Anti-host cytotoxic T cells of bone marrow transplant recipients with or without graft-versus-host disease are equally sensitive to cyclosporin A

LM Liem, JT van Noort and E Goulmy
Department of Immunohematology and Blood Bank Leiden University Hospital The Netherlands

Summary:
It is generally accepted that cytotoxic T cells (CTLs) play an important role in the pathogenesis of graft-versus-host disease (GVHD). Nonetheless, anti-host CTLs can be observed in the peripheral blood of patients both with and without clinical signs of GVHD following HLA genotypically identical bone marrow transplantation. Thus we questioned whether a qualitative difference, such as a differential in vitro sensitivity to cyclosporin A (CsA), may exist between the anti-host CTLs, generated from these groups of patients post-bone marrow transplantation (BMT). We analyzed anti-host CTL precursors (CTLp) of patients without clinical signs of GVHD, of patients suffering from acute GVHD (grade II-IV) and of patients suffering from acute GVHD followed by chronic GVHD for their in vitro sensitivity to the inhibitory effects of CsA. The results obtained in a total of 20 patients revealed anti-host CTLp frequencies (CTLpf) post-BMT in all three groups of patients and addition of CsA in the tests resulted in approximately 60% inhibition of the CTLpf independent of the GVHD status of the patients. Thus, in view of the in vitro CsA sensitivity, no difference exists between the anti-host CTLs in patients with or without GVHD.

Keywords: CTL, CsA, LDA, GVHD

The results of clinical bone marrow transplantation (BMT) show that the selection of MHC identical sibling bone marrow donors does not guarantee avoidance of graft-versus-host disease (GVHD) and disease-free survival. It is believed that disparities of minor histocompatibility antigens (mHag) between donor and recipient constitute a potential risk factor for GVHD or graft failure. Over the last few years, evidence has accumulated that mHag specific helper T cells (Th) could be relevant to the pathogenesis of GVHD. In vitro studies reporting on host directed Th cells have been described in patients with GVHD. Van Els et al. reported on the long-term kinetics of Th cells in response to host mHag in 16 patients and demonstrated that significant Th cell activity in vitro correlated with clinical acute GVHD. Studies on the phenotype and function of T lymphocytes infiltrating the skin during GVHD following allogeneic HLA-identical BMT revealed CD8 cells, but predominantly CD4 cells. Most recent observations support the notion that mHag specific, IL-2 producing Th cells are likely to play a role in the pathogenesis of acute GVHD.

Several reports demonstrated the presence of anti-host mHag-specific cytotoxic T cells (CTLs) in patients suffering from GVHD after HLA genotypically identical BMT. However, the role of anti-host CTLs in the development of GVHD is still controversial. In our earlier studies, we demonstrated the presence of anti-host mHag-specific CTLs in the blood of patients undergoing GVHD. Although patients with chronic GVHD tended to develop higher and more persistent levels of anti-host CTL activity than those without GVHD, this finding was not statistically significant. Subsequent analyses at the quantitative level, determination of the anti-host specific CTL precursor frequency (CTLpf) revealed high frequencies of mHag specific CTLs early after BMT irrespective of the GVHD status of the patient. In vitro data in support of a role of CTLs in GVHD in man were provided by Kaminski et al. The frequency of recipient-reactive CTLp present in donor PBL before BMT was found to predict the severity of GVHD after BMT. However, the donor–recipient pairs in the latter study were unrelated HLA-matched, MLC-nonreactive individuals.

These results urged us to re-analyze the role of the anti-host CTLs in the development of GVHD. Earlier studies in kidney grafting showed that the in vitro resistance of recipients' lymphocytes for the immunosuppressive drug cyclosporin A (CsA) was correlated with a higher rate of graft loss. We therefore set out to investigate whether we could find differences in the in vitro CsA sensitivity of anti-host CTLs in patients with and without GVHD. Here we present the results obtained in 20 recipients analyzed at the anti-host CTLp level at different times after HLA genotypically identical BMT.
Material and methods

Patients

Twenty HLA genotypically identical donor–recipient pairs are included in this study. All except one patient (UPN 11) received non T cell-depleted bone marrow. All patients received cyclophosphamide (60 mg/kg/day × 2) and total body irradiation (8 Gy) as pretransplant conditioning regimen, except UPN 9 who received 4 × 50 mg/kg cyclophosphamide, 5 × 1 mg/kg busulphan and five treatments with Campath and UPN 11 who received 4 × 150 mg cyclophosphamide, 4 × 75 mg busulphan and five treatments with Campath. Methotrexate (MTX) and/or CsA (and in one case methylprednisone) was given as GVHD prophylaxis. The relevant clinical information is summarized in Table 1. Patients are divided into groups according to their GVHD status. The ‘no GVHD’ group consists of patients without GVHD or with acute GVHD grade I (n = 7). The ‘acute GVHD’ group consists of patients with acute GVHD grade II–IV (n = 7) and the ‘chronic GVHD’ group consists of patients who suffered from chronic GVHD which was preceded by acute GVHD grade I or more (n = 6).

Blood samples

Heparinized blood samples were taken from the recipients before and at regular intervals after BMT and from their bone marrow donors. Peripheral blood leukocytes (PBL) were isolated by Ficoll-amidotrizoate density gradient centrifugation and cryopreserved in liquid nitrogen. A total of 61 samples post-BMT was used for analysis.

Cyclosporin A

CsA was a kind gift from Sandoz, Basel, Switzerland. It was dissolved at 1 mg/ml in ethanol. CsA was used in a final dilution of 50 ng/ml culture medium, corresponding to therapeutical levels, and was present during the whole culture period.

Limiting dilution analysis

Responder cells (RC) were PBL from the donor and PBL from the recipient at several dates after BMT. Seven concentrations of RC (range: 40 000–625 cells per well) were set up in round-bottom microtiter plates in the presence of 5000 irradiated (5 Gy) stimulator cells (SC) in a total volume of 200 μl RPMI 1640 medium supplemented with 10% pooled human serum and 20 U/ml rIL-2. Stimulator cells were Epstein-Barr virus transformed B cell lines (EBV-BLCL) of the recipient before BMT or of an unrelated individual. EBV-BLCL were used as SC because of the limited number of PBL of the recipients before BMT.20 Target cells were PBL stimulated with 1% PHA for 3 days and restimulated with irradiated (3 Gy) feeder cells once every week for 1 or 2 weeks. In this way a T cell line of each target was made to ensure sufficient target cells. Of each dilution, 18 wells were set up in two series: one series with and one without CsA in the culture medium. All responder–stimulator combinations of each patient were set up simultaneously and tested on the same day in the same experiment. After 5 days, 100 μl culture medium containing 20 U/ml rIL-2 was refreshed. At day 7, each well was tested for cytotoxicity against 5000 Europium-labelled21

Table 1 Relevant clinical data of the patients included in this study

<table>
<thead>
<tr>
<th>UPN</th>
<th>Sex (P/D)</th>
<th>Diagnosis</th>
<th>Conditioning</th>
<th>Prophylaxis</th>
<th>aGVHD (day)*</th>
<th>cGVHD</th>
<th>Survival (days)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F/M</td>
<td>AML-M4</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>0</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>3</td>
<td>M/M</td>
<td>AML-M1</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>0</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>4</td>
<td>M/F</td>
<td>AML-M2</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>0</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>5</td>
<td>M/F</td>
<td>AML-M3</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>0</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>18</td>
<td>F/R</td>
<td>ALL</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>0</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>16</td>
<td>F/M</td>
<td>AML-M4</td>
<td>Cy/TBI</td>
<td>CA</td>
<td>1(+42)</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>23</td>
<td>F/F</td>
<td>ALL</td>
<td>Cy/TBI</td>
<td>CA + MTX</td>
<td>1(+8)</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>20</td>
<td>M/F</td>
<td>AA</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>II(+14)</td>
<td>+175</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F/F</td>
<td>AML-M2</td>
<td>Cy/TBI</td>
<td>CA</td>
<td>II-III (+12)</td>
<td>0</td>
<td>+147</td>
</tr>
<tr>
<td>8</td>
<td>F/M</td>
<td>AML-M3</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>III (+54)</td>
<td>0</td>
<td>alive</td>
</tr>
<tr>
<td>9</td>
<td>M/M</td>
<td>NHL/AML-M4</td>
<td>CBE</td>
<td>CA</td>
<td>III (+17)</td>
<td>0</td>
<td>+107</td>
</tr>
<tr>
<td>17</td>
<td>M/M</td>
<td>AML-M1</td>
<td>Cy/TBI</td>
<td>CA</td>
<td>III (+11)</td>
<td>0</td>
<td>+137</td>
</tr>
<tr>
<td>22</td>
<td>M/F</td>
<td>AML-M4</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>III (+47)</td>
<td>0</td>
<td>+158</td>
</tr>
<tr>
<td>10</td>
<td>M/M</td>
<td>AML-M2</td>
<td>Cy/TBI</td>
<td>MP</td>
<td>II (+27)</td>
<td>severe</td>
<td>alive</td>
</tr>
<tr>
<td>11</td>
<td>M/F</td>
<td>CML</td>
<td>CBC</td>
<td>CA</td>
<td>II (+37)</td>
<td>severe</td>
<td>+243</td>
</tr>
<tr>
<td>12</td>
<td>F/F</td>
<td>CML</td>
<td>Cy/TBI</td>
<td>CA</td>
<td>II-III (+11)</td>
<td>0</td>
<td>mild</td>
</tr>
<tr>
<td>13</td>
<td>F/M</td>
<td>AML-M2</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>IV (+28)</td>
<td>severe</td>
<td>+397</td>
</tr>
<tr>
<td>14</td>
<td>F/M</td>
<td>AML-M4</td>
<td>Cy/TBI</td>
<td>MTX</td>
<td>II (+35)</td>
<td>mild</td>
<td>alive</td>
</tr>
<tr>
<td>15</td>
<td>F/F</td>
<td>AML-M4</td>
<td>Cy/TBI</td>
<td>CA</td>
<td>I (+17)</td>
<td>severe</td>
<td>alive</td>
</tr>
</tbody>
</table>

UPN = unique patient number, P/D = sex of patient (P) and donor (D), SAA = severe aplastic anemia, ALL = acute lymphoblastic leukemia, AML = acute myeloid leukemia with FAB classification, CML = chronic myeloid leukemia (chronic phase); NHL = non-Hodgkin lymphoma, Cy/TBI = cyclophosphamide and total body irradiation, CBE = cyclophosphamide, busulphan, Campath and T cell depletion, CBE = cyclophosphamide, busulphan and Campath, CA = cyclosporin A, MTX = methotretate, MP = methylprednisone.

―Day of onset of acute GVHD

*Survival: follow-up of patients still alive n ≥1 year post-BMT
target cells in the cell-mediated lympholysis (CML) test. EBV BLCL were never used as target cells to exclude the contribution of EBV antigen specific CTLp to the value measured.20–24 Wells were considered positive, when fluorescence exceeded the mean spontaneous release (18 wells containing no RC) plus 3 standard deviations (s.d.) 21

Statistical analysis

Frequencies of responding CTLp, their 95% confidence interval and the goodness of fit were calculated using the Jackknifed maximum likelihood method.25 The Mann-Whitney U test was used to compare the effect of CsA in the different patient groups.

Results

Twenty patients were divided into three groups according to their GVHD status. PBLs were isolated before and at different dates after HLA genotypically identical BMT and used to determine host directed CTLp of each patient in limiting dilution assays, with and without the addition of CsA to the test.

Figure 1 demonstrates three representative experiments of the CTLp without or without the addition of CsA measured in a patient without GVHD (UPN 4), in a patient with acute GVHD (UPN 8) and in a patient with acute GVHD followed by chronic GVHD (UPN 13). Independent of the occurrence of GVHD, the post-BMT anti-host CTLp increase from day 30 post BMT onwards, reach maximum levels around day 100 and decrease gradually thereafter. Figure 1 is also representative for our general finding that the CTLp are equally susceptible for the addition of CsA in the culture medium in the three groups of patients studied.

Figure 2 demonstrates 61 anti-host CTLp measured, with and without CsA in vitro, in a total of 20 patients post BMT. The mean CTLp of the "no GVHD" patients without addition of CsA in the medium is 178/106 PBL (range 6–870/106 PBL). The addition of CsA leads to strong inhibition of most CTLp (% inhibition = 56%, Table 2), although two out of seven patients still show a significant CTLp in the presence of CsA (>25/106 PBL). The mean CTLp in the presence of CsA is 78/106 PBL (range 0–68/106 PBL). Statistical analysis shows a significant inhibition of the CTLp by CsA present in the medium (P = 0.0138, Table 2).

In the "acute GVHD" group the mean CTLp without CsA present is 96/106 PBL (range 0–992/106 PBL). The CTLp found in the presence of CsA are mostly very low or absent (mean CTLp = 314/106 PBL, range 0–40/106 PBL), but also here two out of seven patients still show a significant CTLp. Three out of seven "acute GVHD" patients have a higher CTLp (>100/106 PBL) than "no GVHD" patients at at least one time point post-BMT, whereas the others do not differ in their CTLp. Statistical analysis shows that CsA in the medium causes a significant inhibition of the CTLp (% inhibition = 67%, P = 0.0187).

The mean CTLp of chronic GVHD patients is the highest of the three groups (mean = 161/106 PBL, range 0–1801/106 PBL). Three out of six "chronic GVHD" patients have higher CTLp than "no GVHD" patients at at least one time point post BMT. A majority of chronic GVHD patients (four out of six) has also a relatively high CTLp in the presence of CsA. The mean CTLp in the presence of CsA is 695/106 PBL (range 0–891/106 PBL). The Mann-Whitney U test for comparison shows that CTLp in the absence or presence of CsA are not significantly different (% inhibition = 57%, P = 0.1066). Summarizing, our results suggest that CsA leads to a significant decrease in CTLp in patients without GVHD and patients with acute GVHD, but not in patients with chronic GVHD. A large variation is found in post-BMT CTLp between patients with GVHD.

The data are summarized in Table 2. The mean CTLp observed in the three groups of patients without or with CsA added in the culture medium are indicated and is the

![Figure 1](image1.png)
Figure 1 Kinetics of CTLp after BMT of a patient without GVHD (UPN 4) of a patient suffering from acute GVHD (UPN 8) and of a patient suffering from acute GVHD followed by chronic GVHD (UPN 13). GVHD status indicated with an asterisk is represented as grade I (1 = very mild) to IV (4 = severe). CTLp without CsA are represented with a straight line. CTLp in the presence of CsA are represented with a dashed line.
Measurement of CsA sensitivity of CTL post BMT
LM Uem et al

Figure 2 Each line represents the CTLpf with and without CsA of one sample post BMT. All samples of one patient are represented with the same line and symbol.

Table 2 CsA sensitivity of CTLpf in different patient groups

<table>
<thead>
<tr>
<th>Patients</th>
<th>No samples</th>
<th>CsA added</th>
<th>Mean CTLpf (10^6)</th>
<th>s.d</th>
<th>% Inhibition</th>
<th>Mann-Whitney</th>
</tr>
</thead>
<tbody>
<tr>
<td>No GVHD n = 7</td>
<td>20</td>
<td>No</td>
<td>17.8</td>
<td>18.4</td>
<td>56</td>
<td>P = 0.0138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>7.9</td>
<td>16.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute GVHD n = 7</td>
<td>23</td>
<td>No</td>
<td>96.0</td>
<td>228.2</td>
<td>67</td>
<td>P = 0.0187</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>31.4</td>
<td>89.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic GVHD n = 6</td>
<td>18</td>
<td>No</td>
<td>161.0</td>
<td>421.2</td>
<td>57</td>
<td>P = 0.1066</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>69.5</td>
<td>208.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patients were divided into three groups according to GVHD status. Twenty post BMT samples of seven patients without GVHD or acute GVHD grade I, 23 samples of seven patients with acute GVHD II-IV and 18 samples of patients with chronic GVHD following acute GVHD grade I or more were tested. The percentage inhibition = (1 - mean CTLpf with CsA/mean CTLpf without CsA)) x 100%. s.d = standard deviation. P values comparing CTLpf with CsA with CTLpf without CsA are calculated using the Mann-Whitney U test.

The highest in the ‘chronic GVHD’ group. The effect of CsA presented as the percentage inhibition of the mean CTLpf is, although comparable, the strongest in the acute GVHD group.

Discussion

More than a decade ago, it was established by in vitro experiments that CsA mediates suppression of primary CTL responses. Studies by Hess et al. subsequently demonstrated the resistance to CsA of primed CTL. Similarly, on the CTLp level, the frequency of CTL grown out of primed mixed lymphocyte culture cells is not influenced by CsA. Yet CsA has a profound influence on the primary activation of alloreactive CTLp induced in MLC bulk cultures. Variability in CsA resistance seems to exist at the individual as well as at the clonal level. The clinical significance of the differential in vitro CsA susceptibility is reflected in studies wherein the in vitro CsA resistance appeared to correlate with a high rate of kidney graft loss due to acute rejection. Muluk et al. demonstrated that the CD4+ Th cells reactive with alloantigen-derived peptides presented on self-antigen presenting cells (indirect pathway) are mainly responsible for kidney graft rejection, this population of cells appeared most sensitive to CsA.

Some patients awaiting kidney transplant form antibodies against HLA antigens due to previous transfusions, pregnancies or failed transplants. In these highly sensitized patients it is notable that CTL against HLA antigens toward which the patient has developed antibodies (not acceptable mismatches) were resistant to CsA in vitro whereas CTL...
against HLA antigens toward which no antibodies were present (acceptable mismatches) were sensitive to CsA in vitro.

Additional observations supporting the notion that a decreased in vitro CsA sensitivity of organ donor reactive CTLp is correlated with a higher risk of graft rejection was substantiated by studies in corneal grafting and heart transplantation.

These results prompted us to investigate whether a decrease in CsA sensitivity of CTLp would correlate with an increased risk for GVHD after HLA genotypically identical BMT. To test this assumption, we analyzed the in vitro CsA sensitivity of the anti host CTLp of a 7-day limiting dilution assay. Our results differ from those described for organ transplantation, but are in line with previous results where no differences in inhibitory effects of IL-2 production mediated by CsA were observed between patients with or without acute GVHD. We observed no clear difference between patients suffering from either acute or chronic GVHD and patients with no GVHD. Neither was there a difference in CsA sensitivity of patients who used MTX or CsA as GVHD prophylaxis, nor did we notice an influence of disparities for the known minor histocompatibility antigens between bone marrow donor and recipient. CsA is able to inhibit the CTLp in vitro in the three groups of patients, although an interindividual variability in the in vitro CsA sensitivity was noted, a phenomenon described before by others.

The apparent tendency of enhanced resistance to CsA of the ‘chronic GVHD’ group (Mann-Whitney U test, $P = 0.066$) must therefore be interpreted with care in view of the interindividual variability previously mentioned. Yet the increment of CsA-resistant CTL observed in the chronic GVHD patients may be indicative of a higher risk of development of chronic GVHD. The limited patients’ material did not allow us to evaluate whether higher concentrations of CsA would break this resistance. The presence of this relatively resistant anti-host CTL population may also reflect the composition of a different CTL population as opposed to acute GVHD, related to the chronic form of GVHD.

In chronic GVHD the continuous stimulation of CsA-sensitive CTL might give rise to an increase in CD45R0+ memory T cells. Recent data suggest that CD45R0+ T cells are less susceptible to the inhibitory effects of CsA than CD45R0- naive T cells. An increase in CsA-resistant CD45R0+ T cells will then decrease the overall CsA sensitivity of the total PBL pool.

The aim of this study was to find a raison d’être for the anti-host CTL observed in patients without any clinical signs of GVHD. Hence we investigated whether there may exist a differential susceptibility for CsA between anti host CTL observed in patients with or without GVHD. Our data show however that in an HLAgeneotypically identical situation no correlation is found post-BMT between the in vitro sensitivity for CsA of anti-host CTLs and the occurrence of clinical GVHD.

Acknowledgements

The authors would like to thank Dr FHJ Claas and M Oudshoorn for critically reviewing this manuscript and Professor JJ van Rooijen for helpful discussions. This work was supported by the IA Cohen Institute for Radiopathology and Radiation Protection (IRS), by EC grant BIO2 CT92 0300 and by a grant from the MACROPA Foundation.

References

1. Borton MM, Holowitz MM, Rowlings PA et al 1993 Progress report from the International Bone Marrow Transplant Registry Bone Marrow Transplant 1993, 12 97–104
3. Martin PJ Increased disparity for minor histocompatibility antigens as a potential cause of increased GVHD risk in marrow transplantations from unrelated donors compared with related donors Bone Marrow Transplant 1991, 8 217–223
5. Tsoi M-S, Storb R, Dobbs S et al Cell mediated immunity to non HLA antigens of the host by donor lymphocytes in patients with chronic graft versus host disease J Immunol 1986, 125 2258–2262
6. Reznikow NL, Kersey JH, Bach FH Detection of HLA restricted anti minor histocompatibility antigen(s) reactive cells from skin GVHD lesions Hum Immunol 1984, 11 249–257
7. Irl C, Chapuis B, Jeannet M et al Detection of anti non-MHC directed T cell reactivity following in vivo priming after HLA-identical marrow transplantation and following in vitro priming in limiting dilution cultures Transplant Proc 1987, 19 2674–2677
10. Kasten Sportes C, Masset M, Varrin F et al Phenotypic and function of T lymphocytes infiltrating the skin during graft versus host disease following allogeneic bone marrow transplantation Transplantation 1989, 47 621–624
15. Irl C, Beatty PG, Mackelson E et al Alloreactive T cell
responses between HLA identical siblings Transplantation 1985, 40 329–333
17 Ischick EU, Hladik F, Niederwieser D et al. Studies on the mechanism of tolerance or graft-versus-host disease in allogeneic bone marrow recipients at the level of cytotoxic T cell precursor frequencies Blood 1992, 79 1622–1628
18 Tsou MS, Storb R, Santos E, Thomas ED. Anti-host cytotoxic cells in patients with acute graft versus-host disease after HLA identical marrow grafting Transplant Proc 1983, 15 1484–1486
20 De Bueger M, Bakker A, Bontkes H et al. High frequencies of cytotoxic T cell precursors against minor histocompatibility antigens after HLA identical BMT Absence of correlation with GVHD Bone Marrow Transplant 1993, 11 363–368
21 Kaminski E, Sharrock C, Hows J et al. Frequency analysis of cytotoxic T lymphocyte precursors – possible relevance to HLA matched unrelated donor bone marrow transplantation Bone Marrow Transplantation 1988, 3 149–165
24 De Bueger M, Bakker A, Goulmy E. Acquired tolerance for minor histocompatibility antigens after HLA identical bone marrow transplantation Int Immunology 1992, 4 53–57
29 Orosz CG, Adams PW, Ferguson RM. Frequency of human alloantigen reactive T lymphocytes III Evidence that cyclosporine has an inhibitory effect on human CTL and CD4 T cells Transplantation 1988, 46 73S–79S
31 Muluk SC, Clerici M, Via CS et al. A new approach for analysis of the mixed lymphocyte reaction that is predictive for human renal allograft rejection Transplant Proc 1991, 23 1274–1276
33 Roelen DL, Datema G, Van Bree S et al. Evidence that antibody formation against a certain HLA alloantigen is associated not with a quantitative but in a qualitative change in the cytotoxic T cells recognizing the same antigen Transplantation 1992, 53 899–903
34 Roelen DL, Van Beelen E, Van Bree SPJM et al. The presence of activated donor HLA class I-reactive T lymphocytes is associated with rejection of corneal grafts Transplantation 1995, 59 1039–1042
35 Ouwehand AJ, Baan CC, Roelen DL et al. The detection of cytotoxic T cells with high affinity receptors for donor antigens in the transplanted heart as prognostic factor in graft rejection Transplantation 1993, 56 1223–1229
36 Vialle M, Ferrini S, Basigaluppo A et al. Phenotypic and functional characterization of T cell clones following allogeneic bone marrow transplantation Transplantation 1989, 47 838–843
38 Schanzel R, Steffen R. CD45RA+ and CD45RO+ T cells differ in susceptibility to CsA-mediated inhibition of IL-2 production Transplant Immunol (in press)