Upon transfusion (either pre-BMT as part of the conditioning regimen or post-BMT as adjuvant therapy), the mHag peptide-specific CTLs will eliminate the mHag-positive patient’s leukemic cells and, if of the patient’s origin, also the patient's hematopoietic cells but will spare the patient’s non-hematopoietic cells. If necessary, subsequent mHag negative donor BMT will restore the patient’s hematopoietic system. A universal option would be to generate “prefab” mHag peptide-specific CTLs by using mHag-negative healthy blood donors with frequent HLA-homozygous haplotypes. Patients who are HA-1- or HA-2-positive (and their BM donors HA-1- or HA-2-negative) and who match the HLA typing of the CTL donor can be treated with these “ready to be used” allo HA-1 or HA-2 peptide-specific CTLs. Transduction of these CTLs with a suicide gene makes elimination of the CTLs possible in case adverse effects occur. Future research should also focus on the possible need for mHag Th epitopes for optimal therapeutic efficacy.

Table 10. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy

<table>
<thead>
<tr>
<th>Immunodominant mHag</th>
<th>BM donor selection</th>
<th>GVHD prophylaxis/treatment</th>
<th>mHag with broad tissue distribution</th>
<th>Induction of tolerance</th>
<th>mHag with restricted tissue distribution</th>
<th>Adoptive immunotherapy of leukemia</th>
</tr>
</thead>
</table>

Immunological Reviews 157/1997

45 Report from the International Bone Marrow Transplant Registry. Bone Marrow Transplant 1989, 4: 221–228

65 Hamilton BL. Absence of correlation between cytolytic T lymphocytes and lethal murine graft versus-host disease in response to minor histocompatibility antigens. Transplantation 1984, 38: 357–360

73 Marjy EAF, et al. Multiple minor histocompatibility antigen disparities between a recipient and four HLA identical potential sibling donors for bone marrow transplantation. Hum Immunol 1993, 37: 221–228

74 Kasten-Sportes C, Masset M, Varin F, Deverge A, Gluckman E. Function and distribution of T lymphocytes in patients during graft versus-host disease following allogeneic bone marrow transplantation. Transplantation 1989, 47: 621–624

75 Reussmaolen NL, Kersey JH, Bach FH. Detection of HLA restricted anti minor histocompatibility antigen(s) reactive cells from skin GVHD lesions. Hum Immunol 1984, 1: 249–257

77 Van Ems C, Zandvoort E, Jacobs N, Bakker A, Van Roost JJ, Goulmy E. Graft versus host disease associated T helper cell responses specific for minor histocompatibility antigens are mainly restricted by HLA DR molecules. Bone Marrow Transplant 1990,5 365–372

Blood 1993,81 841–848

80 Schwarzer AP, Jiang JP, Barre« JM, Batchelor JR, Goldman JM, Lechler RI. Helper T lymphocyte precursor (HTLP) frequency predicts the occurrence and severity of acute GVHD and survival after allogeneic BMT in both recipients of genetically HLA identical sibling (SIB) and phenotypically HLA-matched unrelated donor (MUD) marrow.

Lancet 1993,341 203–205

81 Theobald M, Bunjes D. Pretransplant detection of human minor histocompatibility antigen specific naive and memory interleukin-2 secreting T cells within class I major histocompatibility complex (MHC)-restricted CD8+ and class II MHC restricted CD4+ T cell subsets.

Blood 1993,82 298–306

82 Goulmy E, Grata E, Blakesley E, Zwaan FE, Van Roost JJ. A minor transplantation antigen detected by MHC restricted cytotoxic T lymphocytes during graft-versus-host disease.

Nature 1983,302 159–161

Berlin: Springer-Verlag, 1996 p 353–359

J Immunol 1996,156 3196–3206

84a Momburg F, et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation.

Nature 1992,360 174–177

84b Goulmy E. Minor histocompatibility antigen matching actual fact or wishful thinking?

Bone Marrow Transplant 1995,15 59–62
111 Johnson LJ, Bailey DW, Mobreaten LE Antigenic competition between minor (non-H-2) histocompatibility antigens Immunogenetics 1981,13 451-455

112 Wettstein PJ, Bailey DW Immunodominance in the immune response to ‘multiple’ histocompatibility antigens Immunogenetics 1982,16 47-82

113 Wettstein PJ Immunodominance in the T cell response to multiple non-H-2 histocompatibility antigens II Observation of a hierarchy among dominant antigens Immunogenetics 1986,24 24-31

115 Korngold R, Wettstein PJ Immunodominance in the graft vs-host disease T cell response to minor histocompatibility antigens J Immunol 1990,145 4079-4088

117 Yen L, Poisier G, Neth O, Huian JJ, Totty NF, Staus HJ Few peptides dominate cytotoxic T lymphocyte responses to single and multiple minor histocompatibility antigens Int Immunol 1993,5 1003-1009

119 Wolpert E, Frankson L, Karre K, Domnan- and cryptic antigens in the MHC class I restricted T cell response across a complex minor histocompatibility barrier analysis and mapping by elution of cellular peptides Int Immunol 1995,7 919-928

120 Nevala WK, Wettstein PJ The preferential cytolitic T lymphocyte response to immunodominant minor histocompatibility antigen peptides Transplantation 1996,62 283-291

124 Wettstein PJ Immunodominance in the T cell response to multiple non-H-2 histocompatibility antigens III Single histocompatibility antigens dominate the male antigen J Immunol 1986,137 2073-2079

126 Davis AP, Roopenden DC Complexity at the mouse minor histocompatibility locus H-4 Immunogenetics 1990,31 7-12

127 Roopenden DC, Davis AP, Christianson GJ, Mobreaten LE The functional basis of minor histocompatibility loci J Immunol 1993,151 4595-4605

128 Zuberi AR, Nguyen HQ, Aumann HJ, Taylor BA, Roopenden DC A genetic linkage map of mouse chromosome 2 extending from thrombopoiesis to paired box gene 1, including the H3 minor histocompatibility complex Genomics 1996,33 75-84

129 Topalian SL, et al Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene Proc Natl Acad Sci USA 1994,91 9461-9465

130 Connolly JM The peptide p2Ca is immunodominant in allogeneic reaction of H-2b class I restricted T cell clones m dendritic cells Proc Natl Acad Sci USA 1994,91 11482-11486

131 Chen W, Khalil S, Pecquen J, Macguil E, McCluskey J Determination of secondary anchor selection of major histocompatibility complex class I restricted antigenic peptides is explained by class 1 peptide affinity and is strongly influenced by non-dominant anchor residues J Exp Med 1994,180 1471-1483

133 Chen Y, et al Naturally processed peptides longer than nine amino acid residues bind to the class I molecule HLA-A2.1 with high affinity and in different conformations J Immunol 1994,152 2874-2881

134 Ruppert I, Sidney J, Cevis E, Kubo R, Grely HM, Sette A Prominent role of secondary anchor residue in peptide binding to HLA A2.1 molecules Cell 1993,74 929-937

135 Cox AL, et al Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines Science 1994,264 716-719

136 Kneger A, Ferrara JLM Dysregulation of cytokine gene expression in graft versus-host disease J Hematother 1996,5 3-14

137 Abhyankar S, Gillland DG, Ferrara JLM Interleukin-1 in a critical effector molecule during cytokine dysregulation in graft versus host disease to minor histocompatibility antigens Transplantation 1993,56 1518-1523

138 Piquet PH, Graut GE, Allet B, Vassali P Tumor necrosis factor cachexia is a factor of skin and gut in the acute phase of GVHD J Exp Med 1987,166 1280-1289

141 Dickinson AM, et al Cytokine involvement in predicting test for graft versus-host disease in allogeneic bone marrow transplant recipients Bone Marrow Transplant 1994,13 65-70

144 Mechef CJM Dendritic cells as specialized antigen-presenting cells Res Immunol 1989,140 902-906

146 Schlegel PG, et al Prevention of graft-versus-host disease by peptides binding to class II major histocompatibility complex molecules Blood 1994,84 2802-2810

Goulmy Minor H antigens useful tools for marrow transplantation Immunological Reviews 157/1997 139
147 Schlegel PG, Abaroni R, Vaysburd M, Tran N, McDevitt HO, Chao NJ Inhibition of secondary MLR and prevention of murine graft-versus-host disease across minor histocompatibility barriers by peptides with high binding affinity for class II MHC molecules FASEB J 1994;8 478(Abstract)

150 Snoke K, et al The inhibition of different T cell lines specific for the same antigen with TCR antagonist peptides J Immunol 1993;151 6815-6821

151 Brochu S, Roy DC, Perreault C Tolerance to host minor histocompatibility antigens after allogeneic bone marrow transplantation J Immunol 1992;149 3135-3141

152 Brochu S, Baron C, Bélanger R, Perreault C Graft-host tolerance in bone marrow transplant chimeras Absence of graft-versus-host disease is associated with unresponsiveness to minor histocompatibility antigens expressed by all tissues Blood 1994;84 3221-3228

153 Irschick EU, et al Studies on the mechanism of tolerance for graft-versus-host disease in allogeneic bone marrow recipients at the level of cytotoxic T cell precursor frequencies Blood 1992;79 1622-1628

154 De Bueger M, Bakker A, Goulmy E Acquired tolerance for minor histocompatibility antigens after HLA identical bone marrow transplantation Int Immunol 1992;4 53-57

155 Davies JD, Leong LYW, Mellor A, Cobbold SP, Waldmann H T cell suppression in transplantation tolerance through linked recognition J Immunol 1996;156 3602-3607

156 Giralt SA, Champlin RE Leukemia relapse after allogeneic bone marrow transplantation Blood 1994;84 3603-3612

158 Hertenstein B, et al Interferon α and donor buffycoat transfusions for treatment of relapsed chronic myeloid leukemia after allogeneic bone marrow transplantation Transplantation 1993;56 1114-1118

159 Slavin S, Naparstek E, Nagler A, Ackerstein A, Kapelushnik J, Or R Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes Exp Hematol 1995;23 1553-1562

160 Antin JH Graft-versus-leukemia No longer an epiphenomenon Blood 1993;82 2272-2277

164 Van der Harst D, et al Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T cell clones Blood 1994;83 1060-1066