The handle http://hdl.handle.net/1887/26884 holds various files of this Leiden University dissertation.

Author: Erhard, Dirk
Title: The parabolic Anderson model and long-range percolation
Issue Date: 2014-07-01
The Parabolic Anderson Model and Long-Range Percolation

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 1 juli 2014
klokke 13:45 uur

doors

Dirk Erhard

geboren te Berlijn, Duitsland in 1985
Samenstelling van de promotiecommissie:

Promotor: Prof. Dr. W. Th. F. den Hollander (Universiteit Leiden)
Second promotor: Dr. G. Maillard (Université d’Aix-Marseille)
Overige leden: Prof. Dr. W. König (Technische Universität Berlin)
 Prof. Dr. P. Mörters (University of Bath)
 Prof. Dr. R. van der Hofstad (Technische Universiteit Eindhoven)
Contents

Preface 1

Part I The Parabolic Anderson Model 3

1 Introduction to Part I 5
1.1 The parabolic Anderson model 5
1.2 The parabolic Anderson model in a static random environment 8
1.3 The parabolic Anderson model in a dynamic random environment 11
1.3.1 White noise 11
1.3.2 Interacting particle systems 12
1.4 Overview of the results 17
1.4.1 Results of Chapter 2: basic properties of the quenched Lyapunov exponent 17
1.4.2 Result of Chapter 3: space-time ergodicity for the quenched Lyapunov exponent 19
1.5 Open problems 20

2 Basic properties of the quenched Lyapunov exponent 21
2.1 Introduction and main results 23
2.1.1 The parabolic Anderson model (PAM) 23
2.1.2 Main targets and related literature 24
2.1.3 Main results 26
2.1.4 Discussion and a conjecture 32
2.2 Existence and uniqueness of the solution 34
2.2.1 Uniqueness 34
2.2.2 Existence 35
2.3 Finiteness of the quenched Lyapunov exponent 36
2.3.1 Strategy of the proof 36
2.3.2 Step 1: Restriction to \([C_1]_t\) 37
2.3.3 Step 2: No bad R-blocks for large R 38
2.3.4 Step 3: Estimate of the Feynman-Kac formula in terms of bad blocks 39
2.3.5 Step 4: Bound on the number of bad blocks 40
2.3.6 Step 5: Proof of the finiteness of the quenched Lyapunov exponent 46
2.4 Initial condition 47
2.4.1 Preparations 47
2.4.2 Three lemmas 49
2.4.3 Proof of the independence from the initial condition 50
6.1.3 Discussion .. 169
6.2 Notation and introduction to the model 170
 6.2.1 Basic notation 170
 6.2.2 Definition of random interlacements 171
 6.2.3 Cascading events and a decoupling inequality 173
6.3 Proof of the main result: transience of the vacant set .. 174
 6.3.1 Auxiliary results: Classification into good and bad vertices 174
 6.3.2 Proof of the main result given the two auxiliary propositions ... 175
6.4 Proof of Proposition 6.3.3: existence of an infinite connected component of good vertices 177
 6.4.1 Proof of Proposition 6.3.3 given an auxiliary result 178
 6.4.2 Proof of the auxiliary result: bad components are small ... 179
6.5 Proof of Proposition 6.3.5: transience of G_u^∞ 182
 6.5.1 Rerouting paths around bad vertices 183
 6.5.2 Rerouting paths preserves finite energy 184
Appendix .. 185
6.6 Proof of Proposition 6.2.3: a decoupling inequality 185

References .. 189
Samenvatting ... 195
Acknowledgments 199
Curriculum Vitae 201
Preface

This thesis has two parts.

Part I deals with the parabolic Anderson model. This is the partial differential equation
\[\frac{\partial u(x, t)}{\partial t} = \kappa \Delta u(x, t) + \xi(x, t) u(x, t), \quad x \in \mathbb{Z}^d, \ t \geq 0, \]
where the u-field and the ξ-field are \mathbb{R}-valued, $\kappa \in [0, \infty)$ is the diffusion constant, and Δ is the discrete Laplacian. The ξ-field plays the role of a dynamic random environment that drives the equation. We take the initial condition $u(x, 0) = u_0(x), \ x \in \mathbb{Z}^d,$ to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: p articles jump at rate $2d \kappa,$ split into two at rate $\xi \vee 0,$ and die at rate $(-\xi) \vee 0.$ The question of interest is how the exponential growth rate of u depends on the diffusion constant $\kappa.$ This can be monitored via the annealed and quenched Lyapunov exponent. We focus on the latter.

Part II deals with two different percolation models. The occupied set of the first percolation model is obtained by taking the union of a collection of independent Brownian motions running up to time $t \geq 0,$ whose initial positions are distributed according to a Poisson point process. The question we investigate is whether the occupied set undergoes a non-trivial percolation phase transition in t or not. We further investigate the uniqueness of the unbounded components in the supercritical regime. The occupied set of the second percolation model is given by the random interlacement set. This is a family of random subsets $I^u,$ $u \geq 0,$ on $\mathbb{Z}^d,$ $d \geq 3,$ that locally describes the trace of a simple random walk on the torus $(\mathbb{Z}/N\mathbb{Z})^d$ running up to time $uN^d.$ It has been shown that the vacant set $V^u = \mathbb{Z}^d \setminus I^u$ undergoes a non-trivial percolation phase transition in $u.$ We describe the geometry of the vacant set V^u in the supercritical regime for intensities u that are close to the critical percolation parameter.

Part I (Chapters 1 – 3) deals with the parabolic Anderson model and is based on the articles [EdHM14a] and [EdHM14b]. **Part II** (Chapters 4 – 6) deals with the two percolation models and is based on the articles [EMP14] and [DE14].