Preliminary report

In vitro separation of host specific graft-versus-host and graft-versus-leukemia cytotoxic T cell activities

E. van Lochem¹, B. de Gast² & E. Goulmy¹

¹Department of Immunohaematology and Blood Bank, University Hospital of Leiden, Leiden and ²Department of Haematology, University Hospital of Utrecht, Utrecht, The Netherlands

Summary:
The association of graft-versus-host disease (GVHD) with lower relapse rates following allogeneic bone marrow transplantation (BMT) in humans led us to analyse post HLA-identical BMT derived anti-host cytotoxic T cells (CTL) for their putative anti-leukemic activity. To establish whether graft-versus-host (GVH) and graft-versus-leukemia (GVL) activities are separate, CTL lines were generated at different time points post-BMT from three patients suffering from acute GVHD. These CTL lines, which exhibited lysis of host normal lymphocytes and neoplastic cells, were analysed at the clonal level. Three functionally different types of clones were characterized: clones directed at host specific minor Histocompatibility (mH) antigens which are shared by patient's peripheral blood lymphocytes (PBL) and leukemic cells; clones recognizing only host PBL but not host leukemic cells; and putative GVL clones directed at patient's neoplastic cells only. These data could explain the long controversies on dissection of GVH and GVL activities. Our results demonstrate that GVH and GVL activities can be dissected, while non-separable effector cells which exhibit both activities do exist as well.

One of the major obstacles in allogeneic bone marrow transplantation (BMT) is the occurrence of graft-versus-host disease (GVHD).¹ T cell depletion of the donor bone marrow inoculum shows a reduction in the incidence and severity of GVHD but an increase in relapse rate. Mature T cells in this donor bone marrow inoculum vital for graft acceptance and responsible for GVHD are probably also needed to eliminate residual leukemic cells: the graft-versus-leukemia (GVL) effect.² ³ A substantial number of experimental animal models indicate a GVL effect of allogeneic BMT.⁴ ⁵ Although controversial, mouse data support the notion that the GVL reaction can be distinguished from the GVH reactivities. Bortin et al.⁶ were the first to demonstrate that GVL reaction could be induced by alloimmunization while avoiding GVHD. In humans several clinical trials have suggested a direct relationship between the GVL effect and acute and chronic GVHD.⁷ ⁸ However, clinical data from Butturini et al.⁹ and Horowitz et al.¹⁰ support a GVL effect independent of GVHD that is altered by T cell depletion. To our knowledge, the only in vitro result in humans demonstrating that the GVL and GVHD effect may at least partially be separable, is the isolation of cytolytic T cells from normal donors recognizing allogeneic leukemic cells.⁹ ¹⁰

We analysed post-BMT derived CTL lines from three patients transplanted for acute lymphoblastic T cell leukemia to ascertain whether separate populations of T cells in the bone marrow inoculum are responsible for the anti-host and anti-leukemic activities.

Patients and methods

Three patients received bone marrow grafts from their HLA identical siblings. Acute GVHD was noted in all three patients. Blood samples were collected from the recipient at the time neoplastic cells were present, pre-BMT, at different time points post-BMT, and from the healthy sibling donor. CTL lines were generated as described earlier in detail.¹¹ Briefly, post-BMT cells (i.e. donor derived) are stimulated with patient's pre-BMT PBL. The CTL lines were further expanded by weekly stimulation with recipient pre-BMT EBV-lymphoblastoid cell lines (EBV-LCL) and donor PBL. Cytotoxic activity of the T cell lines and clones was tested in a standard ⁵¹Cr release assay at different effector/target cell ratios. As target cells we used phytohaemagglutinin stimulated PBL (i.e. PHA blasts) of donor and recipient, EBV-LCL of donor and recipient, and patient's leukemic cells (thawed and preincubated overnight in RPMI 1640 supplemented with 15% human serum). Specific lysis was calculated as described.¹¹ The CTL lines were analysed for expression of CD4, CD8 and the NK markers CD16 and CD56. Cloning, with or without CD4 depletion...
(i.e., sorting the CD8 positive population), of the CTL lines at 100, 30, 10, 3 and 1 cell/well was carried out. After reasonable growth was obtained, each individual clonal population was assayed for cytotoxicity on recipient PHA blasts and leukemic cells. All positive clones were further expanded enabling broader functional analyses.

Results

Figure 1 shows that post-BMT derived CTL lines from patients 1 and 2 lysed both normal and neoplastic cells of the host as early as day 35 after BMT, while from patient 3, such CTL lines were generated from day 100 after BMT. In all three cases, the lysis was found to be patient specific as no lysis was observed when donor cells were used as target cells. Only in the case of patient 3 some EBV specific lysis became apparent.

Subsequently, one CTL line of each patient was used for cloning the CTL line of day 100, 35 and 100 post-BMT from patients 1, 2 and 3 respectively. These CTL lines are negative for the NK markers CD16 and CD56 and do not lyse any of the NK sensitive target cell lines Daudi, HL60 or K562 (data not shown). Cloning at different seeding concentrations per well of the CTL lines was repeated at least twice. Table 1, which is representative of a series of experiments, shows that independent of the number of cells seeded per well, three functionally different types of clones can be isolated from each of the three patients' CTL lines. First, a large number of 'dual' positive clones eliminating both patient's normal and neoplastic cells were found. Second, clones directed at host PBL only, and third, host leukemic specific clones were isolated. Further expansion of these clones yielded stable 'dual' positive and 'single' anti-host directed clones. The host specific leukemia directed clones appeared, however, to be unstable and seemed to lose their activity in time in culture.

![Figure 1](image-url)

Figure 1 Cytotoxicity pattern of post-BMT derived CTL lines of patients 1, 2 and 3 (■) host PHA (▲) host EBV-LCL (●) donor PHA (●●) donor EBV-LCL (○) host leukemia
both patient's PBL and leukemic cells, is in agreement
at host specific mH antigens which are expressed on
anti-leukemic reactivity without inducing severe
antigens. The fact that we are able to isolate Single
tissue distribution or against murine leukemia associated
cells. In order to establish whether these clones
obtained in the mouse. Truitt

Because

with recent observations in our laboratory.

The possible of induced LAK activity is almost
negligible because of our culture conditions. An expla-
nation for the controversies in dissecting GVH and
cells are crossreactive with determinants present on unrelated

Table 1 Cytolytic patterns of GVH and GVL specific T cell clones

<table>
<thead>
<tr>
<th>Patient</th>
<th>Target cells</th>
<th>PHA blast</th>
<th>Leukemic cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>100 c/w</td>
<td>100P1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100P23</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100L1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30 c/w</td>
<td>30P12</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30P3</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30L29</td>
<td>4</td>
</tr>
<tr>
<td>Patient 2</td>
<td>10 c/w</td>
<td>D1</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H9</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3 c/w</td>
<td>D2</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H1</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L4</td>
<td>2</td>
</tr>
<tr>
<td>Patient 3</td>
<td>0.3 c/w</td>
<td>FA46</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FA43</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GA22</td>
<td>11</td>
</tr>
</tbody>
</table>

*Number of cells plated per well

|Cloning designation

Discussion

Our data clearly show, by analysis of post-BMT lymphocytes from three patients, that effector cells, potentially representing GVH and GVL activities, can be identified in vitro. These activities are displayed by T cells since no NK-like characteristics were observed. The possibility of induced LAK activity is almost negligible because of our culture conditions. An explanation for the controversies in dissecting GVH and GVL activities is that not only GVH and GVL specific clones were isolated but also clones reactive with ligands shared by host PBL and leukemic cells. Characterization of these ‘dual’ functional clones, directed at host specific mH antigens which are expressed on both patient’s PBL and leukemic cells, is in agreement with recent observations in our laboratory. Because we did not test our clones for their clonality at a molecular level, it is possible that the last type of clones are a summation of clones displaying lysis on neoplastic and normal patient’s cells. On the other hand, our in vitro analysis is compatible with results obtained in the mouse. Truitt et al. described separate as well as overlapping GVH and GVL reactive cell populations. At present we are aiming to obtain stable GVL clones, in order to establish whether these clones show unique or broad anti-leukemic activity, and whether they are directed at mH antigens with limited tissue distribution or against true leukemia associated antigens. The fact that we are able to isolate single GVL directed T cell clones may contribute to a further understanding of possible effectors cells of GVL, and hopefully may lead to new approaches for potentiating anti-leukemic reactivity without inducing severe GVHD.

Acknowledgements

The authors would like to thank Anneke Brand and Cecile van Els for generous support, Els Blokland and Simone van Luxemburg-Heijl for their technical assistance, Frans Claas and Kees Melief for critical reading of this manuscript, and Fred Falkenburg from the Department of Experimental Hematology for cooperation in the collection of patients’ material. This work was supported by grants from the Dutch Cancer Foundation (Koninkin Wilhelmina Fonds) and the J.A. Cohen Institute for Radiotherapy and Radiation Protection.

References

12. VAN DER HARST D, GOULMY E, FALKENBURG JHF et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T cell clones. (Submitted for publication).