The handle http://hdl.handle.net/1887/25721 holds various files of this Leiden University dissertation.

Author: Klooster, Ronald van 't
Title: Automated image segmentation and registration of vessel wall MRI for quantitative assessment of carotid artery vessel wall dimensions and plaque composition
Issue Date: 2014-05-07
Automated Image Segmentation and Registration of Vessel Wall MRI for Quantitative Assessment of Carotid Artery Vessel Wall Dimensions and Plaque Composition

Ronald van ’t Klooster
Automated Image Segmentation and Registration of Vessel Wall MRI for Quantitative Assessment of Carotid Artery Vessel Wall Dimensions and Plaque Composition

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 7 mei 2014

clokke 15:00 uur

door

Ronald van 't Klooster

geboren te Laren

in 1981
Promotiecommissie

Promotores: Prof. dr. ir. B. P. F. Lelieveldt
Prof. dr. ir. J. H. C. Reiber

Co-promotor: Dr. ir. R. J. van der Geest

Overige leden: Prof. dr. H. J. Lamb
Prof. dr. M. J. A. P. Daemen
Academic Medical Center, Amsterdam
Prof. dr. ir. A. van der Steen
Erasmus MC, University Medical Center, Rotterdam

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 305.

The research described in this thesis was performed within the framework of CTMM,
the Center for Translational Molecular Medicine (www.ctmm.nl), project PARISk (grant
01C-202), and supported by the Dutch Heart Foundation (DHF-2008T094).

Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged.

Financial support for the publication of this thesis was kindly provided by:

- ASCI research school,
- Bontius Stichting inz. Doelfonds beeldverwerking,
- Library of the University of Leiden,
- Medis medical imaging systems bv, Leiden,
- Pie Medical Imaging BV, Maastricht.
Contents

1 **General introduction** 1
1.1 Atherosclerosis of the carotid artery 2
1.2 Magnetic resonance imaging 4
1.3 Image derived measures of atherosclerosis 7
1.4 Manual image analysis 7
1.5 Automated image analysis 8
1.6 Thesis overview 10

2 **Automatic lumen and outer wall segmentation of the carotid artery using deformable 3D models in MR angiography and vessel wall images** 13
2.1 Introduction 15
2.2 Materials and methods 16
2.3 Results 22
2.4 Discussion 23

3 **Carotid wall volume quantification from MRI using deformable model fitting and learning-based correction of systematic errors** 29
3.1 Introduction 31
3.2 Methods 32
3.3 Data specific preprocessing 35
3.4 Experiments 38
3.5 Results 40
3.6 Discussion 47
3.7 Conclusion 47

4 **Automated registration of multispectral MR vessel wall images of the carotid artery** 49
4.1 Introduction 51
4.2 Materials and methods 53
4.3 Experiments and results 56
4.4 Discussion 62
4.5 Appendix: 1.5T optimized settings applied to 3.0T data 68

5 **Visualization of local changes in vessel wall morphology and plaque progression in serial carotid artery MRI** 71
5.1 Introduction 73
5.2 Methods 73
Contents

5.3 Results ... 75
5.4 Discussion .. 77
5.5 Conclusion .. 77

6 Automated versus manual in vivo segmentation of carotid plaque MRI ... 79
6.1 Introduction .. 81
6.2 Materials and methods .. 81
6.3 Results ... 84
6.4 Discussion .. 86
6.5 Conclusions .. 90

7 Agreement and reproducibility of automated atherosclerotic carotid artery plaque classification using optimized 3D morphological and intensity features in MR vessel wall images ... 91
7.1 Introduction .. 93
7.2 Materials and methods .. 94
7.3 Results ... 101
7.4 Discussion .. 106

8 Evaluation of multicontrast MRI including fat suppression and inversion recovery spin echo for identification of intra-plaque hemorrhage and lipid core in human carotid plaque using the Mahalanobis distance measure ... 109
8.1 Introduction .. 111
8.2 Materials and methods .. 112
8.3 Results ... 116
8.4 Discussion .. 122
8.5 Conclusions .. 126

9 An objective method to optimize the MR sequence set for carotid plaque classification using automated image segmentation ... 127
9.1 Introduction .. 129
9.2 Materials and methods .. 130
9.3 Results ... 133
9.4 Discussion .. 136

10 Summary and conclusions ... 139
10.1 Summary .. 139
10.2 Conclusion .. 141
10.3 Future directions .. 142

Samenvatting en conclusies ... 145

References .. 151

Publications .. 165

Acknowledgments .. 167

Curriculum Vitae .. 169