Loss of the ‘azoospermia factor’ (AZF) on Yq in man is not associated with loss of HYA

Elizabeth Simpson*, Phillip Chandler, Els Goulmy1, Kun Ma2, Timothy B.Hargreave3 and Ann C.Chandlely

Transplantation Biology, Clinical Research Centre, Watford Road, Harrow, Middlesex HA1 3UU, UK, 1Department of Immunohaematology and Blood Bank, AZL, Postbus 9600, 2300 RC Leiden, The Netherlands, 2MRC Human Genetics Unit and 3Department of Urology, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK

Received November 16, 1992; Revised and Accepted January 22, 1993

© 1993 Oxford University Press
Human Molecular Genetics, 1993, Vol. 2, No. 4 469—471

ABSTRACT

We have typed 9 EBV cell lines from azoospermic or severely oligospermic patients for the expression of H-Y antigen, in order to test the hypothesis of the coincidence of AZF and HYA genes. Of nine patients with cytogenetically normal Y chromosomes, 7 could be tested for HYA expression and of these 6 were H-Y positive. Of the three patients showing Yq structural abnormalities, two could be tested for H-Y expression and one was negative, the other positive. These results therefore show no correlation between spermatogenic failure and the absence of HYA, thus separating the AZF locus from HYA.

INTRODUCTION

A genetic region controlling spermatogenesis in humans has been localized to the long arm of the Y chromosome [1—7], as has the gene(s) encoding the minor histocompatibility antigen, HYA [8—10]. In mice, the functional equivalent of the human azoospermia factor, AZF, is Spy and has been localized between Zfy-1 and Zfy-2 on the short arm of the Y chromosome and its translocated counterpart, Sxr [11,12]. The Sxr mutation arose by a gene fusion of Zfy-1 and Zfy-2, deleting the intervening DNA in which Hya, as well as Spy, is located [13—15]. The Sxr mutation did not affect the testis determining gene Tdy/Sry, also present on the short arm of the murine Y chromosome [16], and on Sxr [13], thus separating Hya from Sry [13,17]. In man, HYA and TDF/SRY have also been separated by different chromosomal localization. It has been proposed that the functions of Spy and Hya in mice may be encoded by the same gene [12], although a recombinant between Sxr and Sxr challenges this hypothesis [18]. In this paper, we examine the hypothesis that, in humans, AZF and HYA are the same gene, by testing a series of azoospermic or severely oligospermic men for the expression of HYA. The results show no correlation between spermatogenic failure and the absence of HYA, either in men with apparently normal 46 XY karyotypes, or with Yq structural anomalies, thus separating AZF from HYA.

RESULTS

The chromosomal constitution, clinical details and testicular histology of 9 sterile men with cytogenetically normal Y chromosomes and three with Yq structural anomalies are shown in Table 1, together with a summary of the H-Y phenotyping results of the 9 of them which could be typed, as they expressed the HLA-A2 or B7 allele used as the restriction molecule by our H-Y specific T cell clones. Details of the H-Y assays are shown in Table 2. Six of the seven patients with cytogenetically normal Y chromosomes who could be typed for H-Y were positive: one of the seven, KLARD, who has been previously reported to have a microdeletion in distal interval 6 of Yq [7], was H-Y negative. Another, ‘JOLAR’, who had a microdeletion in proximal interval 6, typed H-Y positive. Two of the three azoospermic patients with Yq structural anomalies, FRABO and BITRA, could be typed for the presence of H-Y: FRABO was positive and BITRA negative. Thus, all but two of the nine HLA A2 or B7 sterile patients, some with known deletions in the AZF region, had normal expression of HYA.

DISCUSSION

The finding of HYA expression in all but two of the nine sterile patients tested excludes the possibility that HYA and AZF are the same gene. Although they can both be localized to the same deletion interval of Yq [7,10], this still represents a large physical distance which could readily accommodate many genes. Molecular analyses of Yq deletions in 4 of the azoospermic patients reported here (JOWAL, BITRA, FRABO AND KLARD) have shown absence of a common contiguous length of DNA extending through three sub-intervals of interval 6 [7]. Of the three of these who could be typed by H-Y, one was positive, two negative, making it unlikely that HYA is located in the interval implicated for AZF. A fifth azoospermic deletion patient, ‘JOLAR’, showed absence of a more proximal sub-interval of interval 6 [7] which might also be implicated in spermatogenic control. He, too, typed H-Y positive. Current work is focused on a more detailed molecular analysis of the appropriate intervals of Yq, to make more precise localizations and to identify and test candidate genes, both for HYA, for which in vitro expression testing is available, and for AZF, which requires clinical correlates, but for which candidate genes can ultimately be tested in transgenic mice of the XOSxr genetic constitution [12,17].
Selection of patients for screening

Amongst men undergoing investigation at an infertility clinic, twelve were selected with non-obstructive oligo or azoospermia. Nine were chromosomally normal, the other three having structural anomalies of the Y chromosome (Table 1). On clinical examination, most patients had reduced testis volumes and raised levels of FSH and LH indicative of spermatogenic impairment. None of the patients underwent testicular biopsy in the course of their infertility investigations, the various histological findings included ‘Sertoli-cell only’ syndrome, spermatogenic depression and germ-cell maturation arrest.

Molecular investigations

All nine of the chromosomally normal men tested for H-Y were also investigated using interval 6 probes to detect possible microdeletions in the AZF region. Two patients, ‘JOLAR’ and ‘KLARD’, were found to have non-overlapping interruptions in their DNA, the microdeletion in ‘JOLAR’ being proximal in interval 6, that in ‘KLARD’ being more distal [7]. Both men displayed similar phenotypes of infertility (see Table 1), raising the possibility that AZF might be one very large gene or that several genes residing on the Y chromosome long arm might be important in spermatogenesis. Microdeletions were not found in the other seven individuals tested.

MATERIALS AND METHODS

Selection of patients for screening

Amongst men undergoing investigation at an infertility clinic, twelve were selected with non-obstructive oligo or azoospermia. Nine were chromosomally normal, the other three having structural anomalies of the Y chromosome (Table 1). On clinical examination, most patients had reduced testis volumes and raised levels of FSH and LH indicative of spermatogenic impairment. None of the patients underwent testicular biopsy in the course of their infertility investigations, the various histological findings included ‘Sertoli-cell only’ syndrome, spermatogenic depression and germ-cell maturation arrest.

Molecular investigations

All nine of the chromosomally normal men tested for H-Y were also investigated using interval 6 probes to detect possible microdeletions in the AZF region. Two patients, ‘JOLAR’ and ‘KLARD’, were found to have non-overlapping interruptions in their DNA, the microdeletion in ‘JOLAR’ being proximal in interval 6, that in ‘KLARD’ being more distal [7]. Both men displayed similar phenotypes of infertility (see Table 1), raising the possibility that AZF might be one very large gene or that several genes residing on the Y chromosome long arm might be important in spermatogenesis. Microdeletions were not found in the other seven individuals tested.
Table 2. Details of HLA serotyping and cytotoxic T cell phenotyping of EBV lines from patients and controls

<table>
<thead>
<tr>
<th>Exp</th>
<th>Name</th>
<th>HLA A</th>
<th>HLA B</th>
<th>% Cytotoxicity @ 10 1 AT with A2-H-Y</th>
<th>A2allo</th>
<th>B7-H-Y</th>
<th>B7allo</th>
<th>H-Y Typng</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>74</td>
<td>70</td>
<td>61</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>3</td>
<td>2</td>
<td>72</td>
<td>5</td>
<td>35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>1</td>
<td>2</td>
<td>82</td>
<td>89</td>
<td>42</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>76</td>
<td>70</td>
<td>9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>2,11</td>
<td>7</td>
<td>50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>control</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>81</td>
<td>83</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>59</td>
<td>67</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>49</td>
<td>45</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>94</td>
<td>93</td>
<td>42</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>94</td>
<td>93</td>
<td>42</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>79</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>2</td>
<td>2</td>
<td>94</td>
<td>93</td>
<td>42</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Could not be typed due to inappropriate HLA-A and HLA-B alleles

REFERENCES