ABSTRACT: A patient with acute leukemia and her family including four HLA-identical siblings were analyzed to select a donor who was not only HLA- but also minor histocompatibility (mH) antigen compatible for allogeneic bone marrow transplantation (BMT). The HLA-A2 restricted mH antigen-specific HA-1, -2, -4, and -5 cytotoxic T-lymphocyte (CTL) clones were used to type the family members for expression of these mH antigens. The patient and one HLA-identical sibling were compatible for these mH antigens. This sibling was selected as the bone marrow donor. The patient engrafted promptly but developed acute and chronic graft-versus-host disease. To study the presence of other mH antigen disparities between recipient and donor, host-versus-graft CTL lines and clones were generated by stimulation of recipient peripheral blood lymphocytes (PBLs) with donor bone marrow cells, and graft-versus-host CTL lines were generated after BMT by stimulation of PBLs of donor origin with recipient bone marrow cells. These CTL lines were cytotoxic to cells from the bone marrow donor and from the recipient, respectively, and to cells from several other family members. T-cell lines, generated from the patient after BMT by stimulation of recipient-derived PBLs with donor bone marrow cells, exhibited no specific cytotoxicity to donor or recipient cells. Chimerism studies after BMT revealed that the PBLs and T-cell lines generated after BMT were of donor origin. CTL lines that were generated from PBLs from the three other HLA-identical siblings in this family by stimulation with HLA-identical donor bone marrow cells also exhibited cytotoxicity to cells from several family members. Our results show that in addition to compatibility for HA-1, -2, -4, and -5 between the recipient and the donor, other mH antigen disparities existed between all HLA-identical siblings, illustrating the high degree of polymorphism of mH antigens and therefore the difficulty of finding mH antigen-compatible donor–recipient pairs even when more than one HLA-identical sibling is present within a family. (Human Immunology 37, 221–228 (1993))

INTRODUCTION

HLA-identical bone marrow transplantation (BMT) is frequently complicated by acute graft-versus-host disease (aGvHD). This complication is thought to be induced by donor T cells from the graft that specifically...
TABLE 2 Reactivity of recipient derived α donor bone marrow CTL lines and clones

<table>
<thead>
<tr>
<th>Effector cells</th>
<th>Donor ac</th>
<th>Rec ac</th>
<th>Sib 3 ac</th>
<th>Sib 4 ac</th>
<th>Sib 5 ac</th>
<th>Sib 6 ad</th>
<th>Sib 7 ad</th>
<th>Sib 8 b1</th>
<th>Other cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL line 1+</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTL line 1 A</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTL line 1 B</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clone 10F6</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Effector-target ratio 20:1

See Table 1 notes

Clone 10F6 is a representative example of these clones that recognized cells from the bone marrow donor and from siblings 4 and 7. Phenotypic analysis of the clones by FACS scanning, using anti-CD3, -CD4, and -CD8 monoclonal antibodies (Becton-Dickinson, Mountain View CA USA) showed that they were CD3+CD8+. These results show that CTL lines can be generated with various mH antigen specificities from pre-BMT recipient PBLs by stimulation with donor BMMNCs.

Recognition of cells from family members by GvH CTL lines: Table 3 shows that the CTL lines generated from PBLs collected at several intervals after BMT and stimulated with irradiated recipient pretransplant BMMNCs differentially recognized cells from other family members, which suggested the presence of different mH antigen specificities in the GvH CTL lines.

Recognition of cells from family members by the sibling 3–4 and 5–antidonor CTL lines: CTL lines were generated from PBLs from three other HLA identical siblings by stimulation with irradiated donor BMMNCs. Table 4 shows that these CTL lines differentially recognized cells from other family members. CTL line 4–antidonor only lysed to a limited extent LBV LCLs from the donor but not IL 2 blasts.

Lack of donor specific recognition by post BMT antidonor bone marrow T cell lines: To investigate the presence of residual potential donor directed CTLs in the peripheral blood of the recipient after BMT, PBLs collected on days +14, +19, +27, +40, +60 and +180 were stimulated with irradiated donor BMMNCs. T cell lines generated from PBLs collected on days +14, +19, +27 and +40 were neither cytotoxic for cells from the recipient nor for cells from the bone marrow donor. Cytotoxicity against LBV LCLs but not IL 2 blasts from recipient and bone marrow donor were detected in the T cell lines generated from PBLs collected on days +60 and +180 and that had been stimulated with donor BMMNCs only. The observed cytotoxicity was not donor specific; however, since autologous cells also were recognized (data not shown). Determination of the origin of the T cell lines generated after BMT showed that they all were donor derived (Fig 1).

TABLE 3 Reactivity of GvH CTL lines

<table>
<thead>
<tr>
<th>Effector cells*</th>
<th>Donor ac</th>
<th>Rec ac</th>
<th>Sib 3 ac</th>
<th>Sib 4 ac</th>
<th>Sib 5 ac</th>
<th>Sib 6 ad</th>
<th>Sib 7 ad</th>
<th>Sib 8 b1</th>
<th>Mt. heter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL line +28</td>
<td>-</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CTL line +105</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CTL line +185</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>CTL line +365</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

* Effector-target ratio 20:1

See Table 1 notes

See Table 1 notes

* The specific lysis data presented in Table 3 is from an ICr release assay of IL 2 blasts from the donors. The results show differential recognition by the CTL lines generated from the recipient, with the exception of the clone 10F6 that did not recognize any of the family members. The lack of donor specific recognition by post BMT antidonor bone marrow T cell lines is also evident in Table 3, where the CTL lines generated from the recipient were not cytotoxic for the bone marrow donor but were cytotoxic for LBV LCLs. These results suggest that the CTL lines generated after BMT were not donor specific and had broad reactivity against other family members.

Notes:
- Table 2 and Table 3 are presented as separate tables to facilitate easier reading and understanding of the data. Each table provides specific details on the reactivity of the CTL lines generated from the recipient, including different family members and their recognition patterns.
- The specific lysis data in Table 3 is from an ICr release assay of IL 2 blasts from the donors, indicating the cytotoxicity of the CTL lines against the tested cells.
- The lack of donor specific recognition by post BMT antidonor bone marrow T cell lines is confirmed in Table 3, where the CTL lines generated from the recipient were not cytotoxic for the bone marrow donor but were cytotoxic for LBV LCLs. This suggests a broad reactivity against other family members.

References:
- The specific lysis data in Table 3 is from an ICr release assay of IL 2 blasts from the donors.
- The lack of donor specific recognition by post BMT antidonor bone marrow T cell lines is confirmed in Table 3, where the CTL lines generated from the recipient were not cytotoxic for the bone marrow donor but were cytotoxic for LBV LCLs. This suggests a broad reactivity against other family members.

Figures:
- Fig 1: Determination of the origin of the T cell lines generated after BMT showed that they all were donor derived.

Conclusion:
- The study demonstrates the generation of CTL lines from recipient PBLs stimulated with donor BMMNCs, showing differential recognition against other family members. The lack of donor specific recognition by post BMT antidonor bone marrow T cell lines indicates broad reactivity against family members. The results are supported by the specific lysis data from ICr release assays of IL 2 blasts from donors.
TABLE 4 Reactivity of sibling 3, 4, and 5-antidonor CTL lines

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Donor</th>
<th>Recipient</th>
<th>Sub 3</th>
<th>Sub 4</th>
<th>Sub 5</th>
<th>Sub 6</th>
<th>Sub 7</th>
<th>Sub 8</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effector cells</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
<td>Brevitis</td>
</tr>
<tr>
<td>CTL line 3 or donor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CTL line 4 or donor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CTL line 5 or donor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

DISCUSSION

HLA identical BMT may be complicated by severe aGVHD or graft rejection despite optimal matching for HLA class I and II antigens [1–7]. Both complications are thought to be the result of the recognition of mH antigens by immunocompetent T lymphocytes from donor or recipient origin, respectively [2, 13]. Minor histocompatibility antigens are thought to be peptides derived from cellular proteins [26] that are bound in the groove of major histocompatibility complex (MHC) molecules. Thus, MHC molecule–peptide complexes can be recognized by alloreactive T lymphocytes [27]. Consequently, matching for mH antigens between donor and recipient may decrease the incidence and severity of aGVHD and graft rejection.

In mice, more than 50 mH genes have been described [28]. In humans, several authors have described mH antigen-specific CTLs in patients after multiple blood transfusions and bone marrow and kidney transplantation [2, 29–32]. Mapping of the gene loci has been successful only for the male mH antigen H Y, both in humans and mice [33, 34], and for MTF, a mouse mH antigen encoded by mitochondrial DNA [35]. If the polymorphism of immunogenic human mH antigens is as extended as in mice, the chances of finding donor-recipient pairs identical for both major and minor histocompatibility antigens may be limited.

Previously, we have shown that, prior to BMT, recipient-antidonor cytotoxicity was demonstrated in seven of 10 HLA-identical donor-recipient pairs [21]. In the present study, we show that although donor and recipient were matched for the mH antigens HA-1, -2, -4, and -5, additional cytotoxic reactivity against other, as yet undefined, mH antigens was present between these two siblings, both in the GvH and the HvG directions. The differences in recognition patterns between the HvG parent line and its sublines and between the GvH lines generated at different time intervals after BMT.
may reflect differences in the frequencies of the various mH antigen-specific CTL clones present in the CTL lines. The differential reactivity of the post-BMT GVH CTL lines may reflect in vivo sensitization of donor T cells against mH antigens. These mH antigens may be sequentially expressed on recipient stimulator cells, e.g., due to sequential infections by pathogens that up-regulate expression of various self-mH antigens. In addition, when PBLs from the three other HLA-identical siblings were stimulated with irradiated donor BMMNCs, CTL lines were generated that also recognized mH antigens expressed on cells from family members. These results illustrate multiple mH antigen disparities between the HLA-identical family members.

Despite the presence of host–antidonor cytotoxic reactivity prior to BMT, no graft rejection occurred. No residual recipient cells were demonstrated in peripheral blood and bone marrow collected from the recipient by chimerism studies after BMT. These findings were in accordance with the inability to generate recipient–antidonor CTL lines from posttransplant PBLs, suggesting that no functional alloreactive recipient T lymphocytes were present after BMT. These findings can be explained by the eradication of recipient–immunocompetent T cells by the conditioning regimen [36, 37], by their suppression by T cells from the graft [3], or by the posttransplant immunosuppressive therapy [38]. Uncomplicated engraftment despite in vivo GVH reactivity prior to BMT agrees with a previous report [21] in which we describe that, in seven of ten HLA-identical donor–recipient pairs, recipient–antidonor CTL lines were generated before BMT. None of these patients showed signs of graft failure or graft rejection.

GVHD was not prevented by matching for expression of the mH antigens HA-1, -2, -4, and -5, suggesting that also in the GVH direction additional mH antigen disparities were present between donor and recipient. Our in vitro results with T-cell lines, generated by stimulation of PBLs collected at several intervals after BMT with recipient pre-BMT BMMNCs, paralleled the in vivo observed GVH reactivity. Van Eis et al. [39] could not demonstrate a clear correlation between the incidence of GVHD and the ability, or inability, to generate anthost CTL lines after BMT. Together the results reported here and those by Van Eis et al. indicate that most donor–recipient pairs are mH antigen disparate, but that there is not necessarily a relation between the ability, or inability, to generate CTL lines that lyse recipient or donor cells and the occurrence of GVHD or graft rejection.

Presently, matching for mH antigens is not feasible due to their number and polymorphism. Qualitative, more than merely qualitative, differences in mH antigen-specific T-cell responses between recipients and their potential donors may be correlated with graft rejection or GVHD. Quantitative differences may be estimated by using limiting dilution assays to determine CTL or T-helper-cell precursor frequencies as has been described in unrelated HLA-matched donor–recipient pairs or allogeneic responder–stimulator pairs by Kaminski et al. [40, 41] and Deacock et al. [42], respectively. Adapting these protocols to the specific situation of HLA-identical sibling BMT, e.g., by using BMMNCs as stimulator cells, may produce valuable information.

In conclusion, we have analyzed the mH antigen disparity between HLA-identical and -nonidentical family members of a patient with leukemia, and the possibility of finding a sibling bone marrow donor who was both HLA and mH antigen compatible. In addition to compatibility for the mH antigens HA-1, -2, -4, and -5 between bone marrow donor and recipient, disparity for multiple other mH antigens was demonstrated both in the HvG and the GVH directions. CTL lines were generated from PBLs from three other HLA identical siblings by stimulation with donor BMMNCs, also recognizing mH antigens expressed on cells from family members. Donor–antirecipient, but no residual recipient–antidonor reactivity was demonstrated at several intervals after BMT. In view of these findings, finding donor–recipient pairs that are HLA and mH antigen identical is unlikely. Quantitative, more than merely qualitative, differences in the immune responses to mH antigens between recipients and their potential donors may more likely determine the incidence or severity of GVHD or graft rejection following HLA-identical BMT.

ACKNOWLEDGMENTS

The authors thank Dr. M. Oudshoorn for the HLA DP oligonucleotide typing. This study was supported in part by grants from the J. A. Cohen Institute for Radiopathology and Radiation Protection and the J. H. J. Falkenburg is a Special Fellow of the Royal Netherlands Academy of Arts and Sciences.

REFERENCES

1 Goulmy E. Class I restricted human cytotoxic T lymphocytes directed against minor transplantation antigens and their possible role in organ transplantation. Prog Allergy 36 44, 1985
2 Goulmy E. Minor histocompatibility antigens in man and their role in transplantation. Transplant Rev 2 29, 1988
12 Donohue J, Kernan NA Characterization of cells emer-
ging at the time of graft failure after BM1 from an un
tected marrow donor Blood 82:1023 1993

13 Voskuhl RF, Gilbe W, Marx W, Goulmy E, Van Rood
JJ, Brand A, Goulmy E, HLA restriction of cytotoxic
T cell lines generated in vitro by stimulation with

14 Terasaki PI, Bidwell FA, Landay GJ, Klouda P, Bradly
BA Allografts defined by short DQA and DQB
cDNA probes correlate with antigenic splits of HLA
DQ serological specificities Mol Immunol 24:513 1987

15 Martell M, Marangoni A, Coombs H, HLA class II typing,
by the workshop defined RFLP specifities in unrelated
individuals In Dupont B (ed) Histocompatibility Testing,
1987 (Immunology of HLA) vol 1 New York Springer
Verlag 1987 p 943

16 Middelhoven WTJ, Brand A, Goulmy E, Van Rood JJ,
Halken JH, Identification of minor histocompatibility
anti-gens specific for cytotoxic T cell lines capable of
yielding human hematopoietic progenitor cells can
be generated in vitro by stimulation with HLA identical

17 Martell M, Marangoni A, Coombs H, HLA class II typing, by
the workshop defined RFLP specifities in unrelated
individuals In Dupont B (ed) Histocompatibility Testing,
1987 (Immunology of HLA) vol 1 New York Springer
Verlag 1987 p 943

18 Van Eik ACM, D'Amato P, Pool J, Blokland F, Bakker
A, Van Elen PJ, Van Rood JJ, Goulmy E, Immuno-

detection of human minor histocompatibility antigens
then polymorphism and immunodominance Immunogenetics 35:161 1992

19 Graft RF, Bailey DW, The non H 2 histocompatibility
loci and their antigens Transplant Rev 15:16 1973

20 Remmers P, Klein J, Polydimorphism of minor histo-
compatibility genes in wild mice Immunogenetics 17:637 1983

21 Marx W, Van Rood JJ, Halken JH, Minor histo-
compatibility antigen specific for cytotoxic
T cell lines can be generated in vitro by stimulation with

22 Van Rood JJ, Vin Leewen A, Ploem JS, Simultaneous
detection of two cell populations by two colour
fluorescence and application to the recognition of
B cell determinants Nature 262:795 1976

23 Kamura A, Sazazaki T, Eleventh international histo-
compatibility workshop reference protocol for the HLA
dNA typing technique In Tsut K, Atawa M, Sazazaki
I (eds) HLA 1991 Proceedings of the 11th Interna-
tional Workshop and Conference Held in Yokohama
9-15 November 1991 New York Oxford Univer-
sity Press 1992 p 105

24 Goulmy E, HLA A, B, C restriction of cytotoxic T cell lines
In Ferrone S, Solheim BG (eds) HLA Typing, Methodol-
gy, and Clinical Aspects vol 2 New York CRC 1982 p 105

25 Gibbs PL, Zelinsky R, Boyce D, Duquette W,
Identification of classical minor histocompatibility
anti-gens as cell derived peptide
Nature 345:275 1990

26 Lovech B, Fischer Lindahl K, Identification of classical
minor histocompatibility antigens in Mc
Cluskey J (ed) Antigen Processing and Recognition Lon-
don CRC 1991 p 173

27 Weustian PJ, Minor histocompatibility loci In Litwin
SD (ed) Human Immunogenetics New York Marcel
Dekker 1989 p 339

28 Goulmy E, Termiijan A, Bradly BA, Van Rood JJ,
HLA class II typing in women is restricted by HLA
A Nature 266:514 1977

29 Zier KS, Likins WL, Pierson GR, Heo MM, The use of
cytotoxic T cell lines to detect the segregation of a human
minor alloantigen within families Hum Immunol 7 117, 1983

32 Yarramoto J, Kariyone A, Akiyama N, Kano K, Takiguchi M Presentation of human minor histocompatibility antigens by HLA-B35 and HLA-B38 molecules Proc Natl Acad Sci USA 87 2583, 1990

39 Van Els CACM, Bakker A, Zwinderman AH, Zwaan FE, Van Rood JJ, Goulmy E Effector mechanisms in graft-versus-host disease in response to minor histocompatibility antigens 1 Absence of correlation with cytotoxic effector cells Transplantation 50 60, 1990

